Executable AADL
Real Time Simulation of AADL Modds

Pierre Dissau¥k Olivier Marc

*Ellidiss Technologies, Brest, France.
2Virtualys, Brest, France.

pi erre. di ssaux@l | i di ss. com

olivier.marc@irtual ys. com

Abstract. The Architecture Analysis and Design Language (AABtandard
[2] defines a default runtime semantic for softwareensive Real Time sys-
tems. This includes support for multi tasking, ratedistributed architectures
and Time and Space Partitionning systems. A prapetementation of the
AADL runtime thus allows for the virtual executiaf a system at a model le-
vel and contributes to the early verification dfical software applications.
This paper describes an implementation of the AADhtime by the Marzhin
Multi Agent simulator that is embedded in the AADispector tool [5].

Keywords. AADL, Simulation, Multi Agent

I ntroduction

The Architecture Analysis and Design Language (AABtandard defines a default
runtime semantic for software intensive Real Tirygtems. This includes support for
multi tasking, network distributed architecturesdafime and Space Partitionning
systems (TSP). A proper implementation the AADLtime thus allows for the virtu-
al execution of a system at a model level and dmnts to the early verification of
critical software applications in the developméfa-tycle.

This paper firstly summarizes the definition of thefault AADL runtime, then de-
scribes one of its implementations that has beefoqmeed to develop the Marzhin
Multi Agent simulator, and finally explains howdan be used in practice within the
AADL Inspector tool.

1 The AADL Runtime

The AADL Language is an international standardhef SAE (AS-5506B) [1]. The
standard defines in particular a default executimmdel that specifies the way the
various components interact at run-time. This esmlal precise timing analysis and
simulation of AADL models.

A typical AADL model is composed of one or sevaraécution resources (Proces-
sors) that can communicate via Buses. The softappdication is composed of one
or several memory address spaces (Processes)oathiatnc concurrent Threads and
shared Data. Various inter-threads communicatioagigms are supported.

1.1 Processors

In AADL, the Processor represents the associatioa bardware computation re-
source and a scheduler. It must declare a Sched®#notocol property whose value
corresponds to one of those that are actually stegdy the analysis, simulation or
code generator. Typically supported Scheduling deals are:

« Rate Monotonic protocol (RM), based on the peribthe Threads.

« Deadline Monotonic protocol (DM), based on the diesadof the Threads.
* POSIX 1003 (HPF), based on the predefined priarftthe Threads.

* ARINC 653, for the static scheduling of partitidots.

In the case of a partitioned system, the Processmiputation resource is shared be-
tween several Virtual Processors, each of themgb&ésociated with a set of Threads
located in an AADL Process. Virtual Processors nalsb define their own Schedul-
ing_Protocol property. This is typically what happavhen the ARINC 653 Annex of
the AADL standard is used.

1.2 Threads

The default behavior of AADL Threads is specified the standard by a state-
transition automaton.

Suspended

Call remote
subprogram

Awaiting
Return

Feturn remote
subprogram

Onkblock due to
BElock due to Release Resource

et Resource Awaiting

Resource

Fig. 1. Runtime states for AADL threads

A Thread must have a Dispatch_Protocol property diefines when it is ready to
execute. Supported protocols are:

» Periodic: the thread is periodically triggered bsgyatem clock.

» Aperiodic: the thread is triggered upon arrivahofevent on one of its ports.
« Sporadic: same as Aperiodic with a minimum inteivat time.

« Timed: same as Aperiodic with an additional timeewgnt.

« Hybrid: the thread is triggered by event ports trasystem clock.

« Background: the thread is triggered when the exacuesource is free.

Thread interfaces contain Features that are useidhptement communication
channels. They can be:

« Data Ports: allows for point to point data exchange

» Event Ports or Event Data Ports: allows for evants message exchange

» Access to shared Data: allows for multi-points daxahange with concurrency
control.

» Access to remote Subprograms: allows for remoteraigram calls.

1.3 Shared Data

One particular way to exchange information betw&ekreads is to let them have ac-
cess to the same shared data. Shared data arsemteckin AADL by Data subcom-
ponents to which Threads can have access throughAzaess Connections.

It is possible to specify critical sections thantashe AADL Behavior Annex. In
order to ensure mutual exclusion of all the thremat®ssing a given shared data com-
ponent, a Concurrency_Control_Protocol property lmaset. A typical value for this
property is Priority_Ceiling_Protocol (PCP).

