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Preface
This volume contains the proceedings of the poster workshop at CSD&M 2014.

This workshop was organized to foster discussions about topics presented in pa-
pers that were not advanced enough to be published at the main CSD&M conference,
but were worth a shorter presentation around a poster.

The program committee of CSD&M selected these papers for presentation at
the Poster Workshop and publication in separate proceedings.

About CSD&M

The purpose of the “Complex Systems Design & Management” (CSD&M) confer-
ence is to be a forum for both academic researchers and industrial actors working on
complex industrial systems architecture and engineering in order to facilitate their
meeting.

The CSD&M academic–industrial integrated dimension

To make the CSD&M conference this convergence point of the academic and
industrial communities in complex industrial systems, we based our organization on
a principle of complete parity between academics and industrialists. This principle
was first implemented as follows:

• the Program Committee is 50% academics and 50% industrialists,

• Invited Speakers are coming in a balanced way from numerous professional
environments.

The set of activities of the conference followed the same principle. They indeed
consist of a mixture of research seminars and experience sharing, academic articles
and industrial presentations, software and training offers presentations, etc. The
conference topics cover in the same way the most recent trends in the emerging
field of complex systems sciences and practices from an industrial and academic
perspective, including the main industrial domains (transport, defense & security,
electronics & robotics, energy & environment, health & welfare services, media &
communications, e-services), scientific and technical topics (systems fundamentals,
systems architecture & engineering, systems metrics & quality, systemic tools) and
system types (transportation systems, embedded systems, software & information
systems, systems of systems, artificial ecosystems).

August 25, 2014
Gif-sur-Yvette
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Abstract. Private and public clouds are getting more and more common. With 
them comes the need to analyze data stored by different applications in different 
clouds. Different clouds and applications tend to enforce the use of different da-
ta stores, which makes it even harder to aggregate information. The main out-
come is that integrating different data sources requires deep knowledge on how 
data is stored on each solution and on the trade-offs involved in moving from 
one system to another. This paper is part of the ongoing work on the JUNIPER 
FP7 EU project (http://www.juniper-project.org/). In that project we explore the 
power of modelling tools to simplify the design of industrial big data applica-
tions. In the present work we present an overview of our approach and its appli-
cation on a simple case study.   

1   Introduction 

The advent of cloud computing and the multiplication of computing and storage 
power available to companies gave rise to the so-called big data cloud applications. 
The multiplication of cloud offers also lead to a fragmentation in the capabilities of 
different providers [1]. Similarly, the multiplication of data management tools lead to 
the fragmentation of the data representation paradigms.  

Concerning the fragmentation of cloud providers. On the one hand, some compa-
nies are surely in a position to take advantage of that. On the long run, applications 
end up with a set of specialized applications, each of them based on a different stack 
of tools. The challenge to these companies is then in aggregating the data stored on 
different stores, on different providers and behind different systems to support their 
business decisions. This challenge stems from the fact that highly specialized devel-
opers are needed to deal with the different stacks and programming languages. Con-
necting them therefore becomes more expensive and complex the more languages and 
systems a company needs to integrate. 

In this paper we investigate the strengths of model driven engineering (MDE) in 
such scenario. Model driven engineering in fact consists in using high level models to 
abstract the complexity in an application. MDE techniques excel particularly in deal-
ing with multiple programming languages and frameworks [2] [3]. This is so because 
model transformations can encapsulate the complexity involved in the translation of 
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high level concepts into concepts in other languages, and therefore reduce the necessi-
ty of highly specialized developers and then the cost of integrating disperse data 
stores. Models are also useful when dealing with availability time and consistency 
constraints by means of model analysis. This is so because high level models on a 
single language are much easier to inspect and analyse (either automatically or manu-
ally) than multi-language code. 

The main challenge in applying MDE to big data applications relies in finding the 
right abstract modelling language that is rich enough to abstract from the specific 
features of the connected platforms, but still low level enough to foster code genera-
tion. In the context of big data application this is even harder because, to the best of 
our knowledge, no language exists that includes both the concepts necessary to define 
the architecture of a cloud application along with its data streaming and analysis in a 
high level. This is therefore the main contribution of this paper.  

In this paper we present the approach developed as part of the  JUNIPER FP7 EU 
project. It consists in identifying a subset of the Unified Modelling Language (UML) 
and extending it with data analysis and processing concepts so that it is suitable to 
both defining the architecture of a big data cloud application and to generate code for 
it. Since the project is in the beginning of its second year, in this paper we present the 
initial insights and experiments behind the use of a MDE approach to support the 
design of multi-cloud big data applications.  In order to avoid exposing sensitive de-
tails of the project use cases, in this paper we apply our approach to a similar applica-
tion based on the same principles.  
This paper is structured as follows: Section 2 presents an overview of multi-cloud big 
data applications and the requirements of a MDE approach for it, Section 3 presents 
the approach we put forward in this paper. Section 4 presents a case study involving a 
multi clouds big data application. Section 5 presents the related work and Section 6 
finally concludes.This is your introduction. 

2   Multi-cloud Big data applications & Model Driven Engineering 

 
Fig. 1.  Typical example of multi-cloud big data application. 

Fig 1. illustrates a typical multi cloud big data application. It consists in leveraging 
the stronger points of different cloud offers to build a complex application. In this 
example, we consider a company that wants to leverage the cloud computing Platform 
As A Service (PaaS). The cloud application this company wants to build consists of a 
classic front end along with a database application and a specific back end for data 
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crunching. This backend is used to process the data in the application to deliver new 
insights. 

The requirements in terms of short and long term data storage caps, response time 
and programming framework for each part of the application are different. That is 
therefore an opportunity for this company in using different PaaSes, in order to op-
timize the costs of providing the application. 

The main challenge in seizing this opportunity is however in dealing with the het-
erogeneity of the cloud providers. In this specific example, the company would need 
to deal with the different programming languages and frameworks supported by each 
PaaS (e.g. Java JEE in the front end and Java Hadoop for the data crunching 
backend). While the application may be cheap to produce and deploy in the short 
term, the multiplicity of backend technologies may be a threat to its future mainte-
nance [4].  

In this paper we leverage a model driven engineering based approach to seize this 
opportunity. A MDE-based approach allows companies to increase the level of ab-
straction of architecture of the application by means of a model. This model can then 
be used to simplify the development by reducing the required familiarity of develop-
ers with the PaaSes frameworks and maintenance tasks by simplifying tasks such as 
moving data and code to other PaaSes. 

There are however two challenges into coming up with a MDE approach for multi 
cloud big data applications: 

1. What language should we use to model applications?  
The challenge here consists in using a language that includes the abstrac-
tion related to cloud applications, big data and the deployment of such 
application in multi-clouds.  

2. How to make sure this language is low level enough to foster code 
generation? 
The challenge here lies in supporting as much as platforms as possible so 
that one can make sure that the models correspond to the effectively de-
ployed applications. 

3   A UML BASED MDE approach for big data cloud applications 

3.1   General Approach 

As explained in Section 2, the two challenges underlying the use of MDE ap-
proaches for handling the problem of designing multi-cloud applications are: (i) 
choosing a modelling language that is high-level enough to abstract from the concepts 
in different programming languages, and (ii) low level enough to allow for code gen-
eration. We chose the Unified Modelling Language [5] as modelling language since 
its object-oriented roots have been shown to be useful to model a wide range of prob-
lems while still serving as basis for code generation. 

It’s main drawback is however in the complexity of its specification, and therefore 
the steep learning curve that it represents to developers. Our approach to countering 
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this drawback consists in selecting a subset of UML suitable to address both chal-
lenges. The subset selected in this paper starts with the subset of the language usually 
reused by code generation tools [6] [7] [8] [9] [10].  

However, reusing UML is not enough: one still needs to represent multi-cloud and 
big data specific concepts. In order to do that, we use the standard extension mecha-
nism of UML called UML profiles. A UML profile allows one to add new concepts to 
the language by extending existing ones. On top of the extended language, we imple-
mented code generators, so that the maps such abstract concepts into working code.  

On the next section, we present the subset of UML we reuse, and the new concepts 
we add to it.  

 
Fig. 2.  Simplified overview of the reused UML subset. 

3.2   UML for modelling multi-cloud applications & data 

Fig 2. shows the subset of UML we reuse to model big data applications. In order 
to represent the architecture of the application, we reuse the concepts in UML class 
diagrams, i.e. applications are represented as Classes along with their Proper-
ties and Associations. Classes are also used to represent data types in a 
cloud provider independent way. Still when it comes to representing big data, one 
needs to represent the data flows that need to be implemented by the application.  

We reuse the UML activity diagram concepts in order to represent the data flow, 
i.e. Activities which are broken down into atomic Actions. Actions have 
input and output Pins, which describe its input and output parameters. 

The deployment of the application is represented by a set of UML object diagram 
concepts, featuring Instances, their relationships (Links) and their base types.   
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Fig. 3.  Big Data flow language. Input and output parameters should be rendered as UML input 
and output Pins. 

3.3   UML profile for representing complex big data flows 

An object diagram is made cloud specific by conforming to a fixed structure. At 
the top level, instances represent multiple cloud providers. These instances contain 
other instances that represent either resources provided by the cloud provider in order 
to deploy parts of the application (most commonly on IaaSes) or parts of the applica-
tion itself (most commonly on PaaSes). This way, object diagrams can represent the 
required resources from different clouds, and their interconnection. 

It is important to notice that UML concepts are not sufficient to represent to the 
full extent the details of the architecture, deployment and behaviour of a cloud appli-
cation. For the sake of brevity, in this paper we only present the concepts necessary to 
extend activity diagrams for representing complex big data flows. Extensions of UML 
for representing complex cloud application architecture and deployment are part of 
our ongoing work on the FP7 EU projects REMICS1 and MODAClouds2.  

The UML activity diagram concepts are however not sufficient to represent all big 
data flow concepts. That is why we extended them. Some of the added concepts are 
represented in Fig. 3. These stereotypes were based on the concepts behind the 
PigLatin language [11], which abstracts the data processing works on top of the Ha-

                                                             
1  http://www.remics.eu/ 
2  http://www.modaclouds.eu/ 

Stereotype Input(s) Output 

filter,  split, limit Filtering expression. Split data streams, or  filtered data stream, or limited subset of the data 
stream. 

generate A set of streams and generation 
expression. 

A data stream obtained by application of the generation expression to 
the input streams..  

group A data stream and a grouping criteria. A data stream formed by groups obtained by application of the 
grouping criteria. 

union A set of data streams. A single data stream containing both inputs. 

cross A set of data streams. The cross product of the input streams. 

inner-join,  outer-
join 

A set of data streams and joining 
expressions. 

A joined data stream. 

sample The size and type of sample to generate. A randomly generated data stream. 

order, distinct A data stream. An ordered data stream or a data stream containing only distinct 
elements. 

load, store A data stream. Loads or saves the data stream to a persistency medium. 
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doop framework. They extend the UML basic concept of Action providing a big 
data flow processing specific semantic to them. 

 

 
Fig. 4.  Code generation approach. 

As we discussed in Section 2, when it comes to supporting multi-cloud big da-
ta applications, being able to support code generation is as important as supporting 
modelling of such systems. Fig. 4 overviews our code generation approach aiming to 
achieve this objective. 

The code generation approach consists in providing cloud generators upfront, 
along with the definition of the language. In our present case, we experimented with 
code generation for Java EE cloud applications and Hadoop PigLatin map reduce data 
flows. As illustrated in Fig. 4, we use the same UML model, along with the provided 
transformations to generate both target languages.  

4   Case Study 

In this section we put the models and transformations we defined in the previous 
section into action. Notice however that this is a proof of concept that illustrates the 
work that is being performed on the FP7 EU project JUNIPER case studies. To avoid 
publishing sensitive information, we base the present case study in a cloud application 
that can be found in the literature. It consists in the  MiC application (Meeting in the 
Cloud) [12]. The modelling and code generation tools presented here were imple-
mented using the Modelio modelling tool3. 

The MiC application is a social network which allows users to maintain user pro-
files in which they register they topics of interests. The MiC application then groups 

                                                             
3 Modelio, the open source modelling environment. Website: http://www.modelio.org 
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users by similarity, allowing users to interact with their “best contacts”, based on 
ratings provided by each user in their profiles.  

The use case we will analyse here is the one of a company that intends to provide 
different levels of service for different categories of users. Some users have paying 
accounts while other have free accounts. The company providing the MiC service 
wants then to support updates to the similarity computing service to paying users as 
fast as possible. In order to do that, it will use a IaaS cloud provider to compute  the 
similarity so that the resources of the provider may adapt to the number of user re-
quests and therefore absorb any increase in demand. For free account users, the com-
pany will resort to a low cost PaaS. This will lead to  minimum cost and management 
costs.  

The challenge is that the selected clouds support different platforms: on the IaaS 
the company may use any technology, while on the low cost PaaS, it needs to use the 
Hadoop crunching platform as a limitation of the PaaS. 
This section intends to show how a MDE approach can help the company in design-
ing the application so that it can be deployed on both clouds. This section  is divided 
into two sections, in the first one, we show the UML models that describe the MiC 
applications and the second the code generation techniques we developed from these 
models. 

4.1   UML Models 

Fig. 7 and Fig. 6 display part of the UML models that describe the MiC applica-
tion. Fig. 7 is divided into three parts:  

• The data model is centred on the UserProfile class that represents a 
profile on the system, and stores the UserRatings provided by the 
user and the UserSimilarity which group profiles by similar rat-
ings. 

• The architecture model shows that there are basically two components 
in the application: the CRUD which is responsible for displaying the 
CRUD user interface and the SimilarityCimputer to update simi-
larity of the users. 

• Finally, the deployment model states that part of the application is de-
ployed on iaas1 and part of it on paas1. The PaaS is used to compute 
the similarity of part of the user base. 

