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Abstract. The paper discusses problems arising in development of avion-
ics systems and considers how discrete-event simulation on the base of
architecture models at the early stages of avionics design can help to mit-
igate some of them. A tool for simulation of AADL architecture models
augmented by behavioural specifications is presented and its main design
decisions are discussed.

Keywords: AADL, discrete-event simulation, early validation

1 Introduction

Nowadays avionics is responsible for control of almost all aspects of aircraft
operation. As a result it became a complex system with thousands of sensors
and actuators, and hundreds of software components spread across dozens of
processor modules. Design and development of such system is a big challenge.
And one of the biggest concerns is bugs introduced at the early stages of system
design that are usually very expensive to fix in terms of both time and money
as long as they often impact a number of components.

Let us demonstrate it on a simple example. A typical prerequisite to guar-
antee safety of flight is a real-time reaction on hazardous conditions. That leads
to a number of safety-critical requirements to avionics subsystems that look like
a limitation on time between a moment when a particular sensor reads actual
data and a moment when software processes that data and takes appropriate
actions, e.g. delivers a control command to an actuator or informs a pilot. If
inability to satisfy such requirement is found during integration tests only, it
may have catastrophic consequences for the project. For example, if an unex-
pected latency appears on an overloaded bus, it may require to redesign data
flows between components and to reschedule software partitions that leads to
redo significant part of safety analysis and other verification activities, i.e. to
significant delays and cost increase for the project.

Model-driven system engineering is considered to be the most promising ap-
proach that can help to address this concern. The main idea behind it is to
represent requirements and architecture decisions in form of models, i.e. in more
or less machine-readable form, and then to apply automated verification tech-
niques or even to automatically derive some parts of implementation from these



models. The benefits are manifold. First of all, automated analysis and verifica-
tion help to identify as much problems as early as possible. But even if changes
in system design are introduced, models allow to automate impact analysis and
to reduce effort required for repeated verification.

The cornerstone element that enables analysis of various system character-
istics is an architecture model of the system under development. One of mod-
elling languages designed for this purpose is Architecture Analysis and Design
Language (AADL) [11]. The core of AADL allows to describe an architecture of
software-hardware systems. It supports constructions for step-by-step modelling,
refinement and integration. Besides the core language, AADL has different exten-
sions, e.g. for constraints definition, fault handling and behavioural modelling.
AADL has pretty well-defined semantics that allows different tools to be applied
to the same AADL models without significant effort. There are several open
source frameworks supporting creation and analysis of AADL models including
OSATE [1] and MASIW [7,4].

One way to classify the variety of methods of models analysis is to divide
them to analytical and sampling.

Analytical methods allow to get guaranteed estimations of target character-
istics, e.g. the worst-case latency. But the cost of the guarantee is excessively
pessimistic estimations. Another drawback of analytical methods is that each of
them applicable for a particular tasks only. That means that you usually have
to develop a new method to estimate new characteristics or to get estimation in
a little bit different conditions.

Sampling methods do not provide a guarantee in getting of worst-case esti-
mations. But their benefit is that they can provide realistic estimations and can
be much more easily adopted to new conditions and to new target characteristics.

To apply sampling methods to analysis of architecture models a simulation
of the models is required. One of particular kind of simulation — discrete-event
simulation — is considered in this work. This kind of simulation is naturally
suited to the software-hardware systems modelling. In this approach functioning
of the modelled system is represented as a sequence of discrete events. Each
discrete event is an atomic action of one component’s internal state change and
interaction with the outer world and other components. All actions of a single
discrete event are performed in a single moment of the simulation time.

In the paper we consider possible approaches to model behavioural charac-
teristics of architecture models and discuss design decisions of our AADL sim-
ulation engine. Finally we discuss related works and overview possible direction
of further improvements.

2 Modelling

In this section we are considering aspects of modelling which are relevant to the
discrete-event simulation.