1.4 AADL Behavior Annex

The core definition of AADL deals with the architeral description of the system. It
specifies which components are instantiated and tmew are connected and bound
together. The functional activity of Threads or fudgrams is summarized by a
Compute_Execution_Time property that must be giwéh its Min and Max values.
The Max value of this property thus correspondshs usual WCET (Worst Case
Execution Time) that is used for scheduling analysi

However, in order to perform precise timing anayai simulations, it is necessary
to provide a more detailed description of the fioral behavior of Threads and Sub-
programs. The AADL Behavior Annex is an action laage that can be used to pro-
vide a simplified representation of the sequemsiialrce code structure (pseudo-code).

Examples of actions that can be defined with theDABehavior Annex are:

« p! :sending an event on port p (Put_Value and Sentpu®)
« d! <: entering a critical section on shared data acdd&et _Resource)
« d! >:leaving a critical section on shared data acdgslease_Resource)

e conputation(a..b) : use of the processor for a duration betweennthe-
mum duration a and the maximum duration b.

2 The Marzhin Simulator

2.1 Principles of the Marzhin Simulation.

Marzhin is a simulation engine that is based onudtiragent kernel which implies a
random order of activation of the execution urfitach agent can contain one or more
execution units that are invoked randomly duringjraulation cycle. The agents can
be specified independently which highly facilitatée initial development and the
maintenance of the simulator. At the execution tialethe agents interact together to
exhibit a global behavior.

EU=<n= : Execution Unit

e e i sl

<« > |c— | ———— > | >

Simulation cycle Simulation cycle Simulation cycle Simulation cycle

Fig. 2. Marzhin random execution principle

Each AADL entity that is managed by Marzhin is mledeby a specialized agent
containing the appropriate execution units to dfthe AADL runtime semantics.

2.2 TheMarzhin Data Model.

The Marzhin agents have been defined so that tkaglly match the corresponding
AADL entities. However, in order to well distinghithem from their AADL equiva-
lent, the name of the Marzhin entities has beeital&g®ed in the next paragraphs:

« THREAD: It has the Dispatch_Protocol, DispatchQffdaispatchJitter, Period,
Priority, Deadline and Quantum properties. TheRgias generally determined by
the Scheduling_Protocol property of the PROCESSaining the THREAD. It
maintains a list of instructions to be executedeylban be for example: event sen-
ding or conditional branches. Their different exemu states are the same as those
of the AADL Threads as described in section 1.2.

 PROCESS: It represents the address space partitgpand the scheduler. In par-
ticular, it thus implements the Scheduling_Protdbal is specified by the AADL
Processor.

« PROCESSOR : it contains PROCESSes and managestheiluling in case of a
multi-partition system.

2.3 Marzhin Simulation Cycle.

In the case of the execution of THREADSs in a PROSFE®e Marzhin simulation
cycles run as follows:

O Process execution unit OThread execution unit.

T<n>: Execution unit of Thread.
PB : Exacution unit of Process at the beginning of the simulation cycle.

PE : Execution unit of Process at the end of the simulation cycle.
A A % A j A ? ¥ % A
|)
o k. < L.

S - - <«
- Simulation cycle 1T Simulation cycle ”

Fig. 3. Marzhin simulation cycle

1. An execution unit starts the simulation cycle of BAROCESS (PB). This allows
for updating the priority of each THREAD at eacimslation cycle if needed.

2. Execution in a random order of the election prodesall the THREADS (T1, T2,
T3) in order to update their current internal statel determine the highest priority
THREAD that will be executed.

3. An execution unit ends the simulation cycle of #IROCESS (PE) and actually
executes the current instruction of the selecte®READ.

In the case of a PROCESSOR containing several PEB3EE the execution is de-
fined according to the partition slots. If a paotitis not active, all the execution units
of involved entities (PROCESSs, THREADs ...) argatlled and are not taken into
account in the simulation cycle. Only the executioiits of the active partition will be
activated during the cycle.

65666

< >

Simulation cycle
O Partition 1
|

o &=
®00 o009

Fig. 4. Simulation of a multi-partition system

2.4 About Determinism in Mar zhin.

Despites the intrinsic randomness of the Marzhimugator, a deterministic behavior
is observed most of the times, thanks to the rigpnmanagement of the THREAD
priorities. However, in some situations, it beconpessible to introduce a certain
level of non-determinism that can be useful forlgsia purposes.

