
Automatic Derivation of AADL Product Architectures in
Software Product Line Development

Javier González-Huerta, Silvia Abrahão, Emilio Insfran

ISSI Research Group, Universitat Politècnica de València
Camino de Vera, s/n, 46022, Valencia, Spain

{jagonzalez, sabrahao, einsfran}@dsic.upv.es

Abstract. Software Product Line development involves the explicit management
of variability that has to be encompassed by the software artifacts, in particular
by the software architecture. Architectural variability has to be not only sup-
ported by the architecture but also explicitly represented. The Common Variabil-
ity Language (CVL) allows to represent such variability independently of the Ar-
chitecture Description Language (ADL) and to support the resolution of this var-
iability for the automatic derivation of AADL product architectures. This paper
presents a multimodel approach to represent the relationships between the exter-
nal variability, represented by a feature model, and the architectural variability,
represented by the CVL model, for the automatic derivation of AADL product
architectures through model transformations. These transformations take into ac-
count functional and non-functional requirements.

Keywords: AADL; Software Product Line Development; Architecture Deriva-
tion; Variability Representation.

1 Introduction

Software Product Line (SPL) development is aimed to support the construction of a set
of software products sharing a common and managed set of features, which are devel-
oped from a common set of core assets in a prescribed way [1]. Thus, in SPL develop-
ment variability must be defined, represented, exploited and implemented [2]. The ex-
ternal variability (relevant to customers), usually represented by a feature model [3],
should be realized by the internal variability (relevant to developers) of the software
assets used to build up each individual software product [4].

Software Architecture is a key asset in SPL development and plays a dual role: on
the one hand the product line architecture (PLA) should provide variation mechanisms
that help to achieve a set of explicitly allowed variations and, on the other hand, the
product architecture (PA) is derived from the PLA by exercising its built-in architec-
tural variation points [1].

In order to enable the automatic resolution of the PLA variation points is required
not only that the architectural description languages provide variation mechanisms, but
also to explicitly represent how the different variants realize the external variability
usually represented in feature models.

Although AADL [5] incorporates different variation mechanisms that allow describ-
ing variability in system families [6], the explicit representation of the variation points
and its variants is also required to cope with the problem of product configuration and
architecture derivation.

To tackle this problem, in previous works, we presented the quality-driven product
architecture derivation, evaluation and improvement (QuaDAI) method [7], which uses
a multimodel to guide the software architect in the derivation, evaluation and improve-
ment of product architectures in a model-driven software product line development pro-
cess.

The Common Variability Language (CVL) [8] is a language that allows the specifi-
cation of variability over any EMF-based, and supports the resolution of the variability
and automatic derivation of resolved models. CVL incorporates its own variability
mechanisms (e.g., fragment substitution) that can be used to extend those provided by
the ADLs.

In this paper, we extend the multimodel approach to incorporate the explicit repre-
sentation of the architectural variability, by using CVL, and to establish relationships
among architectural variants and variation points with: i) the features that represent the
SPL external variability; ii) the non-functional requirements and iii) the quality attrib-
utes. Once the application engineer has selected the features and non-functional require-
ments (NFRs) and the priorities of the quality attributes that together conform the prod-
uct configuration, the relationships defined in the multimodel allow us to automatically
derive the product AADL specification from the PLA.

The remainder of the paper is structured as follows. Section 2 discusses existing
approaches that deal with the explicit representation of architectural variability and the
derivation of product architectures in SPL development by using CVL. Section 3 pre-
sents our approach for the derivation of AADL product architectures by introducing the
explicit representation of the architectural variability with CVL. Finally, Section 4
drafts our conclusions and final remarks.

2 Related work

AADL incorporates different architectural variation mechanisms that support the de-
velopment of system families (e.g., multiples implementation of a system specification,
component extension or the configuration support through alternative source code files)
[6]. However, in a real SPL scenario is difficult to manage the derivation of the archi-
tectural specification of a product (PA), especially when the SPL allows a wide range
of variability. To cope with the problem, in the last years, several approaches had been
presented that support the representation of architectural variability and the derivation
of product architectures in SPL development by using CVL (e.g., [9], [10], [11]).