Fig. 6 models part of the behaviour of the SimilarityComputer component. It 
consists in loading user profiles and ratings from the data base, joining them, compu-
ting the means of the ratings and then grouping profiles by similarity. 

4.2  Code Generation 

Fig. 8 displays the generated code for the model described in the previous subsec-
tion. On the right side we see the code generated for the Hadoop cloud and on the left 
side we see the code generated for the Java EE Cloud. Thanks to the MDE approach, 
developers can be sure to find the same behaviour on both clouds. Data types and 
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structures are translated accordingly and the code generation makes sure that the data 
flow of both implementations is similar.  

In case a new cloud platform is added on the future, developers will need to spend 
less time re-implementing the same data flow and data structures on the new cloud. 

 

 

Proceedings of the Poster Workshop at CSD&M 2014 8

Taming the Complexity of Big Data Multi-Cloud Applications with Models



 
 
Fig. 8.  Generated Code. 

5   Related Work 

In this section we are going to study similar works in the literature that are used to 
model applications, either related to the high level architecture of the application, its 
deployment or data. We are also going to analyse their support concerning the genera-
tion of running code from the models, and therefore of being suitable to a MDE ap-
proach for big data multi-cloud applications. 

5.1  Architecture modelling languages 

Languages such as SoaML [13]and SoaMF [14] are used to define the high level 
architecture of cloud applications. SoaML defines a MOF metamodel and a UML 
profile while SOMF defines a completely new language for defining service related 
concepts. It reuses and extends the UML concepts of components and ports to define 
respectively the services and their interfaces. SOMF  also  includes  a  sublanguage  
called Cloud  Computing  Modelling Notation  (CCMN),  whose  concepts include  
IaaS, PaaS  and  SaaS  clouds,  and  clouds  of  clouds;  and  service orchestration 
based.  

The main weak point of these languages is that they are not intended to support 
code generation neither the data types manipulated by the application, they are limited 
therefore on high level concepts. 
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5.2  Cloud deployment languages 

Some languages focus on providing “DevOps” tools such as Chef [15], Puppet [16] 
and CloudML [17]. They intend to automate the deployment of applications and ser-
vices, as well as the management of cloud capabilities. With  visibility  and  control  
on  both  IaaS  and  PaaS  levels,  developers  can  exploit  the  peculiarities  of  cloud 
solutions at each level of the cloud stack. The main weak point of such languages is 
that they target DevOps, not developers, and therefore do not include the architecture 
and data types of the application, and their impact to its execution. 

Another group of languages uses the existing UML deployment diagrams to model 
the physical distribution of data. As an example we have the work of S. Lujan-Mora 
and J. Trujillo [18]. They define a UML profile that they can use to specify the de-
ployment of Data Warehouses, which can be considered a former kind of private 
clouds, and could be extended to potentially represent multi-cloud big data deploy-
ment. Similarly, data integration tools such as Pentaho [19] and Yahoo! Pipes [20] 
offer visual editors that allow one to describe the partitioning of data in different data 
stores. 

In both categories of work, the data structures are considered but not the architec-
ture of the application, neither the code generation is envisioned. 

5.3  Data Modelling 

Many tools and approaches exist to help data modellers and application developers 
to describe data models. Object oriented models can be produced with the help of 
languages like UML [5] or Entity Relationship models [21], and relational models can 
be produced with the help of the numerous UML Profiles for relational modelling 
[22] [23] [24] [25] [26]. Purely object oriented databases are however rarely used in 
practice when it comes to storing data. Translations between both paradigms were 
created with the purpose of facilitating the use of relational data stores by object ori-
ented applications [22] [27] [28]. This comes with the drawback of the inherent loss 
of information in the translation process. As in the other cases, these languages do not 
support modelling the application platform neither its deployment on the cloud. 

6   Conclusion 

On the one hand the multiplication of cloud providers represents an opportunity to 
companies willing to reduce the costs of maintenance of cloud applications by choos-
ing the set of providers that best adapts to the uses of the application. On the other 
hand, multiple cloud providers come with extra technical requirements on program-
ming languages, data structures and framework support. Integrating data and applica-
tions from different clouds then becomes more and more expensive and complex as 
the number of cloud providers increases. 

In this paper we presented the first steps in dealing with this problem by means of a 
MDE approach. The core of the approach consists in defining a language, based on a 
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UML subset, extended with big data analysis specific concepts that can be used to 
generate multi-cloud enabled code to aggregate data in different sources. This ap-
proach is going to be fully implemented in the foregoing year of the JUNIPER FP7 
EU project and will be applied on two industrial case studies. 
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Abstract. The current system designs and management technologies are being 

stressed to their limits in terms of collaborative development, efficient man-

agement and persistence of large and complex models. As such, a new line of 

research is imperative in order to achieve scalability across the system design 

space. Scalability in system design has different dimensions: domains, team lo-

calizations, number of engineers, size and management of the engineering arte-

facts, interoperability and complexity of languages used. This paper depicts 

how the MONDO FP7 EU project (http://www.mondo-project.org/) aims to 

comprehensively tackle the challenge of scalability in system design and man-

agement by developing the theoretical foundations and an open-source imple-

mentation of a platform for scalable modelling and model management. An in-

dustrial case study is also presented. The system designed in this case study is 

distributed among several and dependent units, domains, and languages. 

1   Introduction 

As Model Driven Engineering (MDE) is increasingly applied to larger and more com-

plex systems, the current generation of modelling and model management technolo-

gies have being pushed to their limits in terms of capacity and efficiency. Therefore 

additional research is imperative in order to enable MDE to keep up with industrial 

practice and continue delivering its widely recognized productivity, quality, and main-

tainability benefits. 

In the following section, we will present how the MONDO project plans to handle 

the increasingly important challenge of scalability in MDE. In section 3, we present 

how some issue tackled by the MONDO [2] approach have already been implemented 

and used on an industrial project within the Modelio Modeling tool environment [1]. 
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2   MONDO Approach 

Achieving scalability in modelling and MDE involves being able to construct large 

models and domain-specific languages in a systematic manner, enabling teams of 

modelers to collaboratively construct and refine large models, advancing the state-of-

the-art in model querying and transformation tools so that they can cope with large 

models (of the scale of millions of model elements), and providing an infrastructure 

for efficient storage, indexing and retrieval of large models. To address these chal-

lenges, MONDO will develop or optimize algorithms at different levels of the system 

modelling. Obviously techniques and tools will be implemented at model and model 

engineering levels. MONDO approach also takes into account at higher levels, depict-

ed in Fig. 1, i.e. the meta-model engineering and meta-model levels.   

 

Fig. 1. The levels considered by the MONDO approach 

In section 2.1, we describe the MONDO research field at the meta-model and meta-

model engineering levels. Section 2.2 presents the MONDO targeted work at the 

model and model engineering levels. Finally sections 2.3 and 2.4 highlight that the 

techniques explored apply at multiple levels in the MONDO approach. 
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2.1   Scalability at the meta-model and meta-model engineering levels 

The first objective of MONDO is to develop scalable techniques and processes for the 

engineering meta-model modelling or domain-specific languages (DSLs)[9]. Provid-

ing techniques for the efficient support and optimization of languages for which large 

models (instance of these meta-model or DSL) are expected. Also, the complexity or 

size concerns are in the definition of the languages themselves and hence we will 

propose methods; enable the engineering of such languages.  

MONDO will complement these techniques with processes facilitating their use in 

complex projects dealing with large artefacts. In order to achieve these objectives, 

MONDO will provide techniques for developing languages enabling scalable model-

ling, techniques for developing languages enabling scalable modelling, scalable con-

crete syntaxes, scalable MDE processes. The following paragraphs and more in detail 

in [9] describe the technologies supported by the project. 

Techniques for developing languages enabling scalable modelling. 

MONDO will investigate techniques to construct an efficient infrastructure for 

DSLs that are expected to have large instance models. In this way, it will propose 

techniques to describe optimizations in the storage/retrieval of large instance models. 

These optimizations will be specified at the meta-model level, when the DSL is being 

built, and could be suggested by a recommender system. We will provide support for 

defining and reusing abstractions for DSMLs that will produce simpler views of large 

models. Another line of work will be the automated modularity support for DSLs, as 

well as the possibility to build large models by compositing reusable model fragments 

and template models from a library spanning across heterogenous technical spaces 

(DSLs, UML, Matlab/Simulink, etc). 

Techniques for developing languages enabling scalable modelling.  

Often, the definition of a DSL is itself complex, which renders its construction in 

an ad-hoc manner challenging. Therefore, we will provide methods and techniques to 

construct meta-models for large, complex DSLs. In particular, we aim to develop 

techniques for incremental, example-based construction of meta-models, supported by 

automated guidelines or meta-model patterns. We will also develop methods for meta-

model construction by reusing existing fragments and meta-model templates from a 

library spanning across heterogenous technical spaces (DSLs, UML, XML schemas, 

etc). 

Scalable concrete syntaxes.  

MONDO will develop techniques for designing scalable visual concrete syntaxes. 

These techniques should enable the visualization and navigation of large models, 

including their visualization at different levels of detail or abstraction, in connection 
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with the defined abstractions at the abstract syntax level. Techniques will also be de-

veloped to automate the visualization and exploration of large scale models, for which 

no concrete graphical syntax has been defined. The techniques developed in this task 

will be delivered as ready-to-use library elements, enabling the rapid development of 

visual editors with built-in support for abstractions and facilities for model explora-

tion. 

Scalable MDE processes.  

MONDO will investigate processes (and tool support for them) for the use of MDE 

in complex projects, dealing with large artefacts. Hence, we will bring ideas from 

agile development into MDE. For example, similar to continuous integration, we will 

verify the consistency of models on the server in the same way we run automated 

builds and unit tests. We will also apply “by-example” techniques to the incremental 

construction of large, complex DSLs, and adopt techniques and processes from reuti-

lization-based development in order to characterize reusable assets and facilitate their 

reutilization. 

2.2 Scalability of the model operations 

Any non-trivial MDE project involves querying and manipulation of a substantial 

number of models. These model manipulation operations are usually implemented as 

model-to-model transformations that take as input one or more source models and 

generate as output one or more target models, where target and source models can 

conform to the same or to different meta-models. Model queries are primary means to 

extract views and to formally capture and validate well-formedness constraints, design 

rules and guidelines on the fly. Therefore, scalability of model queries and transfor-

mations is a key element in any scalable MDE solution. Our experience with industrial 

case studies is that current transformation technologies do not scale, which discour-

ages some potential adopters from using MDE. 

So the second objective of MONDO is to create a new generation of model query-

ing and transformation technologies that can solve this problem. We propose to build 

a reactive transformation engine by combining incremental change propagation with 

lazy computation. We plan to provide the engine with strong parallelization proper-

ties, to be able to fully exploit distributed/cloud execution environments. 

Re-evaluating a validation query or regenerating a full target model after a few local 

changes in the underlying (source) model can be particularly inefficient. An incremen-

tal query evaluation technique will propagate model changes directly to the affected 

queries to incrementally update their result set. An incremental transformation algo-

rithm will minimize the number of transformation rules to be re-executed according to 

the changes on the source model, while ensuring the synchronicity between source and 

target models. 
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Lazy / on-the-fly / on-demand creation of target models. 

Generating a full target model from a source model can be time consuming, espe-

cially since often only parts (in proportion to the full model size) of the target model 

will be accessed. A lazy evaluation algorithm would try to execute the transformation 

on-demand, only producing the subsets of the target model when they actually need to 

be accessed. 

Queries and Transformations in the cloud: parallel/distributed execution Model 

queries and transformations can benefit from leveraging distributed cloud architecture 

for their execution. If adapted, queries and transformations can rely on the scalability 

of cloud architectures to deal with large models. Two kinds of adaptations can be 

performed: 1) partitioning of the model and parallel execution of the full transfor-

mation on each model slice and 2) partitioning of the transformation and execution of 

transformation subsets on different cloud nodes. In both cases the result must be 

merged at the end. 

Infinite/streaming transformations.  

In some MDE application scenarios we need to deal with infinite models (there can 

be a continuous influx of data into the model). Therefore, a transformation cannot wait 

until the model is complete to start transforming it; instead it needs to be able to out-

put target model elements as source elements are becoming available. Traces between 

target and source elements have to be kept in memory until the system reaches a cer-

tain degree of confidence that they will not be needed for future computations. 

Integration with scalable persistence mechanisms.  

Here MONDO will develop interfaces that enable model management languages to 

query and modify models persisted using the technologies proposed  in an efficient 

manner. 

2.3  Collaborative modelling 

The objective at this level is to provide new collaborative modeling tools for geo-

graphically distributed teams of engineers working on large-scale models using heter-

ogeneous devices (desktop computers, laptops, tablets, mobile phones, etc). These 

collaborative modeling tools will allow multiple teams from different stakeholders 

(such as system integrators, subcontractors, certification bodies) to simultaneously 

access the server-side model as clients in a scalable and secure way respecting access 

control policies. 

For this purpose, MONDO will first investigate and adapt offline (asynchronous, 

long transaction) and online (synchronous, short transaction) collaboration patterns for 

models. Offline collaboration (like SVN or CVS) is widely used in collaborative soft-

ware engineering where developers commit a larger portion of changes as a long 
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transaction (e.g. at the end of the day). Online collaboration is popular in collaborative 

document authoring (analogously to GoogleDocs or LucidCharts) where a group of 

collaborators cooperatively and simultaneously edit the same document, and each 

individual change is immediately committed to a master copy. 