2.1 How Behaviour is Modelled

Approaches of the discrete-event simulation can differ in the ways of how be-
haviour of model components is modelled.

Depending on the type of the supported behaviour representation, different
simulation and analysis tools can reach different quality of analysis and can run
into different problems during it.

The AADL core does not contain any constructions to model behaviour of
components but the language is easily extendable. That is why let us consider
some ways of how behaviour can be modelled and some properties of these
variants.

Behaviour model can, for example, be represented as a randomized events
flow with given probability characteristics and description of how the component
reacts to external events.

There is also a class of behaviour representations which can be called imper-
ative. For example, behaviour can be represented as either a finite state machine
(FSM), extensions of FSM which work with extended memory state and time, or
some other transition systems. Transition systems can be combined with random-
ized events flows, particularly as FSMs with the probabilistic non-determinism
resolution.

Also the behaviour can be modelled as a program model, when model is a
code in some programming language.

AADL has a standardized extension called Behavior Model annex [10]. This
annex allows to model behaviour of components as an extended timed FSM
interacting with its environment.

Finite state machines (in particular, extended and timed) and specialized
transition systems are usually naturally suitable for describing of a behaviour
of small components. Also, some of such models are studied well and can be
analyzed in some other way except the execution. Such analyses can be used
during the whole system analysis. But still, these models are not well-suited to
modelling of complicated behaviours (in particular, requiring a lot of internal
states and events).

By contrast, program models can be pretty conveniently used for modelling
of very complicated behaviour but they usually can be used only for execution.

From the simulation point of view program models have an additional advan-
tage: any simpler model (e.g. FSM and other transition systems) can be trans-
lated automatically to a program model. It means that if a simulation system
supports program models, simpler model types can be supported automatically.

Randomized events flow which is a really useful representation sometimes,
usually also can be translated to a program model automatically.

2.2 Levels of Abstraction

In this section we consider a model creation process in time. Models get their
details during a long-term process but analysis of the models have to be per-
formed from the very early stages. That is why simulation have to work with
different levels of abstraction.



There are two dimensions of abstraction levels of system models to be con-
sidered.

Structural Abstraction The first one is a structural abstraction. Structurally
abstract models contain components, internal structure of which is still going to
be refined in future. For example, such models may define interconnection inter-
faces approximately or consider some complex subcomponents as black boxes.

For example, it may be known that some not fully specified device D is
connected with a processor block P using some data transmission subsystem T

(probably, involving some buses and devices) but it is not decided yet how this
subsystem should be implemented. This means neither the connection interface
of the device D nor the structure of the subsystem T are known.

Behavioural Abstraction Another dimension is a behavioural abstraction that
depends on how accurately behavioural characteristics are modelled.

The behavioural characteristics include the following aspects that can be
described with different accuracy:

– dependencies between input and output;
– influence of a component on the other ones;
– data which components are working with;
– time intervals between events.

A complexity of a behavioural model accurate by both structural and be-
havioural dimensions is more or less the same as a complexity of a behavioural
model abstract by the both dimensions.

If structurally abstract model is built behaviourally accurate, behavioural
models of each component can be very complex both by internal state and by
interaction with its environment.

2.3 Analysis

Support of analysis of models represented in different abstraction levels is essen-
tial for early model verification and validation. In particular, it is really impor-
tant to analyze structurally abstract and behaviourally accurate models as long
as it allows to check single structure refinements and to expose incorrect ones.

To achieve this goal, the way of how behaviour is modelled have to be conve-
nient for describing complex behaviours. It requires a convenient representation
of an internal state and operations with it. This means a simulation system have
to support program models.

But still, simple behaviours in structurally accurate models have to be de-
fined in a convenient way, e.g. using formalisms based on transition systems. So
combination of program models with other representations should be supported
as well.

Another important aspect of usability of a simulation system is familiarity
of a formalism (or at least its paradigm) to the users.