Nascimento et al. [10] present an approach for defining product line architectures
using CVL. They apply the Feature-Architecture Mapping Method (FArM) to filter the
feature models in order to consider only the architectural-related features. These fea-
tures will form the CVL specification that will allow obtaining the COSMOS* archi-
tectural models. They do not define relationships between the external variability model

(features model) and the architectural variability expressed in CVL and thus the deri-
vation of the product architecture taking as input the configuration is not supported.
They explicitly omit the non-functional requirements when applying the FArM method.

Svendsen et al. [11] present the applicability of CVL for obtaining the product mod-
els for a Train Control SPL that are defined using a DSL. They only consider the ex-
plicit definition of the internal variability and consequently, the configuration should
be made directly over the CVL specification of the internal variability.

 Combemale et al. [9] present an approach to specify and resolve variability on Re-
usable Aspect Models (RAM), a set of interrelated design models. They use CVL to
resolve the variability on each model and then compose the corresponding reusable
aspects by using the RAM weaver. They also consider just the internal variability, and
the configuration should be made over the CVL specification.

In summary, none of the aforementioned approaches establish relationships among
the SPL external variability and the architectural variability, even though some of them
acknowledge that is a convenient practice in variability management [9]. Establishing
connections between the SPL external variability, expressed by means of feature mod-
els, the non-functional requirements, represented in the quality model, and the archi-
tectural variability, represented by using CVL allows us:

i) To configure the product by using the feature model and the quality view-
point;

ii) To check its consistency by using the constraints defined on the features
model, on the quality viewpoint and on the multimodel;

iii) To solve the architectural variability automatically by using model trans-
formations.

3 A Multimodel Approach for the Derivation of AADL Product
Architectures

QuaDAI is an approach for the derivation, evaluation and improvement of product ar-
chitecture that defines an artifact (the multimodel) and a process consisting of a set of
activities conducted by model transformations. QuaDAI relies on a multimodel [12]
that allows the explicit representation of different viewpoints of a software product line
and the relationships among them. In this section, we focus on the representation of the
architectural variability, its resolution and the derivation of the software architecture of
the product under development.

3.1 Illustrating Example

The approach is illustrated through the use of a running example: a SPL from the auto-
motive domain that comprises the safety critical embedded software systems responsi-
ble for controlling a car. This SPL is an extension of the example introduced in [13],
and was modified in order to apply, among others the variation points described in [14].

This SPL comprises several features such as Antilock Braking System, Traction Con-
trol System, Stability Control System or Cruise Control System. The Cruise Control
System feature incorporates variability. This variability is resolved depending on other
selections made on the features model (i.e., the selection of the cruise control together
with the park assistant implies the positive resolution of an extended version of the
cruise control1). Fig. 1 shows an excerpt of the features model that represents the SPL
external variability.

Fig. 1. SPL External Variability

3.2 A Multimodel for Representing Architectural Variability

In QuaDAI, a multimodel permits the explicit representation of relationships among
entities in different viewpoints. A multimodel is a set of interrelated models that repre-
sent the different viewpoints of a particular system. A viewpoint is an abstraction that
yields the specification of the whole system restricted to a particular set of concerns,
and it is created with a specific purpose in mind. In any given viewpoint it is possible
to produce a model of the system that contains only the objects that are visible from
that viewpoint [16]. Such a model is known as a viewpoint model, or view of the system
from that viewpoint. The multimodel permits the definition of relationships among
model elements in those viewpoints, capturing the missing information that the separa-
tion of concerns could lead to [12].

