
Contract-based specification and analysis of
AADL models?

Ernesto Posse Juergen Dingel
{eposse,dingel}@cs.queensu.ca

School of Computing – Queen’s University
Kingston, Ontario, Canada

Abstract. We describe an approach to the specification, analysis and
verification of AADL models using assume/guarantee behavioural con-
tracts specified with the Property Specification Language (PSL). This
approach aids the development process by 1) supporting the reuse and
replacement of components based on their contracts rather than only
their interface or their implementation and thus reducing the need for
re-engineering; 2) providing early discovery of behavioural inconsistencies
that may pose problems with integration; and 3) allowing an incremen-
tal and flexible application of specification and verification instead of
requiring an all-or-nothing approach. It also helps improving the prod-
uct itself by detecting safety and liveness problems via model-checking.
We also briefly discuss a prototype plug-in for OSATE supporting an
annex language which we call AGCL.

1 Introduction

The development of distributed, real-time embedded systems (DRE) presents
multiple challenges born out of their inherent complexity. In order to address
the complexity of these systems and their design, component-based and model-
driven approaches are often used. Such approaches often rely on modelling and
architecture description languages such as the Architecture Analysis and Design
Language, AADL [6], which provides the means to describe systems in terms of
interacting components and their composition.

Complex patterns of interaction between components pose a challenge to de-
velopers, making it difficult to understand how a system behaves and whether it
satisfies its requirements and behaves correctly, e.g., satisfying safety and live-
ness constraints. In order to provide some relief to the developer, automatic
formal verification techniques such as model-checking can help to analyze a sys-
tem’s behaviour. Nevertheless, formal verification often faces the so-called state-
explosion problem, whereby adding a component multiplies the number of states
in a system, resulting in an exponential growth in the state-space which provides
a challenge to verification techniques and tools.
? This work was financed in part by Edgewater Computer Systems Inc., Ontario Cen-
tres of Excellence and Connect Canada.

An approach to deal with the state-explosion problem is the use of composi-
tional analysis which leverage the structure of the system. In these techniques,
the analysis of a composite system is reduced to the analysis of its parts. A
main advantage of such techniques is that if a single component changes, there
is no need to reanalyze the whole system, only the portion directly affected. This
provides the basis for incremental analysis, which aids development by focusing
verification only on the components on which the developer is working.

A well-known compositional approach is based on assume/guarantee con-
tracts where each component is annotated with a contract consisting of an as-
sumption specifying how the component expects its environment to behave, and
a guarantee specifying the behaviour guaranteed by the component if the as-
sumptions hold. Contract-based specification facilitates integration not only by
making expectations and assurances explicit, but also by ensuring preservation of
correctness when a component with a given contract is replaced by another com-
ponent whose contract conforms to or refines the first. Contract-based analysis
uses the contracts to automatically establish whether a composition of compo-
nents satisfy the contract of the composite component to which they belong.

Most approaches to assume/guarantee analysis (e.g., [3]) limit the scope of
assumptions to component inputs and guarantees to component outputs. Fur-
thermore, in many approaches the form of a contract is of the form “assuming
these inputs, we guarantee these outputs”. These are two big limitations. As-
sumptions and guarantees are supposed to capture behaviour, not just individual
inputs and outputs. Furthermore, both assumptions and guarantees should de-
scribe “conversations” between a component and its environment, with assertions
about information flowing both ways. For example, a component may assume
that whenever it sends a particular output to its environment, the environment
will send back some particular message as input to the component.

In this paper we address these shortcomings by we proposing an AADL an-
nex sub-language for annotating components with assume/guarantee contracts
and a prototype verifier that performs compositional analysis. In this sublan-
guage we use the Property Specification Language, PSL, an IEEE Standard [4]
which allows the specification of behaviour combining the expressive power of
ω-regular expressions and linear temporal logic (LTL), and in which both as-
sumptions and guarantees can refer to inputs and outputs.

Another shortcoming of many formal approaches to analysis is that they usu-
ally require an all-or-nothing commitment on the part of the developer, for ex-
ample requiring a full, formal account of all components’ behaviours. We address
this by supporting the notion of viewpoints. A viewpoint represents a particular
set of requirements distributed across components. The designer may annotate
any given component with several contracts. All contracts sharing the same
name across different components form a viewpoint. For example, the designer
can define some safety viewpoints separately from some liveness viewpoints. This
allows the developer to add contracts and viewpoints as the design progresses.
This notion of viewpoint is simpler than that found in [2] where the developer
is required to explicitly use more complex operators to combine contracts.

