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Abstract. Integrated modular avionics architectures combined with the
emerging SAE TTEthernet standard provides a strong infrastructure for
the deployment of mixed-critical avionic applications having stringent
safety, reliability and performance requirements. The integration of such
systems is a very complex and challenging engineering task. Therefore, a
model-based approach, which endows system engineers with a method-
ology and the supporting tools to cope with this complexity, is of a
paramount importance. In this research paper, we present an extension
for the standard architecture and analysis modeling language AADL to
enable modeling integrated multi-critical avionic applications deployed
on TTEthernet-based IMA architectures. In particular, we present a
metamodel which extends the core AADL metamodel with concepts and
constraints relevant for this domain, we define the concrete textual syn-
tax for this extension and we outline the implementation of this extension
using the Open Source AADL Tool Environment (OSATE). Finally, we
illustrate our AADL extension using a case study based on the Flight
Management System.
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1 Introduction

On-board avionic systems are safety-critical systems which should meet strict
safety, reliability and performance requirements. These systems have tradition-
ally been engineered using what is called a federated architectures approach,
where each function is designed and deployed to use its exclusive resources. This
approach is however costly in terms of equipments and wiring. The Integrated
Modular Avionics (IMA) architecture is an alternative approach, which is based
a consolidation of resources [22]. This is achieved through resources sharing
between functionalities. With IMA different avionic functions having different
criticality levels (e.g. control functions and comfort functions) share the same



hardware resources leading to mixed-criticality systems. Moreover, IMA archi-
tectures are distributed using a communication infrastructure, which should also
be able to meet the same level of safety and performance requirements.

Ethernet is a widely used standard network (IEEE 802.3) which is not only
used as infrastructure for classic office systems but is increasingly supporting
industrial and embedded systems due to the high bandwidths it provides. How-
ever, Ethernet does not meet strict time and safety critical applications. Several
extensions to enhance the predictability of Ethernet have been developed. One
of these extensions is the Avionic Full Duplex AFDX standard ARINC 664 [11].
AFDX is a deterministic real-time extension of Ethernet based on an static
bandwidth scheduling and control using the concept of virtual links. The SAE
standard TTEthernet [3] is the most recent Ethernet extension based on the
time-triggered communication paradigm [14] [19] to achieve bounded latency
and low jitter. A TTEthernet network implements a global time using clock
synchronisation and offers fault isolation mechanisms to manage channel and
nodes failures. TTEthernet integrates three data flow: Time-Triggered (TT) data
flow which is the higher priority traffic; Rate Constrained (RC) traffic, which is
equivalent to AFDX traffic, and Best Effort (BE) traffic. This makes TTEth-
ernet suitable for mixed-criticality applications such as avionic and automotive
applications where highly critical control functions such as a flight management
system cohabit with less critical functions such as an entertainment system.

The focus of this research work is on avionic applications deployed on IMA
architectures interconnected using TTEthernet. The advantages of this infras-
tructure are numerous. First, the IMA modules enable the resource sharing.
Second, the combination of IMA and TTEthernet enables the error isolation
provided not only at the level of the modules through the partitioning but also
the level of the network using different data traffics and the concept of virtual
links. Third, TTEthernet enable the safe integration of data traffics with dif-
ferent performance and reliability requirements. However, these systems are on
the other hand complex and the integration of diverse applications with mixed-
criticality levels having strict real-time requirements is very challenging. In order
to control the complexity of such systems, a model-based approach, which pro-
vides the systems engineers with a methodology and the supporting tools to
accomplish correctly and efficiently this integration, is required. A key element
of such approach is a modeling language which allows the engineers to express
the system at a convenient level of abstraction and to interface with sophisti-
cated formal analysis techniques to verify safety and performance properties of
the system.

AADL is a well-established standard modeling language in the domain of real-
time critical systems. AADL has been extended to support the modeling of IMA
with an Annex ARINC 653 [2]. However, there is no support for AADL to model
the networking of IMA modules through the recent technology TTEthernet.
We present in this paper an extension for AADL to support the modeling of
IMA architectures interconnected using TTEthernet. In particular, we present
a metamodel for the domain of IMA and TTEhernet. We provide a concrete



textual syntax based on this metamodel, which enables the system engineers to
describe a full IMA-based avionic systems interconnected with TTEthernet. We
have implemented this extension in the framework of the Open Source AADL
Tools (OSATE2)[5] . We illustrate the expressiveness of this extension through
it application to model a subsystem of the the Flight Management System [18].