The problem of representing and automatically resolving the architectural variability
taking into account functional and non-functional requirements requires (at least) three
viewpoints:

 The variability viewpoint represents the SPL external variability express-

ing the commonalities and variability within the product line. Its main ele-
ment is the feature, which is a user-visible aspect or characteristic of a sys-
tem [3] and it is expressed by means of a variant [15] of the cardinality

1 The whole specification of the example is available at http://users.dsic.upv.es/~jagonza-

lez/CarCarSPL/links.html

VehicleControlSystem
Attributes

[1..10]

ABS
Attributes

TractionControl
Attributes

EstabilityControl
Attributes

CruiseControl
Attributes

AutoPark
Attributes

MultimediaSystem
Attributes

[1..2]

FM_CD
Attributes

B_W_OnboardComputer
Attributes

Color_OnboardComputer
Attributes

GPS
Attributes

FM_CD_Charger
Attributes

ParkAssistant
Attributes

[1..1]

[0..1]

[0..1]

[0..1] [0..1] [1..1]

[0..1]

[0..1]

[0..1]

[0..1]

[0..1]

[0..1]

GPS
Attributes

Optional

Mandatory Excludes

Implies

Feature GroupFeature

Legend

based feature model (shown in Fig. 1).
 The architectural viewpoint represents the architectural variability of the

Product Line architecture that realizes the external variability of the SPL
expressed in the variability viewpoint. It is expressed by means of the Com-
mon Variability Language (CVL) and its main element is the Variability
Specification (VSpec). We only represent in the multimodel the PLA archi-
tectural variability, the PLA is represented in an AADL base model, which
is referenced by the CVL specification. A base model, under the CVL ter-
minology, is a model on which variability is defined using CVL [8]. The
base model is not part of CVL and can be an instance of any metamodel
defined via MOF [8]. Fig. 2 shows an example of the CVL variability spec-
ification on an AADL base model, allowing to express whether some
AADL elements should exist or not in the resolved model (e.g., the ABS)
and to configure some internal values (e.g., the range value assignment).

 The quality viewpoint represents the hierarchical decomposition of quality
into sub-characteristics, quality attributes, metrics and the impacts and con-
straints among quality attributes. Is expressed by means of a quality model
for software product lines [17], which extends the ISO/IEC 25010
(SQuaRE) [18] and allows the representation of NFRs as constraints affect-
ing characteristics, sub-characteristics and quality attributes.

Fig. 2. CVL Variability Specification on an AADL Base Model

The multimodel also allows the definition of relationships among elements on each
viewpoints with different semantics as is_realized_by [19] or impact relationships [12].
An excerpt of these relationships is shown in Fig. 3.

We can describe in the multimodel: i) how the ABS feature is_realized_by a set of
VSpecs (e.g., the WheelRotationSensor); ii) how the user_safety NFR is_realized_by a
set of features (e.g., the ABS or the Stability Control); iii) how the selection of a given
feature VSpec impacts positive or negatively on a quality attribute; or iv) how the pos-
itive resolution of a given VSpec impacts positive or negatively on a quality attribute.
These relationships are used to check the consistency of the configuration and to decide

Wheel Sensor Brake Actuator

Control System

ABS System

Frontal Sensor

range: int

ABS Control System

Wheel_sensor
Braking_pedal_sensor

Brake_actuator_signal

:ObjectExistence

Wheel Sensor

Pulse

:ObjectExistence :ObjectExistence

Brake Actuator

Brake_signal

:ObjectExistence :ObjectExistence:SlotValueAssignment

Doppler Sensor

Distance

Distance Sensor

Object_distance
Speed
Range

Base Model

Distance Sensors

Rear SensorRear Sensor

Variability Points

CVL Variability
Specification Tree

Doppler Sensor

Distance

Rear Sensor

:ObjectExistence

Legend

Architectural variant

Variation point nature

AADL model element

which variation points should be resolved positively in the CVL resolution model driv-
ing the derivation of the AADL product architecture.

Fig. 3. Multimodel Relationships

3.3 Automating the Derivation of Product Architectures

The QuaDAI derivation process for obtaining AADL product architectures based on
the functional and non-functional requirements comprises two main activates: the prod-
uct configuration and the architecture instantiation. Fig. 4 shows an excerpt of the
specification of the activities with the main input and output artifacts using the Software
& Systems Process Engineering Meta-Model (SPEM) [20].