Considering the requirements discussed above the best candidate for the
main formalism is an imperative high-level programming language which has
rich libraries of collections, basic algorithms, etc.

3 AADL Simulator in MASIW

MASIW is an AADL-based framework for development and analysis of avion-
ics and other safety critical systems. It contains various tools for development
(text and graphical editors, model importers and generators) and analysis (static
structure constrains analyzer, static AFDX latency analyzer, AFDX network
simulator).

An AADL-model behaviour simulation tool is a welcome addition to such
integrated toolset that enables early verification activities based on dynamic
analysis.

In this section we consider the most interesting aspects of implementation of
such simulation tool.

3.1 Program Models

As we discussed above, support for program behaviour models is an important
feature for a simulator to be used for early validation. But there are several
problems that should be resolved.

What Program to Consider a Behaviour Model The first problem is how
to organize a program model. On the one hand, it seems to be useful to allow all
convenient constructs of programming languages and libraries to be available in
the program model. On the other hand, arbitrary program code cannot represent
a behaviour model of a component because it have to be compatible with model
interface of the component.

Representing behaviour of a component in a system, program models have
to be able to model interaction with other components. In the context of event-
driven simulation, models also have to be able to explicitly work with simulation
time and discrete events.

Specific actions (like sending messages to other components) can be per-
formed using special simulation library which is used by a program model. Time
management can also be organized by such library. For example, there can be
library calls modelling long-term computation or a launch of a long-lasting pro-
cess.

There are other possible approaches to organize interface with simulation
engine. For example, we can interpret the standard output of general executable
code as outgoing commands of a component for model-specific activities like
sending messages to other components and working with the simulation time.
Similarly, standard input of a program can be considered as models-specific
component input like incoming events and data. This approach is used in some
systems in different areas (one of the widely used examples is FUSE [2]) but it



seems that this approach does not really fit for describing behaviour models of
components in AADL-models.

As long as we are not limited by any legacy behavioural models we decided
to use the following program models representation. We decided not to limit user
in the internal state representation. Consequently, there is no limits for the code
that works with it.

A simulation library was implemented to manage everything related to discrete-
event nature of the simulation. It is intended to be explicitly used in the program
model code. The library has a plenty of different calls for time management and
for interaction with other components of a system model.

This model representation allows to express everything needed with maxi-
mum freedom in behaviour definition.

Interaction with the Simulation Library The question of how an interface
of the simulation library should be organized is not trivial as well.

Two fundamentally different approaches were considered.
The first one expects a program model of any component to have a single

entry point that handles all simulation events so that only the program model
and not the simulation library determines when external events and data can be
managed. Simulation library just provides an interface for getting information
of new events. This approach can be called synchronous.

The synchronous approach has an advantage that simulation of a model can
be organized in a very optimal way. If two parts of a model do not interact for
some time, they can be simulated independently. Each independent part can
have its own current simulation time.

But the synchronous approach has also a disadvantage: it is not possible
in the general case to model a situation when some component launches long-
lasting process which is provided by another component, and waits for a result
of this process. Necessity of this is known from the practice.

Another approach of interaction with a simulation library can be called asyn-
chronous. In this case a behaviour program model has several entry points which
are in fact callbacks. These callbacks are called at some moment of simulation
time when some specific sort of event arises, e.g. incoming events and data,
different requests of other components and system events like simulation start.

Some of callbacks can return a value. In particular, such callbacks can model
a response of a component to some other component’s request and the mentioned
above launching of long-lasting process that returns a value.

But still, asynchronous approach has its own shortcomings. First of all, sim-
ulation of different parts of a model cannot be performed independently. The
reason of this is the following. Consider a component A having had performed
some state changes at the simulation time t2 > t1 and a component B running
at the simulation time t1. Consider now that B has requested some information
related to the internal state of A. If simulation engine lets the component A be
simulated independently with B (i.e. including the time t2), then the component
B would be unable to get what it needs.