This paper is organized as follows: In Section 2, we introduce the concepts
of IMA and the main features of the TTEthernet standard. We describe in
Section 3 the main components of the proposed extension metamodel and discuss
the rational behind its design. We outline the implementation of the proposed
extension in the framework of OSATE in Section 4. We show the application of
the proposed extension with an illustrative example in Section 5. In Section 6,
we succinctly review the most close related research works to ours. We conclude
the paper and outline our ongoing and future research work in Section 7.

2 Background

In order to make this paper as self-contained as possible, we briefly introduce in
this section the main concept of IMA and TTEthernet.

2.1 Integrated Modular Avionic Architecture (IMA)

The main idea underlying the concept of IMA architecture [22] is the sharing of
resources between some functions while ensuring their isolation to prevent any
interference between them. Resource sharing reduces the cost of large volume of
wiring and equipment while the non interference guarantee is required for safety
reasons. The IMA architecture is a modular real-time architecture for avion-
ics systems defined in the standard ARINC653 [12]. Each functionality of the
system is implemented by one or a set of functions distributed across different
modules. A module represents a computing resource hosting many functions.
Functions deployed on the same module may have different criticality levels. For
safety reasons, the functions must be strictly isolated using partitions. The par-
titioning of these functions is two dimensional: spatial partitioning and temporal
partitioning. The spatial partitioning is implemented by assigning statically all
the resources for the partition being executed in a module and no other partition
can have the access to the same resources at the same time. The temporal par-
titioning is rather implemented by allocating a periodic time window dedicated
for the execution of each partition.

2.2 Time-Triggered Ethernet (TTEthernet)

The new SAE Time-Triggered Ethernet standard (TTEthernet) [3] specifies
time-triggered services extending the Ethernet IEEE standard 802.3. TTEther-
net is based on the Time-triggered communication paradigm [13] and therefore
establishes a system-wide time base implemented through a synchronisation of
the clocks of the end systems and switches. This results in bounded latency and



low jitter. TTEthernet integrates both time-triggered and event-triggered com-
munication on the same physical network. TTEthernet limits latency and jitter
for time-triggered (TT) traffic, limits latency for rate constrained (RC) traffic,
while simultaneously supporting the best-effort (BE) traffic service of IEEE 802.3
Ethernet. This allows application of Ethernet as a unified networking infrastruc-
ture. It supports therefore the deployment of mixed-criticality applications at
the network level.

3 Metamodel Extending AADL capability to model
TTEthernet

In this section, we present the metamodel for our extention to AADL in order
to support the modeling of TTEthernet, which will henceforth be called the
AADL-TTEthernet metamodel. This meta-model captures the main concepts
and characteristics of the TTEthernet standard. The AADL-TTEthernet meta-
model will enable building a set of tools to perform the design and analysis of
distributed IMA architectures using TTEthernet as communication infrastruc-
ture. We have designed the AADL-TTEthernet metamodel using the Eclipse
Modeling Framework (EMF), which is also used to specify the AADL Core
metamodel. This allows for a seamless integration of the AADL-TTEthernet in
OSATE2 environment [5] in terms of dependencies and embedded Java API.
On the other hand, using the same mechanism (i.e. Ecore) to specify the two
metamodels eases the expression of the domain concepts dependencies and sim-
plifies the navigation between them. This mechanisim also has been used in
other works [17] aim at implementing new annex and extension to AADL. Our
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Fig. 1. AADL-TTEthernet meta-model dependencies

AADL-TTEthernet metamodel describes the structural aspect of a distributed
IMA systems interconnected using TTEthernet and makes explicit all concepts



specified by this standard. The EMF framework generates automatically the
Java implementation classes corresponding to the metamodel objects as it is
shown in Figure 1. In order to extend AADL with our metamodel it is required
to attach a TTEthernet model to an AADL component and to link the objects
of our TTEthernet extension with AADL core objects. This is achieved by the
implementation of the OSATE2 extension mechanism, which requires to link the
TTEthernetAnnex concept in our metamodel to the AnnexSubclause concept of
the AADL core as it is shown in Figure 1. This figure shows also how we use
the EMF/Ecore inheritance mechanism to express the dependencies between the
two metamodels. Consequently, a TTEthernetAnnex extends an AnnexSubclause
and an TTEthernetNamedElement extends a NamedElement. In the metamodel,
the TTEthernetAnnex concept, which links as shown in Figure 2 the metamodel
to the AADL core metamodel, represents the overall model of a TTEhernet-
networked IMA system which will undergoes different analysis to verify safety
and performance properties. The global information about the network elements
and the underlying implementation is described in the TTEthernetAnnex con-
cept. The TTEthernetAnnex is composed of the following (Figure 2):

