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Abstract. The main focus of research in machine learning and statistics
is on building more advanced and complex models. However, in practice
it is often much more important to use the right variables. One may
hope that recent popularity of open data would allow researchers to
easily find relevant variables. However current linked data methodology
is not suitable for this purpose since the number of matching datasets
is often overwhelming. This paper proposes a method using correlation
based indexing of linked datasets which can significantly speed up feature
selection based on classical stepwise regression procedure. The technique
is efficient enough to be applied at interactive speed to huge collections
of publicly available linked open data.
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1 Introduction

It is well known from statistical modeling practice that including the right vari-
ables in the model is often more important than the type of model used. Unfor-
tunately analysts have to rely on their experience and/or intuition as there are
not many tools available to help with this important task.

The rising popularity of linked open data could offer a solution to this prob-
lem. The researcher would simply link their data with other variables down-
loaded from a public database and use them in their model. Currently, several
systems exist which allow for automatically linking publicly available data ([2,
5, 11, 17, 18]). Unfortunately, those systems are not always sufficient. Consider,
for example, a researcher who wants to find out which factors affect some vari-
able available for several countries for several consecutive years. The researcher
could then link publicly available data (from, say, Eurostat [1] or the United
Nations [6]) by country and year to the target modeling variable and build a
linear regression model using some method of variable selection. Unfortunately,
such an approach is not practical since there are literally millions of variables



available from Eurostat alone and most of them can be linked by country and
year. As a result, several gigabytes of data would have to be downloaded and
used for modeling.

This paper proposes an alternative approach: linking a new variable is per-
formed not only by some key attributes but also based on the correlation with
the target variable. We describe how to use spatial indexing techniques to find
correlated variables quickly. Moreover, we demonstrate how such an index can
be used to build stepwise regression models commonly used in statistics.

To the best of our knowledge no current system offers such functionality. The
closest to the approach proposed here is the Google Correlate service [14]. It
allows the user to submit a time series and find Google query whose frequency is
most correlated with it. However Google Correlate is currently limited to search
engine query frequencies and cannot be used with other data such as publicly
available government data collections. Moreover it allows only for finding a single
correlated variable, while the approach proposed here allows for automatically
building full statistical models. In other words our contribution adds a statistical
model construction step on top of a correlation based index such as Google
Correlate.

There are several approaches to speeding up variable selection in stepwise
regression models such as streamwise regression [22] or VIF regression [13]. None
of them is, however, capable of solving the problem considered here: allowing
an analyst to build a model automatically selecting from millions of available
variables at interactive speeds.

Let us now introduce the notation. We will not make a distinction between
a random variable and a vector of data corresponding to it. Variables/vectors
will be denoted with lowercase letters x, y; x̄ is the mean of x and cor(x, y)
correlation between x and y. Matrices (sets of variables) will be denoted with
boldface uppercase letters, e.g. X. The identity matrix is denoted by I and XT

is the transpose of the matrix X.

2 Finding most correlated variables. Multidimensional
indexing

The simplest linear regression model we may think of is a model with only one
variable: the one which is most correlated with the target. An example system
building such models in the open data context is the Google Correlate tool [3, 14,
21]. It is based on the fact that finding a variable with the highest correlation is
equivalent to finding a nearest neighbor of the response variable after appropriate
normalization of the vectors.

In this paper we will normalize all input vectors (potential variables to be
included in the model) as x′ = x−x̄

‖x−x̄‖ . That way, each vector is centered at zero

and has unit norm, so we can think of them as of points on an (n− 1)-sphere. It
is easy to see that the correlation coefficient of two vectors x, y is simply equal



to the dot product of their normalized counterparts

cor(x, y) = 〈x′, y′〉.