Fig. 4. SPEM specification of the QuaDAI Derivation Process

In the product configuration activity, the application engineer selects the features
and NFRs that the product must fulfill and establishes the quality attributes priorities in
the obtain product configuration task. Those priorities will be used during the deriva-
tion to choose from a set of architectural variants that having the same functionality
differ in their quality attribute levels. In the consistency validation activity, first we
check the variability viewpoint consistency (i.e., whether the selection of features ful-
fills the constraints defined in the feature model) and the quality viewpoint consistency
(i.e., whether the priorities of the quality attributes defined in the configuration satisfy

Qj

NFR_i

Quality Attribute

Qj

Quality Attribute

Non-Functional RequirementFeature

Architectural Variation Point

Attributes <<is realized by>>

NFR_i

Non-Functional Requirement

<<is realized by>>

WheelRotationSe...
RotationSensor

Architectural Variation Point

<<is realized by>>

WheelRotationSe...
RotationSensorFeature

Architectural Variation Point
ABS

Attributes

<<Impact>>

<<Impact>>

WheelRotationSe...
RotationSensor

v

v

Feature

ABS

Attributes

Relationships Used during Derivation

FaultTolerance

Memory Consumption

UserSafetyLevel1

Maturity LevelABS

1 2

Product Architecture
instantiation

Quality
viewpoint

Architectural
viewpoint

Variability
viewpoint

Multimodel

Product
requirements

Yes

No

Consistency
validation

Valid

Obtain Product

2.1 2.2

CVL resolution model
generation

Product architecture
instantiation

CVL resolution
model

in in

in

in

out in in

in in

AADL
PL architecture

CVL
transformation

AADL Product
architecture

Application
engineer

Application
architect

out

outin

the impact and constraint relationships among them defined in the quality viewpoint).
Once the intra-viewpoint consistency is satisfied we check the inter-viewpoint con-
sistency (i.e., whether the configuration satisfy the is_realized_by and impact relation-
ships defined among elements on different viewpoints). The multimodel relationships
had been formalized and operationalized in OCL and are checked at runtime by using
the OCLTools validator [21]. This consistency checking mechanism allows us to assure
that the product configuration meets the SPL constraints facilitating the architecture
instantiation activity that focus on the resolution of the PLA architectural variability.

In the architecture instantiation activity, the application architect generates the
AADL product architecture by means of two model transformation activities. The first
transformation, CVL resolution model generation, takes as input a valid product con-
figuration and the multimodel (i.e., the relationships between the architectural view-
point with variability and the quality viewpoint) and, through a Query View Transfor-
mation (QVT) [22] model transformation, generates a CVL resolution model. With the
multimodel relationships, the QVT transformation decides which architectural variants
have to be positively resolved in each variation point. Finally, the product architecture
instantiation activity, through a CVL transformation, takes as input the CVL resolution
model and generates the AADL product architecture. This AADL product architecture
represents the resolution of the PLA architectural variability taking into account not
only the functional requirements and non-functional requirements selected in the con-
figuration. The use of CVL alleviates part of the computational complexity since it
allows us, at design time, to describe the PLA architectural variants and, in derivation
time, to only focus on the resolution of the PLA architectural variability. Fig. 5 shows
an outline of the AADL architecture derivation with the CVL resolution model gener-
ation and the AADL Product architecture instantiation.

Fig. 5. AADL Product Architecture Instantiation

Brake_actuators

Brake Signal

Brake_actuators

ABS Control System

Rotation_sensor_signa

Brake_pedal_signal

Brake_actuator_signal Brake Signal

Brake pedal sensor

Brake

Rotation sensor

Wheel pulse

ABS Control System

Rotation_sensor_signa

Brake_pedal_signal

Brake_actuator_signal

VSpec4VSpec3VSpec2

NFR1

VSpec1

VSpec1

VSpec4

isRealizedBy

isRealizedBy

Featurea

VSpec1

VSpec2

...