ProcessingResource Channel
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Scheduler VirtualLink

NamedElement
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Fig. 2. AADL-TTEthernet meta-model overview

1. The Synchronization domains concept of TTEthernet standard. TTEthernet
supports system-of-system communication by introducing Synchronization
domains and Synchronization priorities as shown in Figure 3. Synchroniza-
tion domains specify independent subsystems with respect to their synchro-
nization. All the resources configured to belong to the same synchronization
domain should synchronize with each other and components belonging to
different synchronization domains in one TTEthernet network do not syn-
chronize their local clocks.

2. The Scheduler is the entity in TTEthernet that is capable of producing
a schedule, which should be compliant with the scheduling constraints of
TTEthernet. These constraints are depicted in figure 3. The scheduler of
TTEthernet request specific constraint which are presented mathematically



in [21]. These constraints are mentioned in figure 3 as constraints type which
is related to constraint class.

3. The Processing Resources represent active hardware components in a net-
work. They can be Computing Resources such as Modules (i.e. end systems)
or Networking Resources such as switches as shown in Figure 4. All pro-
cessing resources have features which can be parameters, access to physical
buses, or ports (i.e, interfaces for frames inputs and outputs). A processing
resource can be a synchronization master and can then transmits its local
time to synchronize the whole network as shown in Figure 3. Several process-
ing resources can be aggregated into logical groups called clusters as shown
in Figure 4. A Cluster is associated with one synchronization domain. Each
single cluster can establish and maintain synchronization by itself.
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Fig. 3. Synchronization elements

The AADL-TTEthernet metamodel captures the different possible links between
the components of a TTEthernet Network. These links can be either physical
ones such as connections or logical ones such as channels or virtual links.

– A Connection is a link between two physical ports, usually realized as a
copper or optical fiber cable. A connection may be unidirectional or bidirec-
tional.

– A Channel is a logical connection from one source processing resource to
another processing resource destination. A Channel is defined to map multi-
cluster architectures.

– A Virtual Link is a logical link defined by ARINC 664 standard [11]. Each
virtual link is associated with a dedicated maximum bandwidth, specified
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Fig. 4. Processing resources

by the minimum frame interval, called bandwidth allocation gap, and the
maximum frame length.

The Schedulable Resources represents all the elements which are managed using
the network scheduler. These resources can be the partitions hosted by module,
the data transferred through the network (i.e, Frames), the networks commu-
nication channels or the virtual links as shown in Figure 5. A Frame is unit

SchedulableResourceSchedule

FrameChannel PartitionVirtualLink

schedulableResources

0..*

virtualLink

frames0..1
0..* frames

0..*

Fig. 5. Schedulable resources

of transmission, a data packet of fixed or variable length, encoded for digital
transmission over a communication link as depicted in Figure 6. Considering its
order of priority, a frame could be Protocol Control Frame (PCF), TT frame,
Rc frame or BE frame.

4 Implementation of the TTEthernet Extension for
AADL

4.1 Textual Syntax for the TTEthernet Extention for AADL

The definition of a textual syntax is provided by a grammar (i.e, a set of rules
which define the composition of a language). In order to translate the textual
syntax to its corresponding model, a lexer, a parser as well as a component for
the semantical analysis (type checking, resolving of references, etc.) are required.
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Fig. 6. Frame kinds