For offline collaborative modeling, novel intelligent, user-guided techniques will be 

developed based upon design space exploration techniques to resolve conflicts upon 

concurrent commits. Furthermore, the work package will investigate how to determine 

the proper size and boundaries of model fragments to balance collaboration and per-

formance of underlying queries and transformations. Intelligent, view-driven dynamic 

locking mechanisms will be proposed based upon incremental model queries to avoid 

unintentional concurrent changes of model elements, which is a key issue for both 

online and offline collaborative modeling. Secure model access control policies will 

be defined uniformly for online and offline collaboration, and will be enforced to 

facilitate collaboration between teams of different stakeholders. 

A multi-device collaborative modeling framework will be developed to demon-

strate the feasibility and scalability of different collaboration patterns over heteroge-

neous devices as collaboration means. An interface will be defined to encapsulate this 

collaborative modeling layer and will be offered as services to high-level domain-

specific modeling, query and transformation tools. More details on the planned work 

on collaborative modeling can be found at [3] [4] [5] [6]. 

Primitives and Patterns for Collaborative Modeling. 

Various collaboration primitives and patterns for offline (e.g. SVN-based) and 

online strategies (e.g. collaborative modeling authoring sessions) will be investigated. 

This task also aims to provide consistency management techniques for collaborative 

modeling adapted from version control systems including locking, transaction han-

dling with commit, conflict management and resolution. Furthermore, this task also 

incorporates the development of a new version of a model by a team of developers 

during collaborative modeling sessions where the consistency of persistent storage can 

be temporarily violated to improve collaboration. 

Secure Access Control for Collaborative Modeling. 

Confidentiality support for collaborative modeling by providing secure access con-

trol will be also provided. Access control policies will be defined at a high level uni-

formly for online and offline cases, which will be mapped to the security means pro-

vided by the underlying model storage frameworks. 

Interface for Collaborative Modeling.  

At this point MONDO will define an interface for collaborative modeling services 

(including update, commit, lock, etc.), which will by used by advanced modeling and 
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transformation tools. This interface will be aligned with underlying scalable model 

storage mechanisms, and will offer means for both online and offline collaboration. 

Multi-Device Collaborative Modeling Tool.  

A multi-device collaborative modeling tool will be developed which allows various 

development teams to simultaneously and collaboratively access, query and manipu-

late the underlying models using heterogeneous devices as a collaboration means. 

Integration with existing domain-specific modeling tools and the persistence layer will 

be provided 

2.4 Efficient model persistence 

The aim of this level is to develop an efficient model persistence format in order to 

address the limitations of the current standards (e.g. XMI), and to deliver a scalable 

model indexing framework. This will enable the querying and transformation lan-

guages and the collaborative modelling tools developed in to efficiently manage large 

and heterogeneous models. 

3   Industrial Case study 

Not all points developed in the MONDO approach (cf. Section 2   MONDO Ap-

proach) have been implemented or even specified yet within the project being the 

project in its early stage. We detail in the following section the lazy loading of models 

solution that already exist within our Industrial Case Study and it is currently imple-

mented within the Modelio Modeling environment [1] and that will serve as a case 

study to evaluate the MONDO project results.  

The case study consists of a distributed modelling of a system between a heterogene-

ous set of users. For this we used on one hand the distributed framework - described in 

section 3.1  Modelio Distributed framework - and on the other one the view/viewpoint 

and lazy loading mechanism both of them provided by Modelio tool [1]. All the tech-

nologies provided by MONDO will be evaluated within the same industrial case 

study. 

3.1  Modelio Distributed framework 

The concept of the “modeling project” has been completely overhauled under 

Modelio[1]. A Modelio project now groups a certain number of local or remote mod-

els. Local models, or working models, can be edited by the user, while remote models, 

which are accessed by HTTP, are used to integrate model libraries published by other 

contributors into the project. For example Fig. 2 shows our case study configured 

with: 
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─ Three local models named “DiscountVoyage”, “Data architecture”, and “Technical 

architecture” 

─ Three remote modes names “Application architecture”, “Businnes architecture”, 

and “Businnes entities”. 

─ Two locals libraries i.e. “PredefinedTypes 3.1.00” and “JDK 1.7.00” 

─ One remote library i.e. “Requirements”. 

In practical terms, this means that once the project configuration has been estab-

lished, the different models are viewed as a single model in the model browser as 

depicted in Fig. 3. They can be used transparently for modeling work.  

 

Fig. 2. Distributed framework configuration 
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Fig. 3. Distributed framework rendering 

The models combination used of each project depends of your set of concerns and 

of course theirs availabilities regarding the defined access right. This flexibility in 

term of model management allows the creation of different community or groups 

sharing set of models. 

When you deal with accessibility configuration, you also have to deal with the ob-

ject “absence”. “Absent” objects are elements which are momentarily inaccessible but 

still known by their identifier and their type. In Modelio, absent objects are represent-

ed in simplified form (name, type icon) and therefore do not prevent the model from 

being used. Links modeled towards an “absent” object are retained. When an “absent” 

object is re-established and becomes accessible once again, these links are automati-

cally re-established in their complete definition. 

This mechanism enables, for example, a Modelio project open in the modeler to « 

survive » a network disconnection which deprives it of remote libraries and the ele-

ments they contain. 

3.2  View, Viewpoint and lazy loading. 

 The SysML modelling standard defines a general-purpose modeling language for 

systems engineering applications, called the OMG Systems Modeling Language 

(OMG SysML™) [8]. Throughout the rest of the paper, the language will be referred 

to as SysML. SysML supports the specification, analysis, design, verification, and 

validation of a broad range of complex systems. These systems may include hardware, 

software, information, processes, personnel, and facilities.  

The Open Group Architecture Framework, or TOGAF [7] modelling standard, is the 

de facto global standard for Enterprise Architecture.  TOGAF provides the methods 

and tools for assisting in the acceptance, production, use, and maintenance of enter-

prise architecture. It is based on an iterative process model supported by best practices 

and a re-usable set of existing architecture assets. 

 

Both these standards and others ones, define the view and viewpoint concepts. In 

short, a view is a portion of your system i.e. a representation of your whole system 

from the perspective of a related viewpoint. A viewpoint is a particular set of con-

cerns. The implementation of these two concepts under Modelio allows, according to 

a specific set of concerns, a reduction of manipulated element. For example Fig. 5 

depicts the Modelio full viewpoint where many elements are shown and necessarily 

loaded in memory. Contrary to the Modelio trace viewpoint, cf. 
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Fig. 4, focusses to the links from a given element but not to other relative concept. 

The association of this view/viewpoint mechanism and a lazy loading is able to mini-

mize as much as possible the number of element loaded in memory and consequently 

the size of allocated memory. 

 

 

Fig. 4. Modelio full viewpoint 
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Fig. 5.  Modelio trace viewpoint 

4  Conclusion 

As we have already stated the MONDO project is currently at its early stage so most 

optimization attempts must be specified, implemented and of course evaluated on 

relevant and industrial system design cases. But we are optimistic about expected 

results mainly because some techniques already present in current tools and presented 

in this paper have shown good results and will improve as the project advances fur-

ther. 
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Abstract. Complex systems traditionally involve partners from differ-
ent companies with their own domains of expertise. During design stages,
these partners need to exchange pieces of information and to debate
around architectural and implementation choices.
Model Driven Engineering for System Engineering simplifies system knowl-
edge sharing, while simulation provides sound results to drive debate. As
a consequence, gaining a flexible and dynamic tool that models and sim-
ulates the architecture is highly valuable.
In this paper we focus on the functional architecture design and analysis
steps of the system engineering process. We identify adaptation to ex-
isting system engineering process, tool modularity and interaction with
models as three grounding principles for a flexible system model sim-
ulation tool. We show that meta-modeling and layered architecture for
a simulator are enabling technologies for our three principles. We also
demonstrate the use of these technologies by implementing a simulation
tool in the context of a sea-floor observatory project.

1 Introduction

System engineering is an interdisciplinary activity during which experts from
several domains having an holistic approach look for the near optimal system
design to answer to a client’s needs [6]. Interdisciplinary approach requires the
ability to work with partners with different vocabulary and work techniques.
Looking for a near optimal solution implies identifying and comparing multiple
design solutions for the system. One of the risks in an interdisciplinary context
is that each expert focuses on its domain of expertise and looks for a locally
optimal solution (for its domain) that is not necessarily the globally optimal
solution (for the system seen as a whole) [10]. Adopting an holistic approach
reduces this risk. Holistic approach, interdisciplinarity and near optimal solu-
tion are linked problematics. The holistic view of the system must be shared
amongst experts. Model-Based System Engineering (MBSE) is an approach in
which system engineering artifacts such as the functional architecture are mod-
els [4]. Models are abstractions of the system and can be used to share knowledge
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between experts [11]. Collaborative design gives all experts the opportunity to
express their ideas. It is then possible to take into account the opposite point
of views and to find more alternatives of system design. Simulation helps this
collaboration by giving a concrete realization to the discussions [3].
The simulation tool used in the collaborative context should be fitted to work
across domains of expertise. Each expert should find the main terms defined
in its domain. For example, in a sea-floor observatory project, mechanic and
software experts are involved. In such a project sensors are deployed underwa-
ter and tightness is a major requirement. This requirement has a translation in
the mechanic domain and also in the software domain. Mechanically tightness
means that the system has seals and is assembled in a manner that ensures that
water will not enter into the system. In the software domain, tightness means
that there is a way to measure the pressure into the system. In case of an ab-
normal evolution of pressure indicating a failure in tightness, a message is sent
back to supervisors. Mechanical and software models should be put together to
enable the simulation of the tightness function. The simulation outputs should
be adapted to provide output meaningful for mechanics engineers and also for
software engineers.
In this paper, we describe three principles that ground a flexible simulation tool:

– Adaptation to system engineering processes (current, and emergent/future);

– Extensibility of the tooling;

– Interaction with models.

Companies have already defined their system engineering process and use tools
to support the process. Our approach is based on the respect of what has already
been done in the companies. Multiple domains such as mechanics or software are
involved in the design of a system. It is not possible to create a tool taking na-
tively into account all of these domains. Domain experts should be able to add
new functionality to the tool and remove those which are not required. Mod-
els are prototypes. Domain experts are using them to debate over the design
alternatives for the system. They should be able to modify the models accord-
ing to the result of their discussion. To realize our three principles, we describe
a meta-model defining the concepts of a functional architecture. A functional
architecture is the definition of the functions implemented in the system, their
interactions and their structural layout. The meta-model describes the struc-
ture, the communication and the behavior aspects of functions that should be
implemented by the system. In a Model-Based System Engineering approach
the meta-model ensures independence from existing modeling tools. To obtain a
flexible simulation tool, we define a layered and component-based architecture.
Layers group tool functionalities according to their degree of specificity to a do-
main of expertise. Components isolate functionalities and provide a convenient
way to reuse them.
The rest of the paper is organized as follows. Section 2 describes some related
work. Section 3 first provides a motivating example for this work coming from a
sea-floor observatory project we were involved in. Section 4 provides a descrip-

Proceedings of the Poster Workshop at CSD&M 2014 26

Flexible Model-Based Simulation as a System’s Design Driver



tion of the grounding principles. Section 5 describes the technologies usable to
implement a flexible simulation tool.

2 Related Work

Different formalisms can be used to model a system functional architecture such
as Enhanced Functional Flow Block Diagram (EFFBD) and SysML models.
EFFBDs are an extension of Functional Flow Blocks Diagrams. Functional Flow
Blocks Diagrams define functions and their sequence of execution. EFFBD adds
data flow to the functional architecture modeling [12] and execution through
Timed Petri Nets has been described in [16]. However, once the simulation is
started it is not possible to have interaction with the running model.
SysML [17] enables to model a system architecture throughout the system design
cycle. Functional architecture is modeled using Block Definition Diagrams for
the structure and Activity Diagrams for the behavior. The link between struc-
ture and behavior is obtained through an allocation relationship. SysML models
can be used as entry model for simulation tools [13] through model transforma-
tion. However, in SysML every structural definition (whether implementation
or functional) relies on the concept of block. Using the same concepts at the
functional and implementation level implies that designers should be careful not
introduce implementation details into the functional architecture. The functional
architecture should only describe what the system will do with no implementa-
tion choices so that multiple architectures are investigated to find the best one.
Two different approaches may be used to enable the simulation of models de-
fined in a modeling tool: extend the modeling or simulation tool to introduce
execution capabilities or use one tool to do the modeling, serialize the model in
an interchange format which will be imported in the simulation tool.
Extending a modeling tool can be made using a plugin as suggested by Rad-
jenovic and al. [15]. Their approach is structured in three steps with one design
model, one simulation model and finally the simulation execution. The simu-
lation tool is extended through a plugin enabling to extend the understanding
of multiple input model formalism. However, this approach requires knowledge
of the internal functioning of tooling and access through an API, which is not
always possible with proprietary tools.
On the opposite, Karsai and al in [9] advocate using an interchange format be-
tween modeling and simulation tool. This approach relies on meta-modeling and
model transformations. A model transformation is required to transform the
architecture model into the interchange format and another one is required to
transform the serialized architecture model into a simulation model. The inter-
operability of the tools relies on the interchange format. The interchange format
may be custom as the goal is to provide a model exchange backbone for multiple
tools in the same design process. We favored this approach as we do not want
to modify existing tools which are known by designers. In our case, we have to
adapt to the model serialization format of already used modeling tools.
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3 Motivating Example