CVL resolution model
generation

QVT-Relations
transformation

VSpecResolution

VSpecResolution

impact
Qa

Product architecture
instantiation

CVL
transformation

CVL Resolution Model

AADL Product Architecture

AADL Produc Line Architecture
(as CVL Base Model)

+

Reliability

ABS

ABSControlSystem

Latency
Time

ABS Control System

ABS
Control System

Brake Actuators

Rotation Sensor

3.4 Tool Support

The approach is supported by a prototype2 that gives support to the configuration, con-
sistency checking and generation of the CVL resolution model. The prototype allows
importing feature models and CVL specifications defined using third party tools and to
establish the relationships among them described in the paper so as to automate the
AADL product architecture derivation.

The variability viewpoint consistency checking is carried out by transforming the
feature model and the features selection to the FAMA [23] metamodel and by calling
the FAMA validator. The quality viewpoint and the inter-viewpoint consistency check-
ing are carried out through OCL constraints checked at runtime by the OCLTools val-
idator. The tool is also capable of calling the QVT transformation that generates the
CVL resolution model.

Fig. 6(a) shows the call to the CVL resolution creation functionality. Fig. 6(b) shows
the resulting CVL resolution model when for a configuration formed by the feature
configuration features={Vehicle Control System, ABS, TractionCon-
trol, StabilityControl and FM_CD} (see Fig. 1) and the NFRs configu-
ration nfrs={EuroNCAP3}.

 Finally, with the integration of the CVL supporting tool [24] the CVL transfor-
mation can be called so as to generate the resulting AADL product architecture.

Fig. 6. Generation of the CVL Resolution Model with the Prototype

2 The prototype is available for download at: http://users.dsic.upv.es/~jagonzalez/Car-

CarSPL/index.html

3 EuroNCAP is a voluntary EU vehicle safety rating system. In our example, the EuroNCAP

NFR is realized by the ABS, the Traction Control, and the Stability Control features.

4 Conclusions and Further Works

In this paper, we have presented an approach to explicitly represent architectural
variability on AADL architectural models by using CVL. We include the architectural
variability in a multimodel in which we also represent the SPL external variability in a
feature model, and the non-functional requirements in a quality model. In this multi-
model, we can establish relationships among elements on the CVL model, the feature
model and the quality model. This information is used to drive the model transformation
that resolves the architectural variability and obtains the AADL product architecture.
The approach is supported by a tool with which the user can edit a product configura-
tion, check its consistency and automatically derive the CVL resolution model. The
CVL resolution models allow us to obtain the AADL product architecture by using the
CVL supporting tool.

In this work, we apply model-driven engineering principles to provide a feasible
solution to an open, complex, error-prone and time-consuming problem in the software
product line development community, which is the derivation of product architectures
takin into account functional and non-functional requirements.

As further work, we plan to empirically validate the approach through controlled
experiments and case studies. We plan also to analyze how to incorporate more power-
ful CVL variation mechanisms (i.e., the use of VInterfaces that can be used to configure
CVL configuration units) and its possible use in combination with the AADL syntax.
Finally, although the approach has been initially defined for working together with
AADL, the use of CVL isolates the approach from the architectural description lan-
guage and we want to analyze its applicability to other MOF-based ADLs.

Acknowledgements. This research is supported by the Value@Cloud project
(MICINN TIN2013-46300-R) and the ValI+D fellowship program (ACIF/2011/235).

References

1. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley Professional (2001).

2. Van der Linden, F., Schmid, K., Rommes, E.: Software Product Lines in Action: The
Best Industrial Practice in Product Line Engineering. Springer Berlin Heidelberg
(2007).

3. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented
Domain Analysis (FODA) Feasibility Study. , CMU/SEI-90-TR-21 ESD-90-TR-222,
Software Engineering Institute, Carnegie Melon University (1990).

4. Pohl, K., Böckle, G., van der Linden, F.: Software product line engineering. Springer,
Berlin (2005).

5. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction to
the SAE Architecture Analysis & Design Language. Addison Wesley (2013).