The backward transformation, from model to text, is provided by an emitter. All
the components can be generated using the grammar ⇐⇒ meta-model mapping
definition [10]. Figure 7 demonstrates the selected framework to define textual
syntax of our extension. It employs the data provided by the mapping definition
used to generate the parser, emitter and an editor for the corresponding language
to the metamodel. This editor can then use the generated parser and emitter
to modify the text and the model. Therefore it is responsible for keeping the
text and the model in sync, e.g., by calling the parser upon any changes on
the text. Based on this mapping definition, several features of the editor can
be generated, such as syntax highlighing, autocompletion or error reporting. To
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Fig. 7. General structure of a textual syntax framework

build the textual editor tool for our AADL-TTEthernet extension, we used the
xText framework [8]. It implements the textual syntax according to an extended
BNF. Figure 8 shows an excerpt of this xText grammar. In this xText framework,
the AADL-TTEthernet metamodel concept is mapped to a Java implementation,
where the TTEthernet objects names are used as class names. All attributes are
implemented as private fields and public get- and set- methods. The composition
relationships are realized in the same way as attributes and contribute to the
constructor of the class. All classes support the Visitor pattern [9] to traverse
the abstract syntax along the composition relationships [15].



The analyzer module scans the Abstract Syntax Tree (AST) and checks the
semantics of the AADL-TTEthernet model. First, it proceeds to a resolution
phase (e.g, naming resolver), which links TTEthernet objects to their corre-
sponding AADL objects. In order to achieve this phase, we use the visitors (e.g,
java classes) provided by OSATE2 to retrieve AADL objects. For the sake of
the implementation of our AADL-TTEthernet extension, we have developed the
visitors required to navigate through the AADL-TTEthernet AST. This phase
adds information to the AST and makes its use easier.

1 grammar org . o sa te . t t e t h e r n e t . xtext . Aadltte
2
3 import ” http :// ca . e s tmt l . aadl2 / a a d l t t e /1 .0 ”
4 import ” http :// aadl . i n f o /AADL/2 .0 ” as aadl2
5 import ” http ://www. e c l i p s e . org /emf /2002/ Ecore ” as ecore
6
7 P a r t i t i o n returns P a r t i t i o n :
8 ’ P a r t i t i o n ’ name = ID
9 ’ frames ’ ’ : ’ f rames += Frame∗

10 ’ end ’ ID ’ ; ’ ;
11 Frame :
12 RateConstrainedFrame | TimeTriggeredFrame | BestEffortFrame

| ProtocolControlFrame
13 ;
14 S y n c h r o n i z a t i o n Pr i o r i t y returns S y n ch r o n i z a t i on P r i o r i t y :
15 ’ Synchron izat ion P r i o r i t y ’ name = ID
16 ’ l e v e l ’ l e v e l = I n t e g e r ’ ; ’
17 ’ end ’ ID ’ ; ’ ;

Fig. 8. xText grammar overview for AADL-TTEthernet

4.2 Integration of the AADL-TTEthernet Compiler to OSATE2

Sublanguages are included into AADL specifications as annex subclauses. The
latter may be inserted into AADL component types and AADL component im-
plementations of an AADL model. OSATE2 currently provides four extension
points that can be used to integrate a sublanguage into the tool environment.
These extension points are designed to support parsing, unparsing, name reso-
lution / semantic checking, and instantiation of annex models. From the AADL-
TTEthernet EMF meta-model in the EMF framework, we generate the AADL-
TTEthernet builder factory to build and manipulate TTEthernet objects used in
the compiler. The compiler plug-in contains two modules: a parser/lexer and an
analyzer. The integration of the AADL-TTEthernet plug-in is a two-steps pro-
cess. First, we link the AADL-TTEthernet plug-in to the OSATE2 annex plug-in



using the Eclipse extension points mechanism. The annex plug-in defines exten-
sion points which allow to plug-ins be connected together as depicted in Figure
9. Second, we have to register our parser in the OSATE2 annex registry. As the
AADL-TTEthernet metamodel becomes a part of the AADL description and
the AADL-TTEthernet textual syntax tool is connected to OSATE2 registry,
the AADL-TTEthernet plug-in is directly integrated and driven by OSATE2.

Legend
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Fig. 9. AADL-TTEthernet plug-in integrated to OSATE2