Note that our normalization is slightly different from the one used in [14], but
has the advantage that standard multidimensional indices can be used. After
normalization the Euclidean distance between two vectors is directly related to
their correlation coefficient

‖x− y‖ =
√

2− 2cor(x, y). (1)

The above equation gives us a tool to quickly find variables most correlated
with a given variable, which is simply the one which is closest to it in the usual
geometrical sense. Moreover to find all variables x whose correlation with y is at
least η one needs to find all x’s for which ‖x− y‖ 6

√
2− 2η.

The idea now is to build an index containing all potential variables and
use that index to find correlated variables quickly. Thanks to the relationship
with Euclidean distance, multidimensional indexing can be used for the purpose.
Building the index may be time consuming, but afterwards, finding correlated
variables should be very fast. We now give a brief overview of the indexing
techniques.

Multidimensional indexing. Multidimensional indices are data structures de-
signed to allow for rapidly finding nearest neighbors in n-dimensional spaces.
Typically two types of queries are supported. Nearest neighbor queries return k
vectors in the index which are closest to the supplied query vector. Another type
of query is range query which returns all vectors within a given distance from
the query.

Due to space limitations we will not give an overview of multidimensional
techniques, see e.g. [19]. Let us only note that Google Correlate [21] uses a
custom designed technique called Asymmetric Hashing [8].

In the current work we use Ball Trees [12] implemented in the Python
Scikit.Learn package. Ball Trees are supposed to work well even for high di-
mensional data and return exact solutions to both nearest neighbor and range
queries. For faster, approximate searches we use the randomized kd-trees imple-
mented in the FLANN package [15] (see also [16]).

Of course finding most correlated variables has already been implemented by
Google Correlate. In the next section we extend the technique to building full
regression models, which is the main contribution of this paper.

3 Stepwise and stagewise regression

In this section we will describe classical modeling techniques: stagewise and
stepwise linear regression and show how they can be efficiently implemented in
the open data context using a multidimensional index.

Stagewise regression is a simple algorithm for variable selection in a regression
model which does not take into account interactions between predictor variables,



see e.g. [10] for a discussion. The algorithm is shown in Figure 1. The idea is
simple: at each step we add the variable most correlated with the residual of the
current model. The initial residual is the target variable y and the initial model
matrix X contains just a column of ones responsible for the intercept term. The
matrix HX = X(XTX)−1XT is the projection matrix on X, see [9] for details.

Algorithm: Stagewise

1) r ← y; X← (1, 1, . . . , 1)T ,
2) Find a variable xi most correlated with r,
3) Add xi to the model: X← [X|xi],
4) Compute the new residual vector r = y −HXy,
5) If the model has improved: goto 2.

Fig. 1. The stagewise regression algorithm.

The stopping criterion in step 5 is based on the residual sum of squares:
RSS = rT r = ‖r‖2, where r is the vector of residuals (differences between true
and predicted values). The disadvantage of RSS is that adding more variables
can only decrease the criterion. To prevent adding too many variables to the
model additional penalty terms are included, the two most popular choices are
Akaike’s AIC [4] and Schwarz’s BIC [20]. Here we simply set a hard limit on the
number of variables included in the model.

The advantage of stagewise regression is its simplicity, one only needs to
compute the correlation of all candidate variables with the residual r. Thanks
to this, one can easily implement stagewise regression using techniques from
Section 2, so the approach can trivially be deployed in the proposed setting.

The disadvantage of stagewise regression is that is does not take into account
correlations between the new variable and variables already present in the model.
Consider an example dataset given in Table 1. The dataset has three predictor
variables x1, x2, x3 and a target variable y. The data follows an exact linear
relationship: y = 3x1 +x2. It can be seen that the variable most correlated with
y is x1, which will be the first variable included in the model. The residual vector
of that model, denoted r1, is also given in the table. Clearly the variable most
correlated with r1 is x3 giving a model y = β0 +β1x1 +β2x3. But the true model
does not include x3 at all! The reason is that x3 is highly correlated with x1,
and this correlation is not taken into account by stagewise regression.