The MeDON [7] project aims at designing a proof of concept for a sea floor ob-
servatory in coastal areas. A sea-floor observatory is made of a set of underwater
sensors and of computing servers. The scientific goal of the MeDON observa-
tory is to passively detect sound sources in the area of Brest in France without
defining their location. Hydrophones are deployed to acquire underwater sounds.
Algorithms were defined to detect contributions to underwater sound above the
mean sound level.
During the design phase of the MeDON project, experts from electronic, software
and electronic fields among others were involved. Experts worked in their spe-
cific field of expertise and had interactions together only during progress study
meetings each six month. There was no knowledge repository to store a common
view of the observatory design. Decisions impacting every fields of expertise were
made according to field specific goals without coordination with other experts.
Some of these decisions had huge impacts on work already done. For example, a
deployment site was chosen at the beginning of the project. However, this choice
had to be modified due to energy supply shortage. This choice was necessary
but it implied rework on the deployment of the data computing softwares and
on the choice of the servers. With a functional architecture independent from
any technology, it would have been possible to reuse a lot of engineering work.
Besides, a better communication between experts about the possibility of power
supply shortage would have led to the definition of at least two alternatives ar-
chitectures. So, when the change occurred, the switch of architecture would have
been anticipated.
The MeDON project is now being upgraded to include the localization of the
sound sources. Learning from our experience, we decide to use a SysML-based
system architecture model to define the system architecture and to have a shared
view on the system. An algorithm based on the difference of sound arrival time
between each hydrophone has been selected to locate sound sources. The sound
is acquired by at least three hydrophones in a two dimensional approximation of
space. One of the hydrophones is chosen as reference. Each hydrophone acquire
sound signals. The acquired sound is then analyzed to detect the presence of
a signal higher than the noise. If one is found it is considered as a detection.
For each detection on each hydrophone a difference is made between the time of
reception on the hydrophone and on the reference. It is then possible to have a
location of the sound source [18]. We model a functional decomposition of the
algorithm with SysML. The Figure 1 shows the Block Definition Diagram we
obtained. A Passive Acoustic Monitoring system PAMSystem is made of Acqui-
sition and Computing functions. The Acquistion must contain a RawAcquisition
function to acquire the raw signal. The Computing function must contain a Lo-
calization function which perform the localization. The Detection function ana-
lyzes the signal from RawAcquisition to check for a value higher than the mean
signal value. This function can be grouped either into the Acquisition function
or the Computing function. This is an architecture alternative that should be
investigated. We instantiated the architecture in which the Detection function
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Fig. 1. Block Definition Diagram of a Passive Acoustic Monitoring System

is grouped into the Acquisition function. The result is shown Figure 2. In this

Fig. 2. Internal Block Definition of a Passive Acoustic Monitoring System

work we adopted an approach mixing data scientists’ point of view for the block
definition and the point of view of software engineers for the data flow. However,
this is not enough. We must take into account the point of view of experts from
the other domains involved in a sea-floor observatory such as electrical experts.
Besides, the tooling is not dynamic and flexible enough to enable users to model
and simulate alternative of architecture.

4 Grounding Principles for a flexible simulation tool

In this section, we will introduce three principles underlying the development of
our simulation tool. First, we know that industrial companies have well defined
system engineering processes. So we think that our tool has to adapt to these
processes and not the other way round. Second, we think that the users’ needs
will continuously evolve so the simulation tool must follow these evolutions. As
a consequence, the simulation tool must be extensible. Third, we would like that
the model and the simulation become an active support for reflections. This
leads to interactions with models.
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4.1 Adaptation to Deployed System Engineering Process

The ISO 15288 standard [1] defines the activities performed during the system
engineering process. We draw our interest on the functional architecture design
step. The functional architecture describe the functions implemented in a system.
These functions come from the requirement analysis made with the users. The
functions defined through the requirements analysis will be organized in several
alternatives of functional architectures. Definition and comparison of functional
architecture alternatives are essential as the choices made at this step of the
process drive the whole system realization. Simulation is one tool to perform
this comparison.
Simulation relies on the modeling activity. Models define the abstraction level of
the simulation and serve as entry point. A model driven approach for simulation
is made of four steps [2]:

1. Conceptual Modeling: definition of the system model at a given abstraction
level.

2. Tool independent simulation modeling: translation of the previous model
into a simulation formalism such as Discrete Event. The independence from
simulation tool enable reuse of the model.

3. Tool specific simulation model: translation of the previous model into a
model using the concepts defined in the chosen simulation tool.

4. Implementation.

In our case, the functional architecture can already be modeled using languages
such as SysML [5]. These languages are already used in companies’ system en-
gineering process. In order to be adopted, a tool must comply with industrial
processes [8]. The modeling of the functional architecture is equivalent to the
conceptual modeling step. It is made with existing tools so that we comply with
companies’ process and tools. As a result, the simulation tool is decoupled from
the functional architecture modeling tool while sticking to the system engineer-
ing process. A meta-model is provided to describe the elements of the functional
architecture to simulate. Intermediate models compliant with the defined meta-
model are independent from any simulation tool. The intermediate models can be
obtained through model transformations from system engineering tool knowing
their meta-models.

4.2 Adaptation to User’s Needs

Complex system design requires work from experts coming from multiple do-
mains. Each expert has its own view on the system through its domain vocabu-
lary and also on the metrics given by the simulation. The simulation tool must
be able to take into account the differences between domains. Experts need a
tool adjusted to the current situation they are facing. Experts should be able to
add new functionalities to the simulation tool and remove the ones they are not
using.
This requires a modular approach like the one used in the Linux Kernel. The
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Linux kernel is made of a set of modules. Each module has an unique purpose
such as handling a USB device or printing. A module can be loaded and un-
loaded. However, some modules are essential to the stability of the system and
they can not be unloaded.
Like the Linux kernel, the simulation tool should be made of modules that can
be loaded and unloaded by domain experts as required by their current task.
Besides, a distinction between modules should be made. Some modules are at
the basis of the simulation and so should not be unloaded. Other modules deal
with domain specific activities and may be loaded and unloaded at will.

4.3 Interaction with Functional Architecture Models

Interaction with models consists in observing the simulation and its results and
in modifying the simulated model. These activities serve the purpose of:

– Enabling to define new alternatives of functional architecture by debating;
– Simulating the different alternatives;
– Comparing the results of the simulation.

One of the goal of functional architecture is to define groupings of functions. In
the simulated models the functions groups should be modifiable to perform tests
on different alternatives. A function can be seen as an assembly of basic oper-
ations. The order in which the basic operations are performed or their nature
should be modifiable. Those interactions with models are risky: deadlocks can
be created by the modifications. Furthermore, modifications may cause a loss of
coherency between the simulated model and the simulation results. The simu-
lation results must be linked to the simulated model. So the simulation engine
must take into account all the modifications performed on the model so that the
simulation results are still valid.
Tests on the structure of the model should be performed to avoid these risks. At
runtime, a deadlock check should also occur. The modeled elements themselves
should also provide pieces of information about which modifications users are
allowed to perform on them. Unauthorized modifications should be blocked by
the model elements.

5 Enabling technologies for the Guiding Principles

In this section, we will introduce the technologies used to implement the three
principles. Meta-modeling and model transformation implements the adaptation
to system engineering process. Layered architecture helps to implement tool
extensibility.

5.1 Meta-Modeling and Model Transformations

We defined a meta-model describing functional architecture models. This meta-
model shown Figure 3 is based on the function description in [14]. Functions are
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Fig. 3. Meta-model defining a functional architecture

seen as actions performed by a system and are allocated to constituent of the
system. We extracted the definition of the functions and elaborate on it. Our
meta-model is made of the definition of the functional structure, the communi-
cation between functions and the behavior of functions.
The functional structure is described by a Composite pattern between the Func-
tionComponent, LeafFunction and LogicalFunctionGroup meta-classes. The meta-
class LeafFunction describes the basic functions of the system. A logical function
group (LFG) can be made of other LFGs and of basic functions. in the example
of our sea-floor observatory, we have a LFG called Acquisition that groups two
LeafFunctions RawAcquisition and Detection. The two latter are LeafFunctions
as they are not further broken down.
Basic functions can communicate through communication links. Each commu-
nication link has a behavior to define if the communication will be synchronous
or asynchronous. To bring flexibility in modeling the behavior of functions, we
reified the concept of communication link. We decouple the behavior of the com-
munication from the behavior of the function. Changes in the function behavior
will not affect the way communications are performed. LeafFunctions know each
link through an alias. There is one link per exchange between two functions. This
mechanism is similar to ports in a component-based modeling. Unlike ports, our
modeling of links do not allow broadcast. However, it eases the analyses of the
exchanges between functions as exchanges between a sender and multiple re-
ceivers must be explicitly modeled.
The behavior of a function can be described as a sequential list of basic oper-
ations such as sending or receiving data and performing a computation. The
sending operation is described by the name of the communication link on which
the data are sent. The receiving operation is described by the name of the com-
munication link from which the data are read. The computation operation is
described by the computation duration.
To adapt ourselves to the process and tools used in the industry, the meta-model
define an intermediate representation of functional architecture. The functional
architecture is modeled using companies’ internal modeling tool. Model trans-
formations extract the data relevant to functional architecture from companies’
model and create a new model compliant with our meta-model. This new model
is used to define the simulation to perform independently from the companies
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tools used for modeling the functional architecture at the beginning.
Our meta-model was designed in the context of the sea floor observatory exam-
ple and uses vocabulary of data processing such as Computation. However, it
can be easily extended to suit more generic needs. An Action meta-class can be
created. The Computation meta-class will inherit from it. The class Communi-
cationBehavior can be renamed in LinkBehavior. Classes detailing the behavior
of flows inheriting from LinkBehavior can be created.

5.2 Layered Architecture

To obtain tool extensibility we rely on a layered architecture each layer being
made of software components. In a layered architecture each layer uses services
from the lower level layer and provides services to the upper level one. It is then
possible to build a new service providing business oriented data built from tool
services. Components have a well-defined interface. Their functional responsibil-
ities are clearly identified. It is possible to switch two components with the same
data inputs and outputs. Components may also have the ability to be loaded at
runtime. New functionalities can then be added to the tool at runtime.
Using a layered and component-based architecture has several advantages. First,
using component enable to co-locate pieces of code having the same role. When
a modification is required, locating the area in the code that must be modified
is easy. Second, using layers and components requires to clearly identify the in-
terfaces between the components. This enables to write new components and
integrate them in the simulator. The only condition is to comply with the in-
terfaces. However, using layers and components for the architecture have some
disadvantages. The complexity of the architecture of the simulator may be in-
creased. Information useful in a component may follow a complex path before
gaining the targeted component.
We decompose the simulation tool into three layers as shown Figure 4. The Core

User Specific Tools

Input/Output Tools
Sequence Diagram

Generator
Model Importer

Core Concepts

Simulation Engine

Fig. 4. Decomposition in layers of the tool

Concepts layer contains the simulation engine component. This component con-
tains the implementation of the meta-model.
The functional architecture is modeled outside our simulation tool and model
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transformations are performed to import it in our tool. A model importer com-
ponent should be responsible for performing the model transformation. Besides,
the simulation should generate output rendered into an user friendly format.
An export module per output format should be implemented. All those compo-
nents are located into the Input/Output Tools layer on top of the Core Concepts
layer. The Company Specific Tools layer will contain the different components
developed specifically for the users’ needs. For example, a component may be
written to compute the global waiting time the different functions and display
the obtained value.
An example of component decomposition is the integration of a sequence dia-
gram utilities. Sequence diagrams enable to visualize message exchanges between
functions. We defined two components: one that displays directly a sequence di-
agram and one which creates a log file using a format readable by an external
tool in such as the sdedit tool3. A component approach is well suited because in
both case information about the message exchanges are the same i.e. the iden-
tity of the sender, the message name, and the identity of the receiver. Besides,
the behaviors of both component are really different, the first manage a display
and the second one write data in a file. The link between the execution engine
and the components is made through an interface detailing the data structure
exchanged between simulator components.

6 Conclusion

In this paper we presented the three necessary principles to obtain a flexible sim-
ulation tool at the functional level. First, we think that such a tool should adapt
to the system engineering processes already in use in companies and not modify
it. Second, we advocate for a tooling able to be adapted to specific needs. Third,
the simulation tool must enable to play with the models simulated. We also
gave a list of enabling technologies. Meta-modeling and model transformations
may support the adaptation to existing system engineering process. Flexibility is
achieved through the independence from deployed tooling. Module-based tooling
enable the adaptation of the tool to the user needs. Flexibility is achieved by the
ability to load and unload modules at will according to the project environment.
A future work is to extend our functional architecture metamodel. We want to
reify the composition link between the LogicalFunctionsGroup and the Function-
Component metaclasses. It will then be possible to add pieces of information to
specify the link such as an alternative identifier. This identifier will ease the
process of implementing, simulating and comparing functional architecture al-
ternatives.
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The authors also wish to thank Zoé Drey and Ciprian Teodorov for their valuable
input to this paper.

