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Abstract. Two-way transducers are ordinary finite two-way automata
that are provided with a one-way write-only tape. They perform a word
to word transformation. Unlike one-way transducers, no characterization
of these objects as such exists so far except for the deterministic case. We
study the other particular case where the input and output alphabets are
both unary but when the transducer is not necessarily deterministic. This
yields a family which extends properly the rational relations in a very
natural manner. We show that deterministic two-way unary transducers
are no more powerful than one-way transducers.

1 Introduction

In the theory of words, two different terms are more or less indifferently used to
describe the same objects: transductions and binary relations. The former term
distinguishes an input and an output, even when the input does not uniquely
determine the output. In certain contexts it is a synonym for translation where
one source and one target are understood. The latter term is meant to suggest
pairs of words playing a symmetric role.

Transducers and two-tape automata are the devices that implement the
transductions and relations respectively. The concept of multitape- and thus
in particular two-tape automata was introduced by Rabin and Scott [7] and also
by Elgot and Mezei [3] almost fifty years ago. Most closure and structural prop-
erties were published in the next couple of years. As an alternative to a definition
via automata it was shown that these relations were exactly the rational subsets
of the direct product of free monoids. On the other hand, transductions, which
are a generalization of (possibly partial) functions, is a more suitable term when
the intention is that the input preexists the output. The present work deals
with two-way transducers which are such a model of machine using two tapes.
An input tape is read-only and is scanned in both directions. An output tape
is write-only, initially empty and is explored in one direction only. The first
mention of two-way transducers is traditionally credited to Shepherdson [9].

Our purpose is to define a structural characterization of these relations in
the same way that the relations defined by multi-tape automata are precisely
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the rational relations. However we limit our investigation to the case where the
input and output are words over a one letter alphabet, i.e., to the case where
they both belong to the free monoid a∗ generated by the unique letter a. Our
technique does not apply to non-unary alphabets. The input is written over one
tape and is delimited by a left (.) and a right (/) endmarker which prevents the
reading head to fall off the input. An output is written on a second write-only
tape. Formally a two-way transducer can be defined as a pair (A, φ) where A is a
two-way automaton of transition set δ and φ is a production function, mapping
δ into output words.

We now state our main result more precisely. Let Σ and ∆ be respectively
the input and the output alphabets. Given a binary relation R ⊆ Σ∗ ×∆∗ and
a word u in Σ∗ we put R(u) = {v | (u, v) ∈ R}. We recall that R is rational if
it belongs to the smallest family of subsets of Σ∗×∆∗ which contains the finite
languages and which is closed under set union, componentwise concatenation
and Kleene star. We are able to prove the following

Theorem 1. A relation of the monoid a∗×a∗ is defined by a two-way transducer
if and only if it is a finite union of relations R satisfying the following condition:
there exist two rational relations S, T ⊆ a∗× a∗ such that for all x ∈ a∗ we have

R(x) = S(x)T (x)∗

The relation {(an, akn) | n, k ≥ 0} is a simple example. It is of the previous
form, however it is not rational. Indeed, identifying a∗ with the additive monoid
of integers N this relation defines the relation “being a multiple of”. However
rational subsets of N are first-order definable in Presburger arithmetics, i.e.,
arithmetics with addition only.

We now briefly mention the few results which to the best of our knowledge are
published on two-way transducers. Engelfriet and Hoogeboom showed links be-
tween two-way transducers and logic [4]. Filiot et al. have studied the simulation
of functional two-way transducers by one-way transducer in [5].

2 Formal series

As suggested in introduction by R(u) notation, a relation R ⊆ Σ∗ ×∆∗ can be
considered as a function from Σ∗ into P(∆∗) or, equivalently, as a series over Σ∗
with its coefficient in P(∆∗). The set of such series is denoted by P(∆∗) 〈〈Σ∗〉〉.
This representation is the most convenient for our work. Thus, we will identify
a relation R with its associated series fR : u → {v | (u, v) ∈ R}. In the same
spirit we will speak of the series accepted by a two-way transducer. We use the
traditional notation 〈s, u〉 in place of fR(u).

In addition to standard rational operations on series (sum, Cauchy product
and Kleene star), we need two operations which we called Hadamard- or simply
H-operations. The first one is the usual Hadamard product of two formal series:
the coefficient of a word in a product is the product of the coefficients in the two
series; the second happens to be new.
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– the Hadamard product (or H-product): sH t : ∀u ∈ Σ∗, 〈sH t, u〉 = 〈s, u〉 〈t, u〉
– the Hadamard star (or H-star): sH? : ∀u ∈ Σ∗,

〈
sH?, u

〉
= 〈s, u〉∗

Denoting by Id the series associated to the identity relation, the series as-
sociated to the relation

{
(an, akn) | n, k ≥ 0

}
is equal to IdH?. The following is

general but provides, when restricted to the case where ∆ is unary, one direction
of our main theorem 4.

Proposition 1. If s and t are series accepted by two-way transducers, so are
the series sH t and sH?.