Table 1. Example showing the difference between stepwise and stagewise regression.

x1 x2 x3 y r1

0.03 -0.12 0.75 -0.03 0.51
-0.54 -0.10 -0.47 -1.71 -0.15
0.13 -1.03 0.11 -0.64 -0.27
0.73 -1.58 0.00 0.61 -0.09



An improvement on stagewise regression is stepwise regression proposed in
1960 by Efroymson [7]. The algorithm is given in Figure 2. The main idea is that
at each step we add each variable to the model, compute the actual residual sum
of squares (which takes into account correlations between variables) and add the
variable which gives the best improvement.

Algorithm: Stepwise

1) r ← y; X← (1, 1, . . . , 1)T ,
2) For each variable xi:

compute the residual of the model obtained by adding xi to the current model:
ri = y −H[X|xi]y

3) Find xi∗ , where i∗ = arg min ri
T ri,

4) If model: [X|xi∗ ] is better than X:
1. Add xi∗ to the model X← [X|xi∗ ]
2. goto 2).

Fig. 2. The stepwise regression algorithm.

In the example stepwise regression will choose the correct variables x1 and
then x2, which is the best possible model. In general, stepwise regression builds
better models than stagewise regression, but is more costly computationally. At
each step we need to compute the RSS for several regression models, which is
much more expensive than simply computing correlations.

4 Fast stepwise selection based on multidimensional
indices

Stepwise regression is known to give good predictions, however when the number
of attributes is large, it becomes inefficient; building a model consisting of many
variables when we need to search through several millions of candidates, as is
often the case with linked data, would be extremely time consuming, since at
each step we would need to compute RSS of millions of multidimensional models.

In this section we present the main contribution of this paper, namely an
approach to speed up the process using a multidimensional index. Our goal is
to decrease the number of models whose RSS needs to be computed at each
step through efficient filtering based on a multidimensional index. Assume that
k − 1 variables are already in a model and we want to add the k-th one. Let
Xk−1 denote the current model matrix. The gist of our approach is given in the
following theorem.

Theorem 1. Assume that the variables x1, . . . , xk−1 currently in the model are
orthogonal, i.e. Xk−1

TXk−1 = I and let r = y − HXk−1
y denote the residual

vector of the current model. Consider two variables xk and xk′ . Denote ci,k =
cor(xi, xk), ci,k′ = cor(xi, xk′), cr,k = cor(r, xk), cr,k′ = cor(r, xk′). Let Xk =
[Xk−1|xk] and Xk′ = [Xk−1|xk′ ]. Further, let rk = y − HXk

y be the residual



vector of the regression model obtained by adding variable xk to the current
model, and let rk′ be defined analogously. Then, ‖rk′‖2 6 ‖rk‖2 implies

max {|c1,k′ |, . . . , |ck−1,k′ |, |cr,k′ |} >
|cr,k|√

1− c21,k − . . .− c2k−1,k + (k − 1)c2r,k

. (2)

The theorem (the proof can be found in the Appendix) gives us a way to
implement a more efficient construction of regression models through the step-
wise procedure. Each step is implemented as follows. We first find a variable
xk which is most correlated with the current residual r. Then, using the right
hand side of Equation 2 we find the lower bound for correlations of the potential
new variable with the current residual and all variables currently in the model.
Then, based on Equation 1, we can use k range queries (see Section 2) on the
spatial index to find all candidate variables. Steps 2 and 3 of Algorithm 2 are
then performed only for variables returned by those queries. Since step 2 is the
most costly step of the stepwise procedure this can potentially result in huge
speedups. The theorem assumes x1, . . . , xk−1 to be orthogonal which is not al-
ways the case. However we can always orthogonalize them before applying the
procedure using e.g. the QR factorization.

The final algorithm is given in Figure 3. It is worth noting that (when exact
index is used like the Ball Tree) algorithm described in Figure 3 gives the same
results as stepwise regression performed on full, joined data.