2 AGCL: a sublanguage for assume/guarantee contracts

Consider the model shown in Figure 1 depicting a system consisting of a client
and a server which itself consists of a front-end or mediator, and a back-end. In
this common pattern, the client may issue requests via a channel req and expects
an answer on channel ans. The front-end of the server receives these requests,
may perform some preprocessing, and delegates the requests to the back-end
server via the internal_req channel. When the back-end server responds on
the internal_ans channel, the front-end may do some post-processing, and
deliver the final answer to the client.

(a) composite (b) server

Fig. 1. A simple client-server architecture with a mediator process.

To annotate components with contracts we need to declare viewpoints, which
is done at the package-level annex library as shown below (using the viewpoint key-
word). The enforce keyword is used to inform the tool which viewpoints should
be analyzed.1

1 package client_server_mediator
2 public

3 annex AGCL {**
4 viewpoint normal_operation;
5 viewpoint alternative_operation;
6 enforce normal_operation;
7 **};

8 -- etc.

9 end client_server_mediator;

1 To keep the presentation of our example simple we show only the annex for each
classifier. We also ommit the specification of the top-level process, the client and
focus on the server only, and we ommit the thread type declarations with ports
which are visible in Figure 1.

2.1 Contracts for atomic components (threads)

Figure 2 shows the backend server. Its annex has a behaviour clause describing
the behaviour of the actual implementation, and a contract clause defining
a contract for this component within the normal_operation viewpoint. The
behaviour states that whenever the server receives a request (an in event on the
req port with some signal s1), then it will produce an output on the ans port
in the next state or cycle. The contract in this case has no assumptions and
therefore it is simply true. The guarantee is that whenever the backend receives
a request, it will eventually produce an answer. In this case, it should be fairly
trivial that the beahviour satisfies the contract.

1 thread implementation BackendServer.impl1
2 annex AGCL {**
3 behaviour always (in req:s1 -> next out ans:s2);
4 contract normal_operation
5 assumption TRUE;
6 guarantee always (in req:s1 -> eventually out ans:s2);
7 end normal_operation;
8 **};
9 end BackendServer.impl1;

Fig. 2. Backend server.

Note that the guarantee can talk about both inputs and outputs. The same
is true for assumptions. A guarantee represents an obligation on the component,
whereas an assumption represents an obligation on its environment. Hence, when
a guarantee states an atomic proposition labeled in, it is stating the component’s
obligation to accept or receive an input. When a in atomic proposition appears
in an assumption, the input direction is stated from the point of view of the
component but it actually represents an output obligation from the component’s
environment to the component. Similarly, an out in a guarantee is an obligation
for the component to produce output, whereas an out in an assumption, while
stated from the point of view of the component, actually represents an obligation
on the environment to accept or receive input coming from the component.

Figure 3 shows the frontend. Its behaviour clause specifies that whenever an
external request arrives (from the client), eventually it will reach a state where
it will send a request to the backend (through the internal_req port) and
from that point onwards, whenever it receives an answer from the backend, it
will eventually forward the answer to the client on the external_ans port. The
contract clause specifies as assumption that whenever it sends a request to the
backend server, it will get an answer from it eventually. The guarantee states
that whenever it receives an external request from the client, it will eventually
send an internal request to the backend, and whenever it gets a response from
the backend it will eventually send an answer back to the client. In this case it

is less trivial that the behaviour satisfies the contract, but this follows from the
formal semantics of PSL.

In general, for threads, a behaviour B satisfies a contract C = (A,G) with
assumption A and guarantee G, if the formula B ∧A⇒G is valid. Intuitively,
the behaviour and the assumptions must be enough to imply the guarantee. A
(linear) temporal logic formula (including PSL) is valid if it holds in all possi-
ble paths for every possible model. In our case, the premise of this implication
captures the model: the guarantee will be required to be true only on those
models with behaviour B, if the assumption A is true as well. The validity of
PSL formulas can be established with a model-checker (see Section 4).

1 thread implementation Frontend.impl1
2 annex AGCL {**
3 behaviour always (in external_req:s1
4 -> eventually (out internal_req:s1
5 & always (in internal_ans:s2
6 -> eventually out external_ans:s2)));
7 contract normal_operation
8 assumption always (out internal_req:s1
9 -> eventually in internal_ans:s2);

10 guarantee always (in external_req:s1
11 -> eventually out internal_req:s1)
12 & always (in internal_ans:s2
13 -> eventually out external_ans:s2);
14 end normal_operation;
15 **};
16 end Frontend.impl1;

Fig. 3. Server frontend (mediator).