Rational series and beyond

The family of rational series over the semiring K, denoted RatK 〈〈Σ∗〉〉, is the
smallest family of series over Σ∗ with coefficients in the semiring K which con-
tains the polynomials, i.e., series with finitely many non empty coefficients, and
which is closed under rational operations. The following result is classical [1,
Theorem III. 7.1][2,8]:
Theorem 2. The family of series in P(∆∗)〈〈Σ∗〉〉 accepted by one-way trans-
ducers is equal to the family Rat∆∗ 〈〈Σ∗〉〉.
The family RatK 〈〈Σ∗〉〉 is not closed under H-operations for an arbitrary semir-
ing. However when K is commutative the following holds, [8, Thm III. 3.1]
Theorem 3. If K is commutative then RatK 〈〈Σ∗〉〉 is closed under H-product.
The H-star of a rational series is not necessarily rational, even when Σ is unary.
Therefore the following defines a broader family.
Definition 1. The family of Hadamard series, denoted HadK 〈〈Σ∗〉〉 is the set
of finite sums of Hadamard products of the form αHβH? with α, β ∈ RatK 〈〈Σ∗〉〉.
This family enjoys nice closure properties:
Proposition 2. If K is commutative, the family HadK 〈〈Σ∗〉〉 is closed under
finite sum, H-product and H-star.

3 Unary two-way transductions

From now on we concentrate on unary two-way transducers, i.e., on those with
input and output alphabets reduced to the letter a and characterize the relations
they define. We fix a transducer (A, φ).

The following is a reformulation of Theorem 1 in terms of series.
Theorem 4. Let K denote the semiring Rat(a∗). A series s ∈ P(a∗) 〈〈a∗〉〉 is
accepted by some two-way finite transducer if and only if s ∈ HadK 〈〈a∗〉〉, i.e.,
there exist a finite collection of rational series αi, βi ∈ RatK 〈〈a∗〉〉 such that:

s =
∑

i

αi HβH?i
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The fact that the condition is sufficient is a direct consequence of Theorem 2
and Proposition 1. The other direction is more involved. We proceed as follows.
We first show that if the transducer performs a unique hit, i.e., it never visits
endmarkers except at the beginning and at the end of the computation, it defines
a rational relation. Then we use the closure properties of Property 2 to prove that
the full binary relation with the possibility of performing an arbitrary number
of hits, belongs to HadK 〈〈a∗〉〉.

We adapt a well-known construction based on crossing sequences, i.e., se-
quence of destination states of transitions performed between two successive
tape positions, in chronological order (see [6, page 36-42] for details). Using the
commutativity of ∆∗, we are able to simulate by a one-way transducer, any loop-
free run of (A, φ), i.e., run that never visit the same position twice in the same
state. Then, using again the commutativity of ∆∗ and the fact that Σ is unary
we extend this result to any hit, with or without loops. It is then possible to
restrict this simulation to hits whose first and last configuration matches some
fixed border points, i.e., elements from Q× {., /} (the second component is the
endmarker associated to the side of the tape).

Lemma 1. Given a transducer, and two border points b0 and b1, there exists a
computable one-way transducer that simulates any b0 to b1 hits.

The accepted relation is thus rational, by Theorem 2.

Simulation of an unlimited number of hits

We first adapt the matrix multiplication to the Hadamard product. Let N be
an integer and let be given two matrices X,Y ∈ (K 〈〈Σ∗〉〉)N×N . We define the
H-product of X and Y and also the H-star of X as the matrices:

X HY =
∑N
k=1 Xi,k HYk,j (X)H? =

∑∞
k=0

k times︷ ︸︸ ︷
X H · · · HX

Proposition 3. If the matrix X is in (HadK 〈〈Σ∗〉〉)N×N then so is (X)H?.

Now we are able to conclude the proof of Theorem 4.

Proof (Theorem 4). In one direction this is an immediate consequence of the fact
that the family of series associated with a two-way transducer is closed under
sum, Hadamard product and Hadamard star, see Proposition 1.

It remains to prove the converse. Let T be a transducer. Consider a matrix
X whose rows and columns are indexed by the pairs Q×{., /} of border points.
For all pairs of border points b0 and b1, its (b0, b1) entry is, by Lemma 1, the
rational series associated to b0 to b1 hits of T . The series accepted by T is the
sum of the entries of XH? in position ((q−, .), (q, /)) for q an accepting state.
Since all rational series are also Hadamard series, we conclude by Proposition 2.
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4 Conclusion
Our main result of Theorem 1 gives a characterization of relations (series) ac-
cepted by two-way unary transducers. A key point is that crossing sequences
of loop-free runs have bounded size. In consequence, any loop-free runs can be
simulated by a one-way transducer. We point out that this simulation does not
require any hypothesis on the size of the input alphabet.

We fix a transducer T = (A, φ) accepting a relation R ⊆ Σ∗ × Γ ∗, with
|Γ | = 1. If A is deterministic or unambiguous (i.e., for each input word u, there
exists at most one accepting run of A on u), then every accepting run is loop-free.
Therefore, by the previous remark, T is equivalent to some constructible one-way
transducer. Another interesting case is when R is a function (T is functional).
Then for each u, all the accepting runs on u produce the same output word.
Hence, considering only loop-free runs preserves the acceptance of T .
Corollary 1. Let R ⊆ Σ ×∆ with |∆| = 1 be accepted by some two-way trans-
ducer T = (A, φ). If A is unambiguous or if R is a function then R is rational.

A rational uniformization of a relation R ⊆ Σ∗ × Γ ∗, is a rational function
F ⊆ R, such that the domain of F is equal to the one of R. Under the hypothesis
|Γ | = 1, it is possible to build a one-way transducer accepting such a F . Since the
transducer obtained from our work is not necessary functional, the construction
involves a result of Eilenberg [2, Prop. IX 8. 2] solving the rational uniformization
problem for rational relations.
Corollary 2. There exists a computable one-way transducer accepting a rational
uniformization of R.

As a consequence of Lemma 1, in the case of unary transducers, the change
of direction of the input head can be restricted to occur at the endmarkers only.
In the literature such machines are known as sweeping machines [10].
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