6. Feiler, P.H.: Modeling of System Families. , CMU/SEI-2007-TN-047, Software
Engineering Institute, Carnegie Mellon University (2007).

7. González-Huerta, J., Insfrán, E., Abrahão, S.: Defining and Validating a Multimodel
Approach for Product Architecture Derivation and Improvement. 16th International

Conference on Model-Driven Engineering Languajes and Systems. pp. 388–404. ,
Miami, USA (2013).

8. Object Management Group: Common Variability Language (CVL) OMG Revised
Submission. (2012).

9. Combemale, B., Barais, O., Alam, O., Kienzle, J.: Using CVL to operationalize
product line development with reusable aspect models. Workshop on Variability
Modeling Made Useful for Everyone. pp. 9–14. , Innsbruck, Austria (2012).

10. Nascimento, A.S., Rubira, C.M.F., Burrows, R., Castor, F.: A Model-Driven
Infrastructure for Developing Product Line Architectures Using CVL. 7th Brazilian
Symposium on Software Components, Architectures and Reuse. pp. 119–128. ,
Brasilia, Brazil (2013).

11. Svendsen, A., Zhang, X.: Developing a software product line for train control: a case
study of CVL. 14th Software Product Line Conference. pp. 106–120. , Jeju Island,
South Korea (2010).

12. González-Huerta, J., Insfran, E., Abrahão, S.: A Multimodel for Integrating Quality
Assessment in Model-Driven Engineering. 8th International Conference on the Quality
of Information and Communications Technology. pp. 251–254. , Lisbon, Portugal
(2012).

13. Hudak, J., Feiler, P.H.: Developing AADL Models for Control Systems : A
Practitioner ’ s Guide. , CMU/SEI-2007-TR-014, Software Engineering Institute,
Carnegie Mellon University (2007).

14. Shiraishi, S.: An AADL-based approach to variability modeling of automotive control
systems. 13h Model Driven Engineering Languages and Systems. pp. 346–360. , Oslo,
Norway (2010).

15. Gómez, A., Ramos, I.: Cardinality-Based Feature Modeling and Model-Driven
Engineering : Fitting them Together. International Workshop on Variability Modelling
of Software-Intensive Systems. pp. 61–68. , Linz, Austria (2010).

16. Barkmeyer, E.J., Feeney, A.B., Denno, P., Flater, D.W., Libes, D.E., Steves, M.P.,
Wallace, E.K.: Concepts for Automating Systems Integration. , NISTIR 6928, U.S.
Department of Commerce (2003).

17. González-Huerta, J., Insfran, E., Abrahão, S., McGregor, J.D.: Non-functional
requirements in model-driven software product line engineering. Proceedings of the
Fourth International Workshop on Nonfunctional System Properties in Domain
Specific Modeling Languages. pp. 1–6. , Innsbruck, Austria (2012).

18. ISO/IEC: ISO/IEC 25000:2005 Software Engineering - Software product Quality
Requirements and Evaluation (SQuaRE) - Guide to SQuaRE, (2005).

19. Janota, M., Botterweck, G.: Formal approach to integrating feature and architecture
models. 11th Conference on Fundamenteal Approaches to Software Engineering. pp.
31–45. , Budapest, Hungary (2008).

20. Object Management Group: Software & Systems Process Engineering Meta-Model
Specification (SPEM) v2.0. (2008).

21. Eclipse: Eclipse OCL, http://projects.eclipse.org/projects/modeling.mdt.ocl.
22. Object Management Group: Meta Object Facility (MOF) 2.0 Query / View /

Transformation Specification. (2008).
23. ISA Research Group: Fama Tool Suite, http://www.isa.us.es/fama/.
24. Haugen, Ø., Moller-Pedersen, B., Olsen, G.K., Svendsen, A., Fleurey, F., Zhang, X.:

Consolidated CVL language and tool. , MoSiS Project, D.2.1.4., SINTEF, Univeristy
of Oslo (2010).