An AGCL annex can contain multiple contracts, which can be verified inde-
pendently. This allows the developer to add contracts as the design progresses,
and define contracts which focus only on particular aspects of interest.

2.2 Contracts for composite components (thread groups)

Figure 4 shows the server combining frontend and backend. In this case, the
thread group does not have a behaviour specification, but only a contract. It’s
contract doesn’t make any assumptions, but it states the guarantee that when-
ever an external request comes from the client, eventually it will answer it.

The problem in this case is the following: if we already know that the subcom-
ponents satisfy their respective contracts, how do we establish if the composition
(the Server.impl1) satisfies its contract? This can be established as follows: let
C1 = (A1, G1) and C2 = (A2, G2) be contracts for the two subcomponents K1

and K2 of a composite component K with contract C = (A,G). Assuming that
K1 satisfies C1, and K2 satisfies C2, then K satisfies C if the following two
PSL formulas are valid:

1. G′⇒G where G′ def
= G1 ∧G2, and

2. A⇒A′ where A′ def
= (G2⇒A1)∧ (G1⇒A2)

Intuitively the first one states that the guarantees of the subcomponents together
must imply the guarantee of the composite. The second one states that the
assumption of the composite must be enough to ensure that 1) the guarantee
of the second must imply the assumption of the first, and 2) the guarantee of
the first component implies the assumption of the second. This is because the
subcomponents may be connected and information may flow both ways between
them, and they are part of each other’s environments: the behaviour of K1’s
environment is given byK2’s guarantees G2 together withK’s environment given
by A. Hence, A and G2 must imply A1. Similarly for K2. To be precise, there
is a little processing that needs to be done on the formulas Gi and Ai, namely
we need to replace port references ocurring in atomic propositions by connector
references so that they refer to the same entity, and we need to flip the direction
(in/out) of those atomic propositions in assumptions for the same reason. For
composite components with n subcomponents, the formulas are generalized to
G′ def

= G1 ∧G2 ∧ · · · ∧Gn and A′ def
= ∧ni=1((∧j 6=i Gj)⇒Ai) respectively. In other

words, the guarantees of all subcomponents must imply the guarantee of the
composition, and the assumption of each subcomponent must be implied by the
guarantees of all other subcomponents. This later requirement can be relaxed
in that it is only needed that the assumption of each subcomponent must be
implied by the guarantees of only those subcomponents connected to it.

In our example, K1 and K2 are Backend.impl1 and Frontend.impl1, and
K is Server.impl1. As before, we establish the validity of the formulas above
with a model-checker (see Section 4), and in this case they happen to be true.

1 thread group implementation Server.impl1
2 subcomponents
3 backend : thread BackendServer.impl1;
4 frontend : thread Frontend.impl1;
5 connections
6 client_req : port req -> frontend.external_req;
7 client_ans : port frontend.external_ans -> ans;
8 server_req : port frontend.internal_req -> backend.req;
9 server_ans : port backend.ans -> frontend.internal_ans;

10 annex AGCL {**
11 contract normal_operation
12 assumption TRUE;
13 guarantee always (in external_req:s1
14 -> eventually out external_ans:s2);
15 end normal_operation;
16 **};
17 end Server.impl1;

Fig. 4. The server.

Incremental analysis is supported in the following way: if one component
changes its behaviour, for example the frontend, we only need to check whether
this behaviour satisfies its contract(s). If the result of this analysis is positive,
then there is no need to check other components, or the validity of the composite
formulas, as the contract has not changed and therefore the validity of formulas
1 and 2 is preserved. If the result of this analysis fails, then the developer needs
to either modify the behaviour or the contract for the component in question. If
the contract for a component changes then one must re-analyze that component
(recursively if it is a composite component) and then re-evaluate the implications
G′⇒G and A⇒A′ as above, but there is no need to re-analyze components
which have not changed or whose contract has not changed, as they would not
change the validity of these formulas.

2.3 Conformance

Contracts can annotate not only implementations but also types. This opens a
set of closely related problems that need be addressed. The first one is this: if
we have a component implementation K of type T and K has a contract CK =
(AK , GK) and T is annotated with contract CT = (AT , GT), how do we know
that CK conforms to CT ? This can be answered by checking two implications:
GK⇒GT and AT ⇒AK . Note that the implication is covariant on guarantees
and contravariant on assumptions. For guarantees, this is because the guarantee
of the type must be a guarantee of any of its implementations: the set of possible
observable behaviours described in GK must be a subset if the set of behaviours
defined by GT , otherwise there would be at least one behaviour guaranteed
by the implementation which does not conform to what the type prescribes. For
assumptions the direction is contravariant because the set of behaviours specified
by AT must be a subset of the set of behaviours specified by AK . If this wasn’t
required, there would be at least one environment behaviour acceptable by AT

but not by AK which would entail that component K would not be able to be
placed in some composite components expecting type T .