Algorithm: Fast stepwise based on multidimensional index

1) r ← y; X← (1, 1, . . . , 1)T

2) Find a variable x1 most correlated with r # nearest neighbor query
3) Add x1 to the model: X← [X|x1]
4) Compute the new residual vector r = y −HXy
5) Find a variable xk most correlated with r
6) C ← {xk} # the set of candidate variables

7) η ← |cr,k|√
1−c2

1,k
−...−c2

k−1,k
+(k−1)c2

r,k

8) For i← 1, . . . , k − 1:
9) C ← C ∪ all variables x such that ‖x− xi‖2 6 2− 2η # range queries
10) C ← C ∪ all variables x such that ‖r − xi‖2 6 2− 2η # range query
11) Find the best variable xi∗ in C using stepwise procedure, add it to the model
12) If the model has improved significantly: goto 4).

Fig. 3. The fast stepwise regression algorithm based on multidimensional index.

5 Experimental evaluation

We will now present an experimental evaluation of the proposed approach. First
we give an illustrative example, then examine the efficiency.



5.1 An illustrative example

The following example is based on a part of the Eurostat database [1]. The re-
sponse variable is the infant mortality rate in each country and the predictors
are variables present in a part of the database concerning ‘Population and social
conditions’, mainly ‘Health’. The combined data set consists of 736 observations
(data from 1990 till 2012 for each of the 32 European countries) and 164460
variables. We decided to select two variables for the model. Missing values in
the time series were replaced with the most previous available value or with the
next one if the previous did not exist.

Exact stepwise regression (produced with regular stepwise procedure or the
Ball Tree index) resulted in the following two variables added to the model:

– ,,Causes of death by NUTS 2 regions - Crude death rate (per 100,000 in-
habitants) for both men an women of age 65 or older, due to Malignant
neoplasms, stated or presumed to be primary, of lymphoid, haematopoietic
and related tissue”

– ,,Health personnel by NUTS 2 regions - number of physiotherapists per in-
habitant”.

The variables themselves are not likely to be directly related to the target,
but are correlated with important factors. The first variable is most probably
correlated with general life expectancy which reflects the efficiency of the medi-
cal system. The number of physiotherapists (second variable) is most probably
correlated with the number of general health personnel per 100,000 inhabitants.
Dealing with correlated variables is an important topic of the future research.

An analogous result was obtained using an approximate index implemented in
the FLANN package. Due to the fact that the results are approximated, slightly
different attributes were selected but the RSS remained comparable. Moreover,
building the model using the Ball Tree index was almost 8 times faster than
stepwise regression on full data, and using the FLANN index more than 400
times faster!

5.2 Performance evaluation

To assess performance we used a part of the Eurostat [1] database. The response
variable was again the infant mortality rate and predictors came from the ‘Pop-
ulation and social conditions’ section, mainly: ‘Health’, ‘Education and training’
and ‘Living conditions and welfare’. This resulted in a joined dataset consisting
of 736 observations (data from 1990 till 2012 for 32 European countries) and
over 200, 000 attributes.

The algorithms used in comparison are regular stepwise regression on full
joined data (‘regular step’), fast stepwise regression using two types of spatial
indices and stepwise regression built using the algorithm in Figure 3 with spatial
queries answered using brute force search (‘step with no index’).

The first two charts in Figure 4 show how the time to build a model with
3 or 5 variables changes with growing number of available attributes (i.e. the
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Fig. 4. Average time needed to build models with 3 or 5 variables for varying numbers
of available variables and observations. ‘regular step’ is the classical stepwise regression,
all others are the proposed fast versions using different spatial indexes and brute search.

size of full joined data). The second two charts show how the time changes with
growing number of observations (records). To obtain the smaller datasets we
simply drew samples of the attributes or of the observations. We can see that the
best times can be obtained using FLANN index. It is worth noting that FLANN
gives approximate, yet quite precise results. Slower, but still reasonably fast
model construction can be obtained by using Ball Tree index, which guarantees
the solution is exact. All charts show that the bigger the data the bigger the
advantage from using the algorithm shown in Figure 3.