References

1. Arnold, S.: Iso 15288 systems engineering system life cycle processes. International
Standards Organisation (2002)

2. Cetinkaya, D., Verbraeck, A., Seck, M.D.: Model transformation from bpmn to devs
in the mdd4ms framework. In: Proceedings of the 2012 Symposium on Theory of
Modeling and Simulation-DEVS Integrative M&S Symposium, p. 28. Society for
Computer Simulation International (2012)

3. D’Aquino, P., Le Page, C., Bousquet, F., Bah, A.: Using self-designed role-playing
games and a multi-agent system to empower a local decision-making process for
land use management: The selfcormas experiment in senegal. Journal of artificial
societies and social simulation 6(3) (2003)

4. Estefan, J.A., et al.: Survey of model-based systems engineering (mbse) method-
ologies. California Institute of Technology, Pasadena, California, USA May 25
(2007)

5. Friedenthal, S., Moore, A., Steiner, R.: A practical guide to SysML: the systems
modeling language. Elsevier (2011)

6. Haskins, C., Forsberg, K., Krueger, M., Walden, D., Hamelin, R.D.: Systems en-
gineering handbook. INCOSE. Version 3.2 (2010)

7. Interreg IVA: Marine edata observatory network (2013). http://medon.info/
8. Kapurch, S.J.: NASA Systems Engineering Handbook. DIANE Publishing (2010)
9. Karsai, G., Lang, A., Neema, S.: Design patterns for open tool integration. Software

& Systems Modeling 4(2), 157–170 (2005)
10. Klein, M., Sayama, H., Faratin, P., Bar-Yam, Y.: The dynamics of collaborative

design: insights from complex systems and negotiation research. Concurrent Engi-
neering 11(3), 201–209 (2003)

11. de Lange, D., Guo, J., de Koning, H.P.: Applicability of sysml to the early definition
phase of space missions in a concurrent environment. In: Complex Systems Design
& Management, pp. 173–185. Springer (2012)

12. Long, J.: Relationships between common graphical representations in system en-
gineering. Vitech white paper, Vitech Corporation, Vienna, VA (2002)

13. McGinnis, L., Ustun, V.: A simple example of sysml-driven simulation. In: Simu-
lation Conference (WSC), Proceedings of the 2009 Winter, pp. 1703–1710. IEEE
(2009)

14. Pfister, F., Chapurlat, V., Huchard, M., Nebut, C., et al.: A design pattern meta
model for systems engineering. 18th International Federation of Automatic Control
(IFAC 2011) (2011)

15. Radjenovic, A., Paige, R.F., Rose, L.M., Woodcock, J., King, S.: A plug-in based
approach for uml model simulation. In: Modelling Foundations and Applications,
pp. 328–339. Springer (2012)

16. Seidner, C.: Vérification des effbds: model checking en ingénierie système. Ph.D.
thesis, Nantes (2009)

17. SysML, O.: Omg systems modeling language (2013)
18. Zimmer, W.M.: Passive acoustic monitoring of cetaceans. Cambridge University

Press (2011)

Proceedings of the Poster Workshop at CSD&M 2014 35

Flexible Model-Based Simulation as a System’s Design Driver



36



Putting Real Production Software in the Loop, 
Methodologies Enabling SW Co-Development Between 

OEMs and Tier 1s 
 

David Bailey, Guillaume Francois and  Gregory Nice  

ETAS GmbH Borsigstrasse 14, 70469, Stuttgart, Germany 
David.bailey@etas.com, Guillaume.Francois@etas.com 

 

Abstract. With software gaining importance as the main contributor both to 
functionality and differentiation in the automotive market place and its rele-
vance to quality, safety and customer satisfaction, its place in the development 
process and the methods available to ensure short development cycles and a 
simultaneously high level of quality are coming under strain.  Both model-
based and abstracted code – not specific to the final production target, are in use 
in the earlier phases but these often do not provide code which is testable in a 
meaningful way for the final product.  In this paper we will explore methodolo-
gies which allow target independent code to be produced and managed as a 
product within the development process – establishing clear linkage between 
development code and the final product and accountability and traceability 
throughout the process.  We will leverage the increasing implementation of Au-
tosar and proliferation of model based sw development techniques in the pro-
cess. 

1   Introduction 

The past ten years has seen an exponential growth in the amount of software going 
into vehicles both to perform and improve core functionality, such as fueling, com-
bustion control, valve actuation and breaking as well as to extend the capability of the 
vehicle with advanced driver assistance, connections to roadside, service bay and 
ubiquitous wireless infrastructure bringing the Internet in ever-closer connection with 
the Automotive control system.  At the same time  the era of “Mass Customisation” 
has bred a generation of consumers who increasingly look, not only to purchase the 
latest and best technologies but who also expect to be able to configure products in 
the way that suits them and their life-style.  This has driven an exponential growth in 
product variants and as a consequence software variants that require managing 
throughout the product life-cycle.    One would think that this would be sufficient to 
present challenges to an industry which has adopted electronic control as recently as 
the 1980’s but on top of these challenges customers expect ever higher levels of safe-
ty and concern for the environment.  This has also lead governments to increasingly 
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legislate in the areas of safety, emissions and sustainability in developed markets 
adding to the cost-burden on Western OEMS to get their products into markets.  
Whilst there is no doubt that high and ultra-high end technology is coming to the 
market in the shape of Teslas, Bugattis, and other high-end products, there is also a 
diametrically opposed trend occurring in parallel for simplicity and functionality both 
with the requirement to address the needs of the first-time vehicle purchaser in India 
or China and with a new generation of consumers in the West where the vehicle no-
longer represents a status symbol but rather is regarded as a method for getting from 
A-B with as little fuss as possible, preferably with access to Facebook and Twitter. 
 
To address all of these demands simultaneously is the reason why the Automotive 
industry must embrace a paradigm shift in its thinking, costing and planning for prod-
uct development.   The differentiators in the market are increasingly software based as 
are the potential risks of damage to brand and future viability for firms if Software is 
not managed with the same regard for safety and quality as any other component in 
the vehicle.  In addition the OEM is increasingly playing the roll of systems integrator 
not only on the vehicle level but also at the level of individual ECU.  Integrating 
software developed, in house, by a tier 1 and by 3rd party specialized suppliers in one 
mechatronic system.  This fact also drives a demand for a consistency of architecture, 
interfaces and lifecycle management to ensure quality and traceability in the entire 
process 

2   From V-Cycle to Model Based to Agile. 

 
 

Fig. 1.  From the V-Cycle to “Agile” 
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Considering both the driver for time to market and the requirement to manage, in-
tegrate and test software components to the required quality levels has necessitated 
both Tier 1s and OEMs to restructure their development processes in significant ways.  
From a high level requirement a feature or function within the system is typically 
modelled.  Since there is no universal modelling tool – this typically involves a range 
of modelling tools in complete system, ranging from specialized environments such 
as Ricardo WAVE or GT-Power from Gama Technologies, to Simulink to C-code.  
There then follows an iterative development process around the function where the 
model function is refined until such time as the functional developer is satisfied that 
the desired functionality is reliably performed.   At this stage it is not a given that the 
Functional model is perfect – rather that it appears perfect in the environment under 
which it is tested.   Therefore it is essential to manage within this phase; model vari-
ants, configurations, tool versions and data-sets so that the finalized functional model 
can be reproducibly brought back into a further iteration step if an issue is found dur-
ing the further development and validation stages. 
 
Here we are already at a level where most OEMs and Tier 1s widely collaborate in the 
software development process.  Namely sharing IP and functional specification on a 
model level.  A desired function is developed by an OEM.  It is tested in a Model-in- 
the-loop-environment with the associated plant, behavioural and environmental mod-
els.  The Functional Model is then provided to the Tier 1 for further integration testing 
and is either converted into a further, more suitable form for model-based code gener-
ation directly or hand-coded in C before integration within the software build process 
for a specific ECU and target processor. 
 
The challenges here for process integrity and traceability are significant. 
  
Firstly the range and variety of models, tools, versions, configurations and associated 
data-sets is both broad and numerous. 
 
Secondly the tested function model – which acts as a specification for the Tier 1 omits 
information and configuration steps with the rest of the software system and potential-
ly also the mechatronic system that may have an effect on the specified feature “in-
situ” within the overall system.  Of these, OS behavior, interaction with other SW 
components within the system, for example diagnostic modules, execution order and 
quantisation effects are frequently areas where discrepancies between the “perfect” 
behaviour in the function is followed by implementations of the series-intent code 
which end up behaving differently in the target. 
 
This fact has driven both the drive for common ECU SW architectures such as Genivi 
and more importantly for control systems, AUTOSAR and a range of tooling that 
enables pre-Autosar architecture to be tested in a common environment that can be 
shared between both OEM and Tier 1 that takes account as many of the areas for  
potential divergence in functional behavior between the target and the pure model-
level environment. 
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3   The Virtual and Rapid Prototyping Environments 

 

 
Fig. 2.  A Virtual and Rapid Prototyping Environment  

The requirements that therefore arise out of 1) The desire to develop in an agile way 
to improve quality and time to market and 2) The requirement to share and validate 
implementations of the functional specification in a meaningful way, lead to the re-
quirement and productive use of Virtual and Rapid Prototyping environments at both 
Tier 1 & OEM.    For these a number of essential features apply. 

 
• Functional, behavioural, plant and environmental models need to be integrat-

ed in a common environment. 
 

• This environment needs to provide features which allow the testing of 
changes to configurations in the OS configuration and other sw modules 
within the system in a manner which is as close as possible to the behav-
ior which will be seen in the final target. 

 
• A seamless transition between the prototype code and a real control system is 

also highly desirable to enable a functional test within a Real-Time active 
control system and potentially a base target ECU where the ECU code it-
self is not complete or not yet modified for the intended use case.   In this 
case the environment should also support compiling to code for compu-
ting modules which process the function in parallel to the existing code 
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running on the ECU by means of software hooks and bypasses which al-
low a first – low effort integration of the new sw function into the control 
systems without going through a complete ECU software build.   

 

Virtual Prototyping Rapid Prototyping 

Non real-time: Runs as fast as 
possible or with time scale. No 
connection to the real world. No I/O 
No communication buses 

Meets hard real-time conditions 

 

Stimuli or plant model required Interacts with the real world. 
Comprehensive support for 
peripherals, analog and digital I/O 
& communication buses 

Used for early validation and pre-
calibration on the Windows® PC on 
the developer’s desk 

Validation and calibration  
on the test bench or on the road 

Fig. 3  Virtual vs Rapid Prototyping  
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4.  Typical Process Steps in SW Sharing Projects between a Tier 1 
and an OEM 

Fig. 4  Typical Process Steps in a Project employing software sharing between an 
OEM & Tier 1 

  
 

Step 1 in the process usually involves the Tier 1.  In most cases the Tier 1 will have 
existing tooling and methodologies for allowing their Platform software and Applica-
tion software to run on a PC.   In this particular case the Tier 1 uses the same OSEK 
OS or Autosar OS and RTE and compiles it for the PC target.  If the aim is to test 
primarily on a functional level then software modules or groups of software modules 
(Functional Components or “FC”s) are compiled as .dlls capable of being integrated 
within the virtual prototyping environment via an Autosar RTE or an “RTE like” run-
time environment that also supports legacy APIs and API calls. This is usually the 
role of the Tier 1 or the party which has the most responsibility in the project for  SW 
development and integration.  Again the ECU artifacts and the PC runnables need to 
be mapped and managed to ensure, traceability, repeatability and accountability. Fre-
quently software components need to be stubbed to provide and interface to models or 
other stimuli instead of an interface to genuine HW. 

 
Step 2. Is to prepare the plant.   This involves deciding and selecting the required 

models and stimuli required within the environment to be able to test the SuT with the 
required test coverage and depth.   The required data-sets, parameterization, models 
and other stimuli also need to be managed with the same regard as the software com-
ponents mentioned above.  This task is usually carried out by the party responsible for 
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the validation environment, frequently a 3rd party with a close working relationship 
with both Tier 1 and OEM.  However both Tier 1 and OEM can frequently assume 
this role entirely or partly according to where the domain knowledge for the systems 
being modelled in the environment lie. 

 
Step 3. Is to integrate the environment.  This entails combining the simulation and 

the system under test within the test environment – mapping models and other stimuli 
to software component interfaces and integrating other tooling required for the test 
procedure – for example, calibration tooling, version and configuration management 
tooling, bus-analysis tooling and test automation tooling.  This usually lies within the 
competency of the party responsible for the environment, in most cases a 3rd party. 

 
Step 4 Is to define and provide the required test strategies and methodologies.  

These are usually provided by a 3rd party with input as required from both tier 1 and 
OEM 

 
Step 5.  The operational use of the SIL system is usually and OEM activity –

nevertheless as with other test activities it can frequently be completely outsourced to 
a 3rd Party with the OEM or Tier 1 customer providing simply a list of requirements 
to be tested and the Pass/fail criteria.  The system itself may also be employed at dif-
ferent departments within one OEM with various aims and work-splits.  For example 
for pre-calibration or use within the OEMs own functional development process 
where the SIL environment provides a high-fidelity replication of the system as it will 
operate in the final series target. 

 

5   Bringing Autosar and Agile Together 

So far we have only considered the possibilities widely in use today based on the 
predominant sw architectures in series production at OEMs.   Today and especially in 
the realms of Powertrain, ADAS, Chassis and Drivetrain are predominantly based on 
a software architecture proprietary to the Tier 1 or to the OEM.  Whilst many Tier 1s 
offer an “Autosar Sandbox” for their OEM customers  which allow easy integration 
with their legacy software – the vast majority of the code in these areas is legacy.   
However the move to Autosar is happening and happening rapidly even in these areas 
and at the very minimum a very good interface is required between the legacy archi-
tecture and Autosar in order to allow both migration of functions between architec-
tures and reliable operation in the series target where a mixed architecture is em-
ployed.  As far as the SIL environment is concerned this step towards Autosar offers a 
range of new possibilities that were only achievable before with a level of effort pro-
hibitory to implementation in the past. 
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Fig. 5  Agile in Automotive is enabled by Autosar 

The first major benefit brought by the shift to Autosar is that most Automotive Silicon 
today is delivered with a HW abstraction layer that supports the Autosar standard (ie 
an Autosar MCAL).  As this has been so for a number of years a large amount of the 
code, Autosar or not, is already using a target independent API for communication 
with the microprocessor.  This has significantly reduced the amount of stubbing re-
quired to enable code to be portable to the PC and also increased the portability of 
projects between processor platforms. 