The other related problems occur when an implementation extends another
implementation or a type extends a type and both have contracts in the same
viewpoint. These cases can be handled as the above: if K ′ (or T ′) has contract
C ′ = (A′, G′) and it extends K (resp. T) with contract C = (A,G), then con-
formance can be established by checking the validity of G′⇒G and A⇒A′.

3 Relation between PSL sequences and AADL behaviours

A key issue in the use of a specification language or temporal logic such as PSL to
describe behaviours and contracts of AADL models is the correspondance be-
tween the semantics of PSL expressions and the behaviour of the AADL model
which they intend to describe. However, there is a fundamental obstacle: the core
AADL standard doesn’t define a unique way of specifying behaviour. It is up to
annexes or external languages to provide the implementation of a component and

therefore it is not possible to define a general correspondance, but only consider
specific types of implementation. One such possibility is to use the behaviour
annex where the implementation is defined as a kind of (hierarchical) state ma-
chine. In this paper we do not assume any particular formalism, annex or type of
implementation. Nevertheless, if behaviour is specified with the behaviour annex
or a similar state-based formalism, we can infer the PSL behaviour specifica-
tion from such state machine using standard transformations (e.g., automata to
regular expression, [7]) and then apply the analysis algorithms as described. Al-
ternatively, we could use the behaviour clause itself to infer an automaton that
implements it, using well-known algorithms that can transform such expressions
and formulas into automata (e.g., [7,8]).

Another way of relating the PSL specifications with the behaviour of AADL
components is to establish a correspondance with the thread semantics defined
by the AADL standard ([6] Subsection 5.4).

A PSL expression is evaluated with respect to a path or sequence of states
labelled with the atomic propositions which are true in such state. Given a
sequence, a PSL expression may hold strongly, hold, be pending or fail. The
expression holds strongly when it contains no bad states, all future obligations
have been met, and the expression holds on all extensions to the sequence. The
expression holds (but does not hold strongly) when it contains no bad states, all
future obligations have been met, and the expression may or may not hold on
any given extension of the path. The expression is pending when it contains no
bad states, but future obligations have not been met, and the expression may
or may not hold on any given extension of the path. Finally, the expression fails
when there is some bad state in the path, future obligations may or may not
have been met and the expression will not hold on any extension of the path.
Additionally, a PSL expression is evaluated with respect to a clock context,
a boolean expression that determines in which cycles the expression is to be
evaluated. The PSL standard does not specify any particular time granularity
or what counts as a cycle or clock tick. It is up to verification tools to decide.
The default context is true so that the expression is evaluated at every cycle.

There are several alternative ways to establish a correspondance between
these paths and cycles and the states of an AADL thread. One possibility, is
to consider a cycle every time the thread is dispatched. This is the natural
choice when the thread is periodic. For aperiodic threads it is also possible to
consider a cycle when the thread is dispatched, but in this case the dispatch
occurs only when an event arrives at a port. For sporadic, timed or hybrid
threads, the cycle would occur either by an event or by the specified period. If
one adopts such convention, then the designer must be aware that the meaning
of the PSL expressions depend on the type of thread. For example, the formula
a∧X b asserting that a holds in the current cycle and b holds in the next cycle
means, for a periodic thread, that a holds at the current time t according to the
clock, and b holds at time t+p where p is the thread’s period. On the other hand,
for an aperiodic thread the formula would mean that when an event arrives to
one of the thread’s ports, a holds, and b will hold the next time an event arrives.

If we are using the behaviour annex to specify implementations, the choice of
associating cycles with dispatches may lead to the traditional interpretation of
temporal operators with respect to automata, where “next” does really mean the
next state. Since the behaviour annex allows for hierarchical state machines, by
“state” we would mean a state in the flattened state machine, with a particular
assignment of variables to values.

Another possibility is to treat all kinds of threads in the same way, as peri-
odic threads, i.e., assuming that there is an underlying periodic clock, even for
aperiodic threads. In this case, there must be a way for the verification tool to
obtain the current state of a thread at any time t of this underlying clock.