6 Conclusions

The paper presents a method for building regression model on linked open data
at interactive speeds. The method is based on the use of spatial indexes for effi-
cient finding of candidate variables. The method has been evaluated experimen-
tally on Eurostat data and demonstrated to perform much faster than standard
regression implementations.
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A Proof of Theorem 1

To prove Theorem 1 we need to introduce two lemmas.

Lemma 1. Adding xk to a least squares model of y based on Xk−1 = [x1| . . . |xk−1]

decreases the RSS by
(xT

k Pk−1y)2

xT
k Pk−1xk

, where Pk−1 := I−HXk−1
.

Proof. xk can be expressed as a sum of vectors in the plane spanned by Xk−1

and perpendicular to that plane: xk = HXk−1
xk + Pk−1xk. If xk is a linear

function of columns of Xk−1, adding it to the model gives no decrease of RSS,
so we only need to consider Pk−1xk. It is easy to see that if xk is uncorrelated

with each column of Xk−1, adding it to the model decreases RSS by
(xT

k y)2

xT
k xk

. This

is because the RSS is then equal to yTPky, where Pk = Pk−1− xk(xTk xk)−1xTk .
Combining those facts with symmetry and idempotency of Pk−1, RSS decreases
by

((Pk−1xk)T y)2

(Pk−1xk)TPk−1xk
=

(xTkP
T
k−1y)2

xTkP
T
k−1Pk−1xk

=
(xTkPk−1y)2

xTkPk−1xk
.

Lemma 2. Assume now that Xk−1 is orthogonal. If adding xk′ to the model
gives lower RSS than adding xk, then:

c2r,k
1− c21,k − . . .− c2k−1,k

<
c2r,k′

1− c21,k′ − . . .− c2k−1,k′
. (3)

Proof. From Lemma 1 we know that if xk′ causes greater decrease in RSS then

(xTkPk−1y)2

xTkPk−1xk
<

(xTk′Pk−1y)2

xTk′Pk−1xk′
.

We also know that (since vectors are normalized) c2r,k = (xTk r)
2 = (xTkPk−1y)2,

and using orthogonality of Xk−1 we get

xTkPk−1xk = xTk (I−Xk−1(XT
k−1Xk−1)−1XT

k−1)xk = xTk (I−Xk−1X
T
k−1)xk =

= xTk xk − (xT1 xk)2 − . . .− (xTk−1xk)2 = 1− c21,k − . . .− c2k−1,k,

which proves the lemma.

Proof (of Theorem 1). If for any i = 1, . . . , k−1: |ci,k′ | > |cr,k|√
1−c21,k−...−c

2
k−1,k+(k−1)c2r,k

then the inequality is true. Otherwise for all i = 1, . . . , k − 1:

|ci,k′ | <
|cr,k|√

1− c21,k − . . .− c2k−1,k + (k − 1)c2r,k

(4)

and we need to show that this implies |cr,k′ | > |cr,k|√
1−c21,k−...−c

2
k−1,k+(k−1)c2r,k

. No-

tice first that the inequalities (4) imply

1− c21,k′ − . . .− c2k−1,k′ >
1− c21,k − . . .− c2k−1,k

1− c21,k − . . .− c2k−1,k + (k − 1)c2r,k
.



Using this inequality and Lemma 2 we get the desired result:

c2r,k′ > c2r,k
1− c21,k′ − . . .− c2k−1,k′ + c2r,k′

1− c21,k − . . .− c2k−1,k + c2r,k
>

c2r,k
1− c21,k − . . .− c2k−1,k + (k − 1)c2r,k

.
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