5 An Example: A Model of a Subsystem of the Flight
Management System

In this section, we illustrate the modeling of a distributed IMA system based on
TTEthernet as a communication network using our extension for AADL. In or-
der to do so, we use as a subsystem of the Flight Management System presented
in [18]. This subsystem controls the display of static navigation information in
the cockpit screens. The structure of the considered FMS subsystem in terms of
modules and the partitions they host is shown in Figure 10. In the original ver-
sion of the system considered in [18], the system is interconnected using AFDX.
In our context, the modules are instead interconnected using TTEthernet. The
AFDX data traffic in the original system corresponds to the RC traffic in the
TTEthernet context. Table 1 shows a subset of the virtual links used in the FMS
subsystem with their corresponding characteristics including the Bandwidth Al-
location Gap (BAG), the sender modules of the VLs and the corresponding
receiver modules. This subsystem can be modeled using our TTEthernet ex-
tension for AADL as follows. The extension is a sub-language for AADL, which
can be included in system implementation of the AADL model of this system.
The concrete textual syntax of AADL-TTEthernet extension provides several
new reserved words, which correspond to the main concepts of the metamodel
described previously, such as module, switch, partition, connection, virtual link,



Fig. 10. A Subsystem of the Flight Management System

Virtual Link Source Destination BAG Direction

V L1 KU1 FM1, FM2 32 {S1, S2} , {S1, S3}
V L2 KU2 FM1, FM2 32 {S1, S2} , {S1, S3}
V L3 FM1 MFD1 8 {S2, S1}

Table 1. Virtual Links details

Time-triggered frame, Rate Constraint frame and Best Effort frame. An excerpt
of the model of the FMS subsystem using our AADL-TTEthernet is shown in
Figure 11. The full specification of the model can be downloaded at [20].

6 Related Work

AADL presents two extension mechanisms, namely the property sets and the
sublangues (i.e. annex). Several AADL extensions based on these mechanisms
are now standardized as official annexes. These include the Data modeling annex,
ARINC653 annex, the AADL Behavor Annex [2] , and Error Model Annex [1].
In addition, some research work have focused on extending the language using
these extension mechanisms or investigating alternative ways. The most close
research works to ours are reported in [7] and [17] . J. Delange et al. [7] present
an approach based on AADL, which covers the the modeling, verification and
implementation of ARINC653 systems. The authors describe in the work the
modeling guidelines elaborated in the ARINC653 annex of the AADL standard.
This approach is supported by a tool chain composed of Ocarina AADL toolsuite,
AADL/ARINC653 runtime POK and Cheddar scheduling tool. G Lasnier et al.
[17] present an implementation of the AADL behavior annex as an extension
plug-in to the OSATE 2. We have implemented our AADL TTEthernet extension
using similar techniques. M. lafaye et al. [16] define a modeling approach based



Fig. 11. Flight Management Subsystem Model using AADL TTEthernet Extension

on AADL and SystemC, which aims at the design and dynamic simulation of a
IMA-based avionics platform. This is component-based approach, which can be
used to dimension the architecture taking into consideration the application to be
deployed while achieving early platform validation. De Niz and Fieler discuss in
[6] how to extend the AADL language to include new features for the separation
of concerns (i.e. Aspects). Based on this research work, it seems that the AADL
extension mechanisms do not support the separation of concerns and new aspect-
like constructs and mechanisms are then investigated. G. Brau et al. present in [4]
a model of a subsystem of Flight Management System using AADL and show how
to establish important parameters in the AADL model including the virtual links
characteristics for instance. To the best of our knowledge, there is no published
research work, which addresses the modeling of the TTEthernet standard as
networking infrastructure for IMA architecture, which is the contribution of this
work.

7 Conclusions and Future Work

The IMA architecture combined with the new SAE standard TTEthernet as
communication infrastructure provide a strong platform for the deployment of
distributed avionic applications. The integration of mixed-criticality applications
on such platforms is a complex and challenging engineering activity. A model-



based approach based on the SAE standard architecture language AADL pro-
vides the system engineers with the tools to cope with this complexity. Modeling
TTEthernet infrastructure using AADL is the research gap that we are target-
ing in this work. We have presented in this paper our contribution to address
this issue, which consists in an extension for the standard architecture and anal-
ysis modeling language AADL to enable modeling integrated mixed-criticality
avionic applications deployed on TTEthernet-based IMA architectures. In our
ongoing research work, we aim at formalizing this extension in the form of a new
annex through the SAE standardization process. Moreover, we aim at defining
a formal semantics for our extension to allow transforming the AADL models
built using our extension to models that are suitable for analysis techniques that
can be used to verify relevant safety and performance properties.
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17. Gilles Lasnier, Laurent Pautet, Jérôme Hugues, and Lutz Wrage. An implemen-
tation of the behavior annex in the aadl-toolset osate2. In IEEE ICECCS, pages
332–337. IEEE Computer Society, 2011.
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