Since there are several possibilities, none of which seems to be a priori any
more fundamental than the others, it is up to the developer to decide which
interpretation of PSL expressions is more suitable.

4 An AGCL analysis tool

We have implemented a prototype of the AGCL annex and the analyses out-
lined in the previous sections as a plugin for OSATE. The tool allows the user to
apply the analyses outlined in this paper, providing results sorted by either view-
point or by component. When the result of a particular analysis fails, a counter-
example is generated by the model checker. Our plug-in uses the NuSMV model-
checker to check the validity of the formulas in question, but the underlying
architecture can easily be extended to support other model-checkers.

A model-checker receives as input a model and a specification (temporal logic
formula) and decides whether the model satisfies the formula or not. A model-
checker can be used to check validity by checking the formula against a universal
model for the formula, this is, a model that contains all possible states and tran-
sitions about which the formula could talk. For example, if a formula contains
three atomic propositions, the universal model has three boolean variables and
therefore eight states, all of which are initial, and all possible transitions be-
tween them. Such universal model contains every possible model of the formula
embedded in it, and therefore every possible path. A linear temporal formula is
valid if it holds in every path of every model, hence, it is valid if it holds in every
path of the universal model. On the other hand, if there is at least one path in
the universal model for which the formula doesn’t hold, then there exists at least
one model for which the formula doesn’t hold and therefore the formula is not
valid.

In terms of complexity, dealing with universal models might appear un-
tractable, but the size of such models depends only on the size of the formulas
(the number of atomic propositions) and not on the size of the state space of the
components themselves. This observation combined with the fact that contracts
don’t need to describe all aspects of behaviour, and can be specified in separate
viewpoints and analyzed independently makes the technique feasable.

5 Final remarks

We have sketeched an approach to specify and verify assume/guarantee con-
tracts for AADL components and briefly discussed the kinds of analyses that
can be performed and discussed our prototype implementing these. Given the
space limitations we are unable to provide here the actual algorithms and their
proof of correctness, but these are available in detail as a technical report [5].
The theory behind this work is based on [1] which developed a generic theory of
contract-based reasoning applicable to a wide range of specification formalisms.
In our technical report we extended and specialized that theory to PSL, show-
ing in particular that when using PSL we can compose contracts, the basis
for the compositional analysis. Our approach differs from other compositional
techniques such as [3] in that we do not restrict assumptions to inputs and guar-
antees to outputs. Furthermore, with viewpoints, we make it possible to divide
requirements into sets of smaller contracts, providing the developer with flexi-
bility as well as making automatic verification more feasible. While this work
is preliminary and we have yet to test the plugin on large-scale models, we be-
lieve our early results show promise, and contract-based analysis can provide a
fundamental support to the development process of DRE systems.

References

1. S. S. Bauer, A. David, R. Hennicker, K. G. Larsen, A. Legay, U. Nyman, and
A. Wasowski. Moving from specifications to contracts in component-based design.
In Juan de Lara and Andrea Zisman, editors, Fundamental Approaches to Software
Engineering - 15th International Conference, FASE 2012, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn,
Estonia, March 24 - April 1, 2012. Proceedings, volume 7212 of Lecture Notes in
Computer Science, pages 43–58. Springer, 2012.

2. A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone, and C. Sofronis.
Multiple viewpoint contract-based specification and design. In Frank S. de Boer,
Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever, editors, FMCO,
volume 5382 of LNCS, pages 200–225. Springer, 2007.

3. D. D. Cofer, A. Gacek, S. P. Miller, M. W. Whalen, B. LaValley, and L. Sha.
Compositional verification of architectural models. In Alwyn Goodloe and Suzette
Person, editors, NASA Formal Methods, volume 7226 of Lecture Notes in Computer
Science, pages 126–140. Springer, 2012.

4. IEEE Computer Society. IEEE Standard for Property Specification Language
(PSL). IEEE Standard 1850TM-2010, June 2012.

5. E. Posse. Contract-based compositional analysis for reactive sys-
tems in RTEdgeTM, an AADL-based language. Tech. Rep. 2013-
607, School of Computing – Queen’s University, August 2013.
http://research.cs.queensu.ca/TechReports/Reports/2013-607.pdf.

6. SAE International. Architecture Analysis & Design Language (AADL). SAE Stan-
dard AS5506b, 10 September 2012.

7. M. Sipser. Introduction to the Theory of Computation. PWS Publishing, 1997.
8. P. Wolper. The Tableau Method for Temporal Logic: An Overview. Logique et

Analyse, 28(110–111):119–136, June–September 1985.