One of possible solutions of the problem is to prohibit any component A to
perform any actions at time t > t1 till other components which may request
something from A have finished their execution at t1. But this approach limits
abilities to parallelize simulation activities.

We can try to solve the problem by storing states of faster running compo-
nents (like A in the example above) at the moments earlier than the current one
(for t < t2) accessible by other components (like the state of A at t1 accessible
by B). But this approach still has problems. Consider we are running the com-
ponent A at the t2 storing all states of A at moments of time between t1 and t2.
But consider that B at the moment t1 can request a change of the state of A

instead of just reading it. It means that we need to discard all stored states at
the moments of time t > t1 and to rerun simulation for A starting at the time
t1. So, this solution requires a lot of space to store all needed states and a lot of
overhead for these copies management.

As a result, simulation of asynchronous models can be less effective comparing
to synchronous ones regardless how the asynchronous simulation is organized.

Nevertheless, every synchronous behaviour can be represented as an asyn-
chronous one. This means asynchronous simulation libraries are more universal
than synchronous ones. Considering limited abilities of synchronous approach,
asynchronous one is more preferred.

Table 1. Comparison of simulation library approaches

synchronous asynchronous

code representa-
tion

linear (like a single function) a set of callbacks

effectiveness easy to parallelize whole model have to be sim-
ulated at a single moment of
simulation time

abilities issues to model long-term pro-
cesses with a returned value

no limits

A comparison of synchronous and asynchronous approaches is presented in
the table 1.

Execution Architecture It is important to consider that code execution of a
program model that uses a simulation library have to be suspended at the end
of discrete events to make other components to able to execute their own events
at the same moment of the model time.

One of the simplest ways of organization of such alternating execution is the
usage of a multiple threads. One thread is created for each component and they
are suspended by a simulation system when a function of the end of discrete event
is called. Thread is suspended until new event is raised for the corresponding
component.



This approach is practical and pretty easy to implement. But it has some
remarkable drawbacks.

One of them is that a behaviour model writer can easily create a deadlock.
This situation can be preserved by using of some conventions for the behaviour
model code but these conventions cannot be checked automatically by a simu-
lation system.

But the main drawback, as it is seen from practice, is a high load to the
threading subsystem of an operating system which is used to run simulation.
Models can have tens of thousands of active components that requires the same
number of threads. It worked well for Linux-based operating systems, but some
other operating systems cannot manage such load. So, straightforward multi-
thread approach leads to the portability issues.

However, there is another approach to organize program models execution
that does not have drawbacks mentioned above. This approach is called contin-
uations or coroutines in computer science [8,9].

The continuations approach allows to execute several program models in a
single system thread. It means that program model code can be suspended and
then it can be resumed from the very point is was suspended. Such suspension
is performed by a simulation library and no special constructs have to be added
to a program model.

This approach runs into a problem of correct error tracing because control
flow changes vastly. So some effort is required to make error traces and stack
traces looking as if control flow is unchanged.

Some modern and progressive programming languages, that use virtual ma-
chines for program execution, have the continuations approach built in. Classic
languages have libraries implementing this approach but these libraries require
an after-compilation program instrumentation.

Instrumentation of library program models is not a hard problem. But in-
strumentation of user program models can be a problem and it requires special
handling of simulation start.

Fig. 1. Continuations approach on multiple nodes

Nevertheless, applying this approach (fig. 1) allows to increase maximal num-
ber of model components running on a single node to make it operating sys-



tem independent. It means that more optimal distribution of model components
across simulation nodes can be achieved in comparison to the multithreaded
multinode approach.

3.2 Behavior Annex

As it was discussed above, support of specialized transition systems as one of
allowed types of behaviour model notations is a welcome feature for a simula-
tion tool aimed to analyze models across various stages of development process.
AADL has a standardized extension for defining such behaviour models called
Behavior Model annex.