 
The RTE is non-target specific anyway, so any software in the system using the 

RTE for communication can be compiled 1 to 1 either for a real target or for the PC. 
Assuming there is a port of the OS for the PC available which allows for the same 
degree of configuration as on the target and an API or other communication mecha-
nism  by which other (non Autosar) Software components and elements within the 
environment (models, stimuli, test tools) then it is already significantly less, if not low 
effort to provide a build chain which is capable of taking the ECU artifacts intended 
for the series target and compiling these 1 to 1 for a PC based virtual validations plat-
form.  This, to the extent that it is not only possible off-the-shelf with full Autosar 
architectures but also extremely cost effective even with significant legacy content 
due to the fact that the system can be run and tested and developed against at very 
high fidelity, in Real Time or faster than real time.   This has the corollary that many 
of the test activties that previously required real ECU HW, real engines and real vehi-
cles to carry out can now be contemplated on the desktop.  Thus offering a truly huge 
potential to cut time, effort and corresponding costs from the entire development 
process.   
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Fig. 6  The same SW can be compiled for any target at any stage of development 

 
Aside from the obvious benefits of being able to front-load the development 

process, a number of other advantages emerge, some esoteric and some banal but all 
bringing a degree of much needed rationalisation to the exponentially growing 
demands within the industry.  On the banal side – testing and development resources 
are spread throughout the world – fortunately or unfortunately there is no truly global 
market established so customs officials, especially in some of the lower-wage 
economies where development and testing is typically carried out,  still have an 
interest to arrest, inspect and delay development and prototype ECUs and 
components.   On average delivery time between a development centre is Germany 
and India ranges from 1-3 months.  On the more esoteric side, once the control system 
is available on the PC steps to integrate this with Android, Genivi or other OS in a 
multicore envirnoment to address connected vehicle development becomes much 
more simple. Most crucially writing, testing and proving that code is safe has become 
key, since the systems we drive our children around in are controlled by the software 
that we produce. 

 
If  we consider some of  the issues arising our of Philip Koopman  and Michael 

Barrs analysis of Toyota’s software presented in the case “Bookout & Schwarz v 
Toyota”, most of the issues raised concern fundamental flaws in design and 
architecture that can only be address at the deeply embedded level.  Therefore there is 
an increasing demand that the virtual validation methods we use are as close to reality 
as possible.  In todays model-based world, which is largely regarded as state of the art 
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there is increasing testing on that level but without the ability to dive down into the 
behaviour at the lower levels and here there are plenty of banana-skins lurking. 

 

 
 

Fig. 7  APIs offering access to all levels of the sw architecture from external test 
tooling and simulation enviroments 

 

6   Conclusion 

The number, complexity and scope of embedded control systems in the vehicle is 
increasing exponentially.  These systems now perform the key functions of the vehi-
cle so software has to perform on all levels – primarily of course with regard to safety, 
but also with respect to fulfilling customer requirements with regard to features, dif-
ferentiation and reliability.  To put this in context a 737 Airliner contains 6,5 Million 
lines of code.   The latest S-class from Daimler contains over 20 million. In terms of 
driving or flying hours the average platform racks up 1000x more flying hours than 
the entire fleet of Boeing 737s has flown since 1968.  Whilst it must be conceded that 
not all of these systems are safety critical – the importance of introducing rapid itera-
tion cycles and traceability throughout the development process cannot be underesti-
mated.   This can only be achieved with a paradigm shift in the industry with regard to 
the way software is regarded, developed and managed – with the same importance or 
more than any other part of the vehicle.  If the automotive industry does not step up to 
the challenge then increasingly it is looking as if others will do so in its stead. 
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Abstract. This article proposes to throw some light on the strong relationship 
between Cognitive Science and System Engineering. In the same manner that 
Herbert Simon justified hierarchical organizations with the argument that indi-
viduals had “bounded rationality”, this article tries to show that most of our 
System Engineering processes are techniques to compensate for our cognitive 
boundaries. Practical implications for SE justification and SE education are dis-
cussed. 

1 Introduction 

Be prepared for the truth: despite 6 million years of fast paced growth, our brain is 
still a limited engine. The brain cannot hold more than 50 000 patterns; the brain can-
not ingest more than 15 concepts per days; the brain cannot manipulate more than 7 
ideas simultaneously and the brain cannot stop from flying tactically to the first solu-
tion instead of first considering strategically all available venues. 

Those 4 cognitive rules were proposed by Alan Newell in “Unified theories of 
cognition” (UTC, ref. 1). This article proposes to explain some System Engineering 
process with Newell’s rules. In the same manner that Herbert Simon justified hierar-
chical organizations with the argument that individuals had “bounded rationality”, this 
article tries to show that most of our System Engineering processes are best practices 
both to compensate for our individual cognitive boundaries and to scale, with the 
number of talents involved, our ability to develop systems. 

2 Unified Theories of Cognition 

UTC was published by Newell in 1991 (notice that Newell was knowledgeable about 
system engineering since he was a fellow of Herbert Simon, see ref 9). In UTC, New-
ell proposes a fruitful theory of cognition. For instance, at Airbus Defence & Space, 
our human behavior simulations are influenced by Newell’s models (see ref 4 for an 
example). 

Here, we are not interested in Newell’s response functions. We are interested in the 
4 rules that Newell reminds at the beginning of the book. Those rules might not be 
aligned with the latest cognitive sciences theories but they are enough for our argu-
ment. 
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Max processing

7 concepts
 

 
Rule 1: “7 +/- 2”. This rule is the most well known. 7 +/- 2 is the amount of concepts 
that can be manipulated simultaneously by an individual. For instance, it is known 
that a map should not have more than 7 different colors. 
 
 

Max storage

50 000 concepts
 

 
Rule 2: 50 000 concepts per individuals is the amount of concepts an individual has in 
his brain store. For instance, when you ask a software engineer a question about his 
program, it is a rule of thumb that he can answer immediately if his program is less 
than 50 kSLOC (thousands lines of source codes). Above this threshold, he might 
have to go back to his design documentation or dive back into the code. 
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Max intake

15 concepts / day
 

 
Rule 3: 15 concepts can be ingested per day. Newell derives this quantity by measur-
ing the learning process of a chess player. On average, a chess player can learn 15 
“positions” per day. This is somehow related to the 50 000 limits because it takes on 
average 10 years of training to become a chess master (15 concepts * 360 days * 10 
years is 54 000 concepts). 
Rule 4: Individuals search “depth first”. This is explained later. 

3 System Engineering process revisited 

This section revisits some process of the INCOSE handbook (ref 5). For each process, 
one or more Newell’s rules are suggested. 

3.1 CONOPS and FBS 

When System Engineers draft CONOPS, it is, through stories, to describe the system 
bit by bit. A rule of thumb is that a good CONOPS should be as interesting to read as 
a novel. With cognitive sciences words, a CONOPS should be an ergonomic device 
for pouring concepts into the mind of the reader.  

From a completed CONOPS, System Engineers inventory all the functions elicited 
in the CONOPS and assemble them in an abstract hierarchical tree named the func-
tional breakdown structure (FBS). In order to do that, System Engineers create ab-
stract nodes that assemble functions and abstract nodes that assemble other abstract 
nodes. The top abstract nodes are the main functions of the system. 

This abstract hierarchy makes it easier to understand the system in a top down 
view. The cognitive science justification is that our brain cannot manipulate more 
than 7 ideas simultaneously. Vertical hierarchies are fit for our limited intellectual 
span. 
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3.2 Requirement elicitation 

When eliciting requirements for a system, two individuals coming from different 
disciplines try to contract on shared abstractions. One individual is the stakeholders 
agent. He represents the discipline that operates the system. The other individual is 
the designer. He represents the discipline that develops the system. 
 

Concepts overlap

From 0 to 50 000
 

 
What effort shall we expect? Let us say we open the brain of both individuals, map 

both sets of 50 000 concepts and measure the overlap between both maps. This over-
lap may be large or thin. If it is large, a small effort is needed by the two individuals 
to elicit requirements (a lot will be implicit). If it is thin, misunderstanding might 
happen. The thinner, the harder both individuals have to explicit common concepts to 
create requirements. 

3.3 Architecture process 

In some cases, finding the best architecture is done with the help of mathematical 
tools such as operational research. Here, we are interested in cases when the architec-
ture decision is driven by human cognition alone.  

Since architecture is the most creative and diverse part of the System Engineering 
processes, it is preposterous to propose generalities. Yet, the article tries to relate one 
rule of thumb for system architects (the “no fly to solution” rule) to one rule elicited 
by Newell (the “depth first” rule). 

According to Newell, when a brain is looking for a solution, it balances between 
two perpendicular directions, the vertical “depth first” direction and the lateral direc-
tion.  
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Problem solving approach

Depth first
 

“Depth first”, which is the most natural tendency, derives of Newell’s observation 
of chess players. For every move, a chess player anticipates was will be the opponent 
response. From this hypothetical answer, he devises his own answering move. This 
problem is usually formalized as a tree exploration. Some chess master can explore up 
to 10 moves down the tree. 

Newell notices that good players tend to explore the tree in “depth first” rather than 
by layers. A chess master explores many branches of the tree in sequence. He then 
creates a global view of the tree to choose the branch of the tree with the most inter-
esting outcome. In other words, he explores tactically before elaborating a strategic 
picture. 

In System Engineering, selecting the first available architecture is not recommend-
ed (the “no fly to solution” rule). INCOSE commends choosing choice criteria, then 
construe alternatives and then evaluate all alternatives against all criteria. 

Cognitive sciences might suggest a different perspective. It is necessary to go deep 
to have insights into the architecture strategy. In other words, some selection criteria 
will not be present at the start, they will surface along the design exploration (we see 
later how recent trends in technical management are more aware of this fact). 

3.4 Interface design 

Architecture design decomposes a system into sub-systems with interfaces. When 
engineers design interfaces, they mitigate the integration risk. 

Let us take two different specialty engineers who have to design an interface. Both 
need to share some of their 50 000 concepts. With requirement elicitation, we have 
already seen this situation where individuals need to share concepts. Instead of re-
quirement elicitation, interface design is not an exercise in abstraction. Indeed, an 
interface has to be as detailed as possible to mitigate the integration risk between 
components. 

However, in software engineering, a “good” interface design is an interface that 
aims at making the system across the interface the most abstract possible. A good 
interface limits the complexity for the interface users (there brain have to consume 
less concepts). For instance, the High Level Architecture (HLA) standard used in 
distributed simulation exhibits a “double abstraction barrier” to forbid participants to 
known too much about the other participants (ref 2). 
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3.5 Weaving abstract hierarchies together 

Thanks to requirement elicitation, architecture and interface design, System Engineers 
can create Product Breakdown Structures (PBS). A PBS enables different teams to 
work in parallel on different part of the system. A PBS scales the engineering power 
with the number and diversity of contributing talents. 
 

Scaling solving power
 

When System Engineers create PBS, it is to reflect the integration strategy. A PBS 
is one amongst many ways of putting system elements into abstract hierarchies, for 
instances: 

• An operational expert categorizes people. He ends up describing an organizational 
breakdown structure (OBS). 

• A roll-out/ILS team is interested in how to deploy and maintain the system. It de-
vises a logistical breakdown structure (LBS). 

• A Manager is interested in how the work will be done. He formalizes work break-
down structures (WBS). 

• A security expert devises red area, black area, DMZ, trusted areas. He construes 
security breakdown structures (SBS). 

• A financier relates work and procurement expenditures to his cost breakdown 
structure (CBS). 

System Engineers trade is to weave those abstract representations of the system. A 
System Engineering Management Plan (SEMP) shall describe ways for teams to reach 
consistent breakdown structures with fluidity. For instance, at Airbus Defense & 
Space, our Model Based System Engineering (MBSE) tools are tailored to deal with 
overlapping hierarchies of data, including scheduling data. 
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4 Alternative approaches to technical management 

In architecture & decision processes, INCOSE states that you should first gather all 
necessary information and then make the design/decision (see above).  

Some other architecture/decision processes that have received attentions in recent 
years are a bit different, and perhaps more aware of our cognitive constraints. Toyo-
ta’s Set Based Concurrent Engineering (SBCE, ref 3) and Lean Startup (ref 6, 7) are 
such exercises in architecture/decision process. Both surmise that some pieces of 
information necessary for decision are not present upfront, they come along the de-
velopment process. 

4.1 Set Based Concurrent Engineering 

Toyota’s SBCE decision process entertains more than one engineering solution 
down the development cycle. As stated by Sobek: 

In developing a vehicle’s styling, Toyota makes more […] models than 
most competitors do. […] Simultaneous with the development of the two to 
three full-scale models, Toyota engineers develop structural plans for multi-
ple styling design ideas and analyze them for manufacturability. 

 
Sure, SBCE is more work upfront but less rework is to be expected downward. In-

deed, SBCE is more robust to late problems discovery because more solutions are 
kept alive. Sobek contrasts SBCE with point based concurrent engineering where one 
solution is selected early and finding problems late leads to rework up the value chain. 
For instance at Airbus, at Preliminary Design Review (PDR), the usage is to have 
only one solution to be reviewed. 

4.2 Lean startup 

Another example is the “lean startup” agile approach. In SE classical view, people 
either plan or execute the plan. If something goes wrong, it is either the plan or the 
execution that was wrong. Lean startup suggests that when a system interacts with an 
environment that is complex and not controlled, the plan/execute model maybe not 
optimal. 

When designing social web applications (the focus of Ries’s work), the system in-
teracts with thousands of individuals/clients. Then a simple configuration manage-
ment issue kicks in. It is impossible to inventory and control the 50 000 concepts of 
the thousands of individuals that will use the system. 

To fix the “brain configuration control” issue, Ries proposes to perform more but 
shorter “plan/execute” cycles. In a “lean startup”, the business concept under study is 
declined in assumptions (let us say 20 assumptions for a typical concept). At the be-
ginning of each cycle, a set of those assumptions is selected (let us say 5 assump-
tions). The objective of the cycle is to develop parts of the concept that enable the 
team to measure if those assumptions are true. If, at the end of the cycle, some as-
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sumptions are wrong, the lean startup must be prepared to “pivot” and elicit a modi-
fied concept with new assumptions (that again need to be rigorously tested).  