In the example below, randomness occurs with a REgaotonic scheduler when
several threads have the same period and theledoreethe same priority:

Simulation configuration:

processl : RATE_MONOTONI C_PROTOCOL

threadl : DispatchProtocol =PERI ODI C Peri od=10 WCET=3
thread2 : DispatchProtocol =PERI ODI C Peri od=10 WCET=3
thread3 : DispatchProtocol =PERI ODI C Peri od=10 WCET=3

Simulation trace:

THREAD processl.thread3 | | __ |- || __|----1__|__ 1.
THREAD processl.thread2 _| _|_|....|___ 1 I O N
THREAD processl.threadl |__ N T I D I P B

Caption:

. : THREAD_STATE_SUSPENDED
| : THREAD_STATE_RUNNI NG
THREAD_STATE_READY

During the simulation cycle 0, the random routiredested threadl whereas it is
thread2 in cycle 1, and so on. It is however fgmedo control this non-determinism
thanks to the Quantum and Dispatch_Order attribu@emntum specifies the mini-
mum amount of time the currently selected THREADI wémain active without
being prempted and Dispatch_Order indicates howctimeent THREAD is selected
within the list (FIRST, LAST or RANDOM). The sama&le with a Quantum set
at 3 and a Dispatch_Order set at FIRST gives thewimg simulation trace:

THREAD processl.thread3 [11- [11-
THREAD processl.thread2 _ |[]|---- __ ||| -+ - ___11
THREAD processl.threadl ||]....... [1. [11]..

The non-determinism of Marzhin can also be beradfiti manage the Global Asyn-
chronism of the simulation environment. It is thaassible to inject events or update
data values in incoming ports connected to remutetidevices such as the operator
keyboard, a dedicated dialog box or an active widge 3D virtual reality simula-
tion.

The following example shows how an event can dyoalyi influence the behav-
ior of the simulation. The periodic THREAD threagdnds an event to the sporadic
THREAD thread2. Such an event could also come fexternal interface of the
simulator:

processl : RATE_MONOTONI C_PROTOCOL
threadl : DispatchProtocol =PERI ODI C Peri od=10 WCET=5
thread2 : DispatchProtocol =SPORADI C Peri od=4 WCET=3

EVT IN processl.thread2.evt 11......
THREAD processl.thread2 — [
THREAD processl.threadl AL [T | 1111

Caption:

1 : nunber of events in the incom ng port queue.

3 Virtual Execution of AADL Models

3.1 AADL Inspector

AADL Inspector is a model processing framework cosgd of an AADL toolbox
and a customizable set of plugins. The AADL toolledudes an AADL parser and
the LMP (Logic Model Processing) model processingimnment [4] that is based

on the use of the prolog language. The LMP engineséed to perform queries on the
AADL declarative and instance models, to implemstiatic model checkers and to
develop model transformations.

For Real Time analysis, two plugins are currentiypedded in AADL Inspector:
Cheddar [1] that implements feasibility tests anstatic simulator, and Marzhin for
dynamic simulation. The static simulator graphigcakflects the deterministic out-
come of the scheduling analysis, whereas the dymaimiulator exhibits the behavior
of the multi-agent engine execution. The resubbath simulators is displayed graphi-
cally in an advanced time lines viewer.

Be Y G E

| ARINGES3 | arincsimpled 3|

? | static Analysis| Schedulability |Al Scripts |

> |

178 PROPERT

| Scheduling Protocol => (ARINCE53);

| ARINCE53::Partition Slots => (10ms, 15ms, 10ms); |
ARINC653: :51ots Allocation => (reference (partl),refe

Task response time computed
Task response time computed

~ Task resnnnse time comnuted
« |

root.cpu,partitionl_pr.T
root.cpu partitionl_pr.1

root.cnunaritinn? nr.l

|PROCESSOR powerpc ‘

e

| test entity =
i;z_Eig;éii;fmmg’ﬂmu‘m" PovcEnRat 1 @ask response time computed rost.cpu Mo deadline missed i|
174] parcl RIUAL PROCESSCR partiti Number of preemptions root.cpu 0 =|
175 part2 : VIRTUAL PROCESSCR partition2 rc.impl: Number of context switches root.cpu 1142

worst = 18, best = 0 2|
worst = 21, best =D a

worst = 73 hect=0a ”
»

ARINCE53 dule Major Frame =» 35ms;
ARTNC653: :Criticality => Level E APPLTES TO partl, D|g|
D powerpc.impl; |

—@J > oga
% Filtering contro..