AADL Behavior model annex represents behaviour of a component as an
extended finite state machine (FSM) of a specific kind. Actions on transitions
can contain data state changes, interaction with the outer world and time delays.
Transition conditions of such FSMs may depend on data state, external events
generated by other components and time events.

Keeping in mind that our program models use simulation library containing
operations for communication with environment and time, behavior model annex
machines are translated to program models that use the simulation library. This
translation is implemented in the MASIW AADL simulator.

Communication actions of the Behavior Model annex are implemented as
the simulation library calls. Time-related actions are also mapped to the library
calls. State changes (both FSM state and extended data state changes) are im-
plemented naturally in a program model.

3.3 Built-in libraries

MASIW is targeted to the avionics models development and analysis. That is
why during simulation we are running into behavioural aspects of different stan-
dards widely used in avionics.

For instance, the ARINC653 standard is widely used for organizing execu-
tion of software in the avioncs system. It defines both structural and behavioural
aspects of such systems.

Structural information can be represented by special standardized ARINC653
annex of AADL [10] and derived property set.

To ease development of ARINC653-based systems, a standarized behaviours
for processors and other components were implemented. They can be used as
a part of the behavioural model of a developed system. Moreover, library be-
haviours can be a base for user-defined behaviours.

AFDX network standard is a very important and widely used standard in
avionics systems. AADL standard does not have support for modelling properties
related to AFDX networks.

That is why we had to implement our own property set for defining structural
aspects of models using AFDX. It have been used in mentioned above MASIW
parts: static AFDX latency analyzer and AFDX network simulator.



We have implemented standardized behaviour of AFDX-specific network
parts (like AFDX switches and network devices) as library behaviours which
can be used in general AADL models simulation in MASIW. Also, some analyz-
ers for these behaviours were implemented such as switches buffers and queues
filling, counts of packets for different routes and links, statistics for packets drops
and reasons of them and etc.

Such behaviour libraries let the model developer to focus on project features
not paying much attention to how to model standard behaviour.

4 Related Works

Marzhin [5] is a proprietary simulator of AADL and AADL Behavior Annex
models that mostly targets to analyze schedulability properties. It is based on
existing multi-agent simulation kernel and it supports simulation of a subset of
AADL and AADL Behavior Annex. The main distinction of MASIW simulator
is support not only for Behavior Annex but for program models as well that
allows to describe and then to simulate much more complex behaviours. Also, it
is pretty easy to configure the MASIW simulator to manage and analyze various
properties of a model.

OSATE framework [1] provides several plugins for model development and
analysis. One of them called ADeS [12] is dedicated to analysis of behavioural
properties using simulation. But unfortunately, its development stopped in 2008
and so this simulator does not support the last version of AADL which really
differs from the supported first version.

AADS [13] is a translator of a subset of AADL with Behavior Annex to
SCoPE [3] representation. SCoPE implements POSIX-based API that enables it
to run appropriate software parts. Also, SystemC [6] is used for hardware simu-
lation. The approach has a lot of benefits. But it is intended to the simulation
of pretty accurate models to get accurate estimations. It seems to be not really
usable on early steps of the model development.

5 Conclusion

MASIW AADL simulator supports simulation for all stages of the model devel-
opment using the most appropriate behaviour model for each stage — program
models for complex behaviours in structurally abstract models and specialized
type of transition system called AADL Behaviour Model annex for other cases.
A conclusion from implementation of the simulator is that having the program
models support, it is quite natural and easy to implement a support of specialized
transition system like AADL Behavior Model annex.

This simulator is integrated to the MASIW framework that supports most
steps of the development and analysis process of AADL-models. This integration
allowed to perform pretty fast and accurate analysis of avionics models (including
models for the early validation).



Chosen behaviour model representation as a program model allows to model
errors in models naturally. But support of standardized ways like AADL Error
Model annex is a task for the future.
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