According to Ries, a Lean Startup measures progress not in units of work achieved 
but in units of verified learning. 

5 Practical conclusions 

5.1 Design of requirement documents 

As System Engineers, we are interested in SMART requirements. 
However, cognitive science hints that there is also a challenge elsewhere, the de-

sign of requirement documents in complex systems.  
First, a requirement is a shared concept between two brains. A requirement is like a 

prosthesis between the brain of the stakeholder agent and the brain of the designer. 
Like any prosthesis, a requirement needs to be “adapted” to its users. 

Second, a requirement is not alone. It is formalized in a document containing a set 
of requirements. Ideally, this document shall be approved by two persons only: the 
stakeholder agent and the designer. Therefore, a requirement document shall fit both 
the brain of the stakeholder agent and the brain of the designer. 

In some System of Systems design, such as Air Traffic Management, stakeholders 
(operational experts) and designers (system architects “at system level”) can share 
some requirements but it is difficult to group requirements into documents that span 
more than one system. Indeed, if a system is complex, a system designer can only 
elicit requirements with a span of one or two systems at best (cf. the “50 000 con-
cepts” rule). 

How to elicit requirements that have a span across all the systems into a single 
document ? 

The solution to this cognitive constraint is to design requirements in two layers: a 
“system of systems” top layer and a “system” layer. The “system of systems” re-
quirements are more abstract than “system” requirements. The “system of systems” 
requirements cannot be used directly for the design of system but they can fit into one 
document. 

The design challenge is to find system engineers that can work sandwiched be-
tween both layers. Seen from operational experts, they are designers who can elicit 
requirements in a document with a span of all systems. Seen from the system archi-
tects “at system level”, they are stakeholders who can elicit requirements, in the “sys-
tem” layer, for each systems. The design challenge is a logistic challenge: to find 
people with a brain that have a good balance of 50 000 concepts, for instance 25 000 
concepts shared with operational experts and 25 000 concepts shared with system 
designer. 
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5.2 Evaluating SE needed overhead 

Another problem is to assess the need for System Engineering artifacts. Do we 
need to formalize an interface? Is a simulation needed to demonstrate the functional 
behavior of the system? 

Let us take simulations. They can be expensive but they provide visual cues, the 
path with the highest throughput to the concept store in our brain. The case for simu-
lation shall sometimes be a cognitive case. Are the stakeholder already experts in the 
operational view (weak case) or are they novice (strong case). 

5.3 Teaching the INCOSE handbook 

To pass an INCOSE certification, one rote learns 25 different processes. The global 
coherence is difficult to grasp. Clearly, outputs of some process are inputs to other 
process. Yet, it can be rather difficult to derive a general underlying argument to justi-
fy all processes. 

The INCOSE backdrop philosophy is that it is good to put 10 to 15 % SE overhead 
to have a complex project succeed. This philosophy is pragmatic, it is based on regu-
lar observation of patterns in past complex projects but it is not a generative argu-
ment. This article suggests that Cognitive Science could be mentioned in SE hand-
books introduction. It could answers “why do we need SE?” before going to the “what 
is SE?”. 

An interdisciplinary point of view toward system engineering can be insightful. In 
1984, Perrow, a sociologist, published his “normal accident theory” (ref 10) that chal-
lenges the traditional risk approach to complex system engineering. The book second 
chapter is titled: “Nuclear Power as a High-Risk system: Why we have not had more 
Three Miles Islands – but will soon”. It is, in retrospect, an insightful point of view. 

6 Conclusion 

If cognition is the mother of all constraints in System Engineering, it is time to meas-
ure cognition constraints consistently. In many occurrences, System Engineers rely on 
their experience and their “soft skills” to assess people constraints. 

Between cognitive science and system engineering, an interdisciplinary academic 
effort could provide us with bespoke tools to assist system engineers in their daily 
work. For instance, we could evaluate more consistently the cognitive overlap be-
tween two individuals. 

Academics sometimes testify that teaching SE to students can be challenging. As 
stated by Simon himself, the subject is abstract and a bit confusing (“cooky booky”). 
Simon compares here SE to other engineering discipline based on hard sciences (ref 
8). If cognitive scientists could provide system engineers with quantitative tools, SE 
could become a more “normal” discipline. 
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Abstract. Naval ship design can be understood to be a networked System-of-
Systems (SoS) multidisciplinary process whereby a decision on one aspect of 
the design may have simultaneous, multiple order effects on other aspects of the 
design.   Modern naval ship design should therefore consider the systems of in-
terest as components subsumed by a holistic environment encompassing assets 
and capabilities inorganic to a naval platform. This position paper propose a 
starting point approach intended to provide a more defined means of establish-
ing and improving the ship design process as part of a multi-layered maritime 
domain warfare enterprise.  Fundamental is the tenet that capability levels 
transcend several hierarchical echelons and exist across many functional do-
mains. The proposed methodology provides a structured and cohesive approach 
for identifying and assessing ship capability portfolio with traceable and better 
known impacts on mission effectiveness, affordability and risk, in the early 
stages of ship design within the scope of a naval system-of-systems. 
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1   Introduction 
 The ship design of major surface combatants capable of effectively responding 
to all possible missions within the spectrum of modern conflicts and military 
operations other than war is increasingly difficult due to the complex nature of the 
rapidly evolving and unpredictable global threat environment. Traditional naval ship 
design methodologies have evolved from the sequential nature of the design spiral to 
more advanced computational methods enabling the simultaneous manipulation of 
several degrees of freedom to better understand the interdependencies between factors 
such as cost fluctuations, design parameters, technology selections and mission 
success [1]. 

 The issue persists nevertheless that although we may have a multidisciplinary 
team applying domain knowledge and experience onto systems engineering analysis, 
the optimization of the design process may remain restrained by designing ships 
within intrinsic ship capabilities as opposed to designing ships subsumed by a holistic 
environment encompassing assets and capabilities inorganic to a naval platform. 

2   Motivation 
 The proposed method is intended to provide a more defined means of 
establishing and improving the ship design process as part of a multi-layered maritime 
domain warfare enterprise.  To achieve this, the design approach is dependent upon 
high levels of confidence in the fidelity of the analyses, and is based on shared 
understanding and a common language.  

 Alike best practice in portfolio, programme and project management [2], using 
such an approach should deliver a range of benefits which will be revisited throughout 
the paper, these include: 

• Identifying capability strengths and interests to be maintained, developed and 
exploited. 

• Identifying capability deficiencies (shortcomings or surpluses) to be remedied 
or accepted.   

• Providing a more structured and cohesive approach to identifying and as-
sessing ship capability portfolio.   

• Creating a common language and conceptual framework for the way to man-
age and improve capability-based planning within a ship design process.   

• Educating stakeholders on the fundamental elements of capability-based ship 
design and how they relate to their roles and responsibilities.   

• Involving more relevant stakeholders at all levels in the capability-based ship 
design process.   

• Ranking ship variants based on operational effectiveness, capability and af-
fordability trade-offs across a spectrum of missions’ priorities.   
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• Facilitating comparisons, identifying and allowing the sharing of best practice 
across major ship acquisition projects within an organisation or a community 
of practice.   

• Assessing and presenting the findings from a variety of reviews in a format 
that is easy to understand.   

The aspiration is to show how these benefits can be realised through a combi-
nation of techniques including the adroit use of model-based systems engineering 
(MBSE): the formalized application of modelling to support system requirements, 
design, analysis, verification and validation activities beginning in the conceptual 
design phase and continuing throughout development and later life cycle phases [3]. 

Recognizing that MBSE has as its foundation the use of models, the approach 
is limited to construct an abstraction of selected aspects of the behaviour, operation, 
or other characteristics of a real-world SoS [4]. The purpose therefore is not to elimi-
nate all uncertainties and cover all options related to ship conceptual design but to 
circumscribe them so to distil a deeper appreciation of the critical factors. 

3   Naval Surface Combatants as System-of-Systems 
3.1   SoS in Defence 

 Applications of systems engineering (SE) and SoS principles abound in 
Defence. Indeed, a growing proportion of the acquisition, sustainment, and 
management of materiel and non-materiel of military capabilities is sought through a 
SoS approach [5]. Moreover, the adoption of enterprise architectural framework in 
Defence by several nations is a definite step towards providing a more rigorous 
approach to life-cycle management including governance, design, building, analysing, 
and change management [6]. For instance, the UK Ministry of Defence Architecture 
Framework (MODAF) offers the following benefits within the acquisition processes 
[7]:  

• Improved clarity on the context within which a new capability will operate.   

• Clearer and more comprehensive requirements documents.   

• Improved ability to resolve interoperability issues between systems.   

• Better understanding of the mapping of system functions to operational needs 
and hence the ability to conduct improved trade-offs. 

The proposed approach aims to utilize an architectural framework similar to 
MODAF to embody the SoS elements, unify their capabilities at the appropriate hier-
archical levels, and define their interdependencies to provide a common picture of the 
SoS measure of effectiveness (MoE). 

3.2   SoS in the Navy 

 Basic sets of architecting principles were proposed by Maier as discriminating 
factors to assist in the design of SoS [8], which later generated five characteristics that 
define SoS more appropriately [9]. This useful taxonomy may be used to draw the 
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SoS boundaries for a naval platform, namely: operational independence of the indi-
vidual systems, managerial independence of the systems, geographic distribution, 
emergent behaviour and evolutionary development.    

 Recognizing that a single platform is a contributing element of a naval SoS, it 
follows that we should attempt to define the measures of effectiveness (MoE) of that 
SoS. In naval terms, models of hierarchical complexity could be translated into naval 
ranks and typology such as those described in Fig. 1 [10].  The legend could be used 
to characterise the MoE of a naval SoS hierarchically from a naval force capable of 
independently carrying out all the military roles on a global scale to that which has 
minimal ships’ capabilities and is intended to only perform the most limited of con-
stabulary functions. Mapping against the typology levels could facilitate the ranking 
of ship variants based on potential operational effectiveness and capabilities trade-offs 
across a spectrum of missions’ priorities. 

 
Rank Typology Naval SoS Description 

1 
Complete Major 

Global Force 
Projection 

Capable of carrying out all the military roles of naval forces on a 
global scale. It possesses the full range of carrier and amphibious 
capabilities, sea control forces, and nuclear attack and ballistic 
missile submarines, and all in sufficient numbers to undertake 
major operations independently. 

2 Partial Global 
Force Projection 

Possesses most if not all of the force projection capabilities of a 
"complete" global navy, but only in sufficient numbers to undertake 
one major "out of area" operation. 

3 Medium Global 
Force Projection 

May not possess the full range of capabilities, but have a credible 
capacity in certain of them and consistently demonstrate a deter-
mination to exercise them at some distance from home waters, in 
cooperation with other Force Projection Navies. 

4 Medium Regional 
Force Projection 

Possesses the ability to project force into the adjoining ocean 
basin. While may have the capacity to exercise these further afield, 
for whatever reason, do not do so on a regular basis. 

5 Adjacent Force 
Projection 

Possesses some ability to project force well offshore, but not 
capable of carrying out high-level naval operations over oceanic 
distances. 

6 Offshore Territo-
rial Defence 

Possesses relatively high levels of capability in defensive (and 
constabulary) operations up to about 200 miles from shores, hav-
ing the sustainability offered by frigate or large corvette vessels 
and (or) a capable submarine force. 

7 Inshore Territori-
al Defence 

Primarily inshore territorial defence capabilities, capable of coastal 
combat rather than constabulary duties alone. This implies a force 
comprising missile-armed fast-attack craft, short-range aviation 
and a limited submarine force. 

8 Constabulary 
Defence Not intended to fight, but to act purely in a constabulary role. 
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Fig. 1.  Naval System-of-Systems Levels. 

4   Capability-Based Framework 
4.1   Capability Definitions 

Military concepts generally use a lexicon of frequently interchangeable terms 
with sometimes only subtle differences in meaning and often dependent entirely upon 
context. For instance, words such as mission, role, function, task, activity, and capa-
bility may have both a descriptive sense (“what”) and a process sense (“how”).  The 
descriptive sense defines the purpose or basic functions of an organisation and identi-
fies the precise nature of an operation to be conducted in pursuit of an assigned mis-
sion or objective. The operational sense denotes the precise activities to be undertaken 
or achieved which in combination contribute to mission success [10]. 

It is recognized nevertheless that there are those essential capabilities which 
are common to any naval force at any time, as required to exercise any of the mis-
sions, roles, functions or tasks that might be assigned to it.  The degree to which these 
core competencies are required and met is predicated upon the needs of the local and 
temporal situation. Ergo, they will be considered as capability priorities summarised 
by the basic naval concepts of float, move and fight for the purpose of this study.  

Of note, the United States Department of Defense (US DoD) defines a capabil-
ity as the ability to achieve a desired effect under specified standards and conditions 
through combinations of “ways” and “means” to perform a set of tasks [11]. This 
definition joins the previous definitions in that the “ways” are the strategic and opera-
tional methods describing “how” to conduct military operations to accomplish the 
specific military objectives, the “ends”, while the “means” describe “what” resources 
are adequate to achieve these objectives within an acceptable level of risk. 

Lastly, the level of operational capability and the potential response time con-
stitute the basis for the concept of readiness which is a measure of the ability to un-
dertake an approved task, at a given time. Four readiness levels are considered in this 
study [5]: 

• Extended Readiness (ER): Not operational.  

• Restricted Readiness (RR): Transitioning between readiness levels or subject 
to deficiencies in personnel, materiel and training severely limiting employ-
ment. 

• Standard Readiness (SR): Capable of conducting core naval continental and 
expeditionary missions that do not entail the possibility of high intensity, full 
spectrum combat. 