[[
|

ey
645

RTUAL PROCESSCR partitioni rt 580 585 530 595 600 605 610 615 620 625 630 635 640
D partitionl rt; cpu 2
Genet|partitionL. | partition2,
RIUAL PROCESSOR IMPLEMENTATION pd| .. o == partition2prT2 b——— @wm g
PROPERTIES o
0L 005 partition2_pr |— =
@ 2
7 LD |
RTUAL PRCOCESSCR partition2 rt g
193(END partitionZ rt;: - Processors: partitionl_pr.73 —M— —&#+—Im—————
133 ® root.cpu
195[VIRTUAL PROCESSOR IMPLEMENTATION pd £ partitionl_pr.T1 i i o
Cheddar Schedule Table:
13 Scheduling Protocol => (RM); Computation rar 4000 pafiaR pp »
198[END partitionZ rt.impl;
< 1 _—l I Ok I 605 -

Fig. 5. AADL Inspector 1.4

Thanks to AADL Inspector, it is thus possible t@doa complete AADL project
distributed on several files containing textual ldeative statements, to analyse it in
order to build the corresponding instance modepedorm the proper model trans-
formation so that it can be processed by Marzhml # pilot its virtual execution
through a control panel.

3.2 Executing AADL models

Such a virtual execution of AADL models can effitly complements the use of
more formal real time analysis tools such as Chedtait does not require the input
model to satisfy restricted assumptions. It thugmificantly extends the scope of
model driven real time analysis, especially indirection of non-periodic activities.

Another use of virtual execution is to perform atetture trade-off studies by pro-
viding an immediate feedback showing the coarsa ghgnamic behavior of the sys-
tem during the design phases.

Finally, the specific technical approach that hasrbchosen for the implementa-
tion of Marzhin enables an easy interaction withaagnchronous environment, such
as a human operator or a virtual reality simulation

This approach can be operated early in the devedapmprocess of the system to
support system and software real-time design dietsvi before the software coding
phases. Although the AADL Behavior Annex is usedléscribe the concurrent as-
pects of the system behavior, purely procedurabastare still expressed by their
computation time. Further work would be requiredneestigate the ways to enrich
this approach with automatic code generation céifiabi

Requirements
Analysis

Integration

Virtual

Execution

Coding

Fig. 6. Use of Virtual Execution in the development lifeke

Conclusion and Future Work

The current implementation of the Marzhin simuldtwat is available as a part of the
AADL Inspector tool already supports a comprehemsiubset of the AADL runtime
semantics that enables virtual execution of moftglshe purpose of Real Time ana-
lysis, exploration of design solutions and earlyndestration of the behavior of a
future system.

This work is partly realized in the context of tBMMART project [3] in collaborati-
on with the University of Brest and with the fingdcsupport of the Council of Brit-
tany, the Council of Finistére, BMO and BPI France.

The future improvements that are foreseen for dlisvity concern a more com-
plete implementation of the AADL Behavior Annex,dmved support of distributed
systems and investigations around the possiblefibasfethe approach for system
safety analysis with a proper use of the AADL Ermnex. An additional topic could
be studying the possible implications for automatide generation.

References

1.

2.

3.

F. Singhoff, J. Legrand, L. Nana, L. Marcé. “CheddaFlexible Real-Time Scheduling
Framework”, ACM SIGAda Ada Letters, 24(4):1-8, ACMeBs. 2004

SAE International. “Architecture Analysis and Desiganguage (AADL)”, AS5506B.
2012

P. Dissaux, O. Marc, S. RubipiC. Fotsing, V. GaudefF. Singhoff, A. Plantec, ¥ong
Nguyén-Hong, Hii Nam Tén. “The SMART Project: Multi-Agent Scheduling Siratibn
of Real-time Architectures”, Proceedings ERTS comfege 2014.

. P. Dissaux, P. Farail. “Model Verification: Returhexperience”, Proceedings ERTS con-

ference. 2014.

. Ellidiss Technologies. AADL Inspector site: httpaw.ellidiss.fr