• High Readiness (HR): Capable of conducting the full-spectrum of combat op-
erations. 
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As will be seen in the next section, these definitions may be used to create a 
common language and conceptual framework that may facilitate identifying capability 
strengths and interests to be maintained, developed and exploited; but also identifying 
capability deficiencies (shortcomings or surpluses) to be remedied or accepted. 

4.2   Cross-Functional Capability Framework 

This position paper espouses the tenet that capability levels transcend several 
hierarchical echelons and exist across many functional domains.  For instance, from a 
marine platform systems viewpoint, a hierarchy of equipment-based capabilities pre-
scribe the minimum materiel standard necessary to support the intent of materiel safe-
ty [12]. That baseline level identifies the equipment that must be available for ships to 
proceed and remain at sea, i.e., float and move capabilities in higher than restricted 
readiness. Other equipment may now be selected to enhance the platform systems 
capability levels or elevate the combat systems capabilities enabling fighting at the 
standard or high readiness levels.   

Fig. 2 and Fig. 3 illustrate examples of capability-based frameworks showing 
how materiel availability at the equipment level could be mapped to operational effec-
tiveness using the definitions offered for temporal capability priorities, platform and 
combat systems capabilities, and operational capability readiness levels. 

 

 
Fig. 2.  Cross-Functional Capability Framework – Example 1. 

Proceedings of the Poster Workshop at CSD&M 2014 64

Capability-Based System-of-Systems Approach in Support of Complex Naval Ship Design



 
Fig. 3.  Cross-Functional Capability Framework – Example 2. 

4.3   Capability-Based Planning 

Concepts of capability-based planning (CBP) in enterprise architecture can be 
invoked to explain that capabilities can be horizontal, going against the grain of busi-
ness processes (platform and combat capabilities), or be vertical, being handled in the 
context of the business organizational structure (task group, flotilla or squadron) [13]. 
Applied to the military context, CBP evolved from threat-based planning, and is en-
visaged as the framework that will permit the military forces to optimize their capaci-
ty to respond to the range of plausible missions in which they may be called upon to 
serve.   

CBP is a systematic approach for identifying the levels of capabilities needed 
to meet government priorities.  Using scenarios, CBP explicitly connects capability 
goals to strategic requirement to develop force options more responsive to uncertain-
ties, economic constraints and risk [14].  CBP is thus not estranged to the Defence 
realm and its principles were used as a pillar to the proposed ship design methodolo-
gy.   

5   Methodology 
5.1   Hierarchical Capability Decomposition 

Inspired from hierarchical functional decomposition (HFD) principles, the 
proposed approach suggests to decompose, prioritize and recompose capability re-
quirements through the strategic, operational, tactical and technical levels of abstrac-
tions enabling both the descending “top-down” approach from political aspirations 
and the ascending “bottom-up” approach from equipment-level capabilities. The hier-
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archy can span any set of functional levels, but it should always include as its lowest 
level a tangible set of requirements that can be mapped to physical systems and per-
formance constraints. The process generates upward, lateral and downward connec-
tions to produce a collectively created and shared picture of the SoS being designed. 

These ship-level platform and combat systems capabilities, which correlate to 
system-level key users requirements, could be mapped to tactical-level capabilities 
usually pertaining to effectively conduct a combination of naval functions under pre-
scribed conditions, with other SoS elements. The overall achievement of naval func-
tions would subsequently propagate up the hierarchy to analyze the effect that a given 
set of ship systems capabilities have on higher level operational and strategic capabili-
ties.  

 

 
Fig. 4.  Approach to Hierarchical Capability Decomposition. 

 

As shown in Fig. 4, the process involves eliciting capabilities by mapping and 
prioritizing strategic-level defence roles with operational-level domestic and expedi-
tionary missions which are in turn linked to tactical-level naval functions. These naval 
functions are the bridge to ship-level capabilities where the SoS is decomposed into 
its elements by systems, sub-systems and equipment.  
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5.2   Interactive and Dynamic Capability-Based Trade Studies 

This approach creates a dynamic SoS architecture decomposing and linking 
high-level organizational goals to key performance parameters.  By integrating all 
design analyses, including cost models, into a single environment, probabilistic meth-
ods and surrogate models can be used to facilitate parametric trade studies and capture 
the propagated uncertainties impacts. 

As summarized in Fig. 5, the interactive and dynamic trade-off studies will re-
sults in design variants at the ship-level capabilities which better define the perfor-
mance of the ship independently of mission scenarios, or as an element of a SoS, in 
the early stages of ship design. It follows then that when taken as an element of a SoS, 
much consideration is applied to create a solution with a higher MoE. The equipment 
and systems-level study will generate better key user requirements selected on merit 
because they are critical to the achievement of operational needs and the appeasement 
of political pressures. 

 

 
Fig. 5.  Capability-Based SoS Approach for Ship Design. 

 

The intent of the capability analysis is to capture the knowledge and experi-
ence of the subject matter experts (SMEs), so as to allow a decision maker to assess a 
large number of potential ship capability combinations without the need to query the 
SMEs each time.  

One of the objectives is to unify the stakeholders’ community such that a naval 
architect can readily understand the impact of a design configuration or equipment 
selection on the effectiveness to achieve a specific mission at the SoS level. Con-
versely, a strategist may better understand the technological implications of privileg-
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ing a given political defence priority. By involving more relevant stakeholders at all 
levels, greater awareness and education may be reached on the fundamental elements 
of capability-based ship design and how these canons relate to the stakeholders’ roles 
and responsibilities. 

5.3   Visualization 

Communicating the potentially complex fused common operating picture en-
compassing the interdependencies between domains and disciplines to the stakeholder 
community is essential to sharing a collective understanding of the issues. The use of 
dashboards is an obvious first choice as they are visual displays that can often com-
municate with greater efficiency (can be more intuitive) and have richer meaning than 
text alone. Moreover, as exhibited in Fig. 6, a well-designed and customized dash-
board would summarize the information most needed to achieve specific objectives in 
a single screen using clear and concise displays mechanisms that are easy to compre-
hend [15]. 

 

 
Fig. 6.  Ship Design Synthesis Dashboard 
 

These visualization methods may assist assessing and presenting the findings 
from a variety of reviews in a format that is easy to understand. Ultimately, the visual-
ization of these outcomes provides the catalyst for decision-makers to more confident-
ly consider options they would otherwise ignore and move forward based on well-
founded assumptions. 
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It is acknowledged that verification and validation of the characteristics and 
behaviours of the SoS comply with the design intent is usually performed while the 
systems are being integrated and upon completion of sea trials and ship acceptance. 
But as earlier stated, correctly applying MBSE methods within an architectural 
framework may improve the ability to resolve interoperability issues between sys-
tems, and improve clarity on the context within which capabilities will operate.   

6   Conclusion 
 This position paper proposed an initial approach intended to provide a more 
defined means of establishing and improving the ship design process as part of a 
multi-layered maritime domain warfare enterprise. The proposed methodology 
provides a structured and cohesive initial way forward for identifying and assessing 
ship capability portfolio with traceable and better known impacts on mission 
effectiveness, affordability and risk, in the early stages of ship design. The epistemic 
nature of the proposed process allows the collective generation and evaluation of 
scenarios which challenges prevailing mind-sets and presumed correlations between 
uncertainties, while reducing subjective interpretations. Again, the purpose is not to 
eliminate all uncertainties and cover all options related to ship conceptual design but 
to circumscribe them so as to instil a deeper appreciation of the critical factors. 

7   Disclaimer 

This paper is an unclassified position paper containing public domain facts and 
opinions, which the authors alone considered appropriate and correct for the subject. 
It does not necessarily reflect the policy or the opinion of any agency, including the 
Government of Canada, the Canadian Department of National Defence, or the Geor-
gia Institute of Technology. 
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Abstract. Smart system of systems adapt to their context, current situation, and 

configuration. To engineer such systems’ behavior, we need to design and eval-

uate system-level control strategies and the intelligent management of key  

scenarios. We propose a model-based approach called probabilistic system 

summaries to explore related design choices, e.g., where to put the ‘smarts’ of a 

smart building. Our approach uses Bayesian inference to calculate effects of 

strategies and implementations, offering causal analysis of the costs and bene-

fits of decision strategies in key scenarios. As the modeling is light-weight and 

suitable for various abstraction levels, probabilistic system summaries are  

appropriate for early but sound architecture decisions based on computational 

science. Next to its use within this analysis, the product of this engineering step, 

i.e., a Bayes net summarizing systems plus their environment, may form the 

core of decision making within the system of system..  

1   Engineering of Smart Buildings 

Smart systems of systems are set to recognize and adapt to their situation, to their 

operational context, and to their configuration, and to enact smart strategies to reach 

their goals in the best possible way. One example of such systems are smart buildings, 

where building automation is established to detect environmental circumstances, 

faults, utilization, or emergency situations, and then to act accordingly. They can, e.g., 

adapt building operations to energy saving demands while tuning services to the num-

ber of people present in a room and furthermore compensating for services that are not 

available due to failures. Such buildings are systems of systems: lighting, HVAC 

(heat, ventilation, air conditioning), security, etc. are individually developed and 

commissioned systems that operate independently, fulfil different and partially con-

flicting goals of various stakeholders, but benefit from cooperation. Especially an 

exchange of information is beneficial, e.g., on the presence of people while balancing 

comfort with energy savings. Complexity and size of building automation systems and 

high costs of commissioning make it desirable to realize building automation in a self-

organizing, cooperative, and robust way. 
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These advanced functionalities require among other things I) the means to monitor 

the building and its environment, including the ability to detect faults and special 

events, II) system-level control strategies and scenario-management that allow the 

handling of and adaptation to foreseen circumstances, and III) solutions to handle 

unforeseen dynamics, e.g., fault adaptive behavior or an adaptation to requirement 

changes. In this article, we define our system-of-systems engineering method for the 

design, analysis, and architecture of behavior w.r.t. II), i.e., the model-based approach 

probabilistic system summaries that we use to investigate design alternatives and their 

trade-offs within the engineering of the ‘smarts’ of a smart system of systems. 

1.1 Behavior Architecting within System of Systems Engineering 

Following the argument that system of systems engineering (SoSE) focuses on choos-

ing the right systems and their interactions to satisfy the requirements and goals of 

various stakeholders, we consider the architecting of behavior as a core task of SoSE. 

The focus on architecting, and not the mere design of functionality, acknowledges that 

the ‘where and when’ of a decision taken by a system matters - especially for systems 

of systems (SoS). Imagine, e.g., two alternate system control strategies in smart build-

ings: smart rooms that take local, if cooperative, decisions versus a smart building 

with centralized control. This architectural choice impacts among other things the 

need for data exchange and thus communication means (affecting costs and privacy), 

robustness (reliability of many cheap components or single point of failure), but also 

which data is available to adapt behavior and thus functionality itself.  

An investigation of architectural alternatives that targets smart behavior requires 

methods and tools that enable a lightweight modeling of the solution candidates linked 

to computational science. It should allow the calculation of key performance indica-

tors with regard to both the SoS’ functional and non-functional aspects, e.g., the ener-

gy savings achieved by a decision strategy for efficiency or costs of operations. In this, 

we require a lightweight method, as a detailed process for each alternative incurs un-

due costs; computational science, i.e., modeling with quantitative analysis, is needed 

to discriminate decision strategies and architectures with regard to their expected 

business value, e.g., total costs-of-ownership.  

1.2 Use Case: Where to Put the Smarts of a Building? 

We support the introduction of the probabilistic system summaries method with a 

simplified case study, the investigation of the two architecture alternatives mentioned 

above, which addresses a central architectural question on decision making – where to 

locate it: locally, close to sensors and actuators, thus in many places with a limited 

range of impact but with direct communications, or in a central instance? Worded 

differently within the example, this is a choice between a smart building in which 

rooms without intelligence enact the building’s strategy, or smart rooms that take local 

data to produce local decisions, while occasionally taking global information into 

account, which is provided by the building. 
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Most sensor data is local, about an individual area, e.g., a room, but global data  

always plays a role as well, e.g., outside temperature or available power. Actuators are 

often local, e.g., lights or air conditioning within a room, but shutting down the heat-

ing system is a global action. Strategies and goals might be individual and local, e.g., 

about the intended level of comfort in a room, or global, e.g., a reduction of energy 

consumption. The latter aspects, comfort and consumption, will serve as performance 

indicators of our use case. They represent conflicting goals of different stakeholders, 

i.e., building managers seek energy efficiency and thus minimal consumption (best 

achieved by turning everything off), while inhabitants seek comfort, possibly with 

very in-efficient ideas how to achieve that.  

While this over-simplifies the architectural task and ignores performance indicators 

like costs or robustness of a realization, we believe that the reduction to two opposing 

indicators and two distinct architectural concepts for decision making and control 

works well for the demonstration of our design and analysis method. System architects 

working with our method will be able to define and add further performance indicators 

to suit their engineering tasks. In any way, we need to point out that the question 

which architectural solution to choose has no answer that holds for all possible build-

ings and possibly not even one that holds within one building for all situations. It must 

be investigated for each SoS –  as any such decision impacts costs for operations and 

the infrastructure, and furthermore depends on the goals, situation, configuration, and 

many factors more, including non-functional aspects. 

In our work, we also look into different AI techniques for smart self-organizing 

building automation, described in documents and papers listed at [1], with details on 

the aspects elaborated in this article in [2]. Such choices are not covered here. Instead, 

we assume that a technique is available and investigate its effects. Still, it is notable 

that certain architectures favor certain AI techniques to implement the needed smarts, 

e.g., local decisions with loose coupling work well with agent-based technologies. 

2 Foundations: Bayesian Modeling 

The decision between architectural alternatives warrants an investigation of each of 

them with regard to their costs, benefits, and effects. To avoid costly experimentation, 

we base such investigations on model-based computational science, with simulation, 

calculation, and probabilistic assessment as possible techniques. We opt for Bayesian 

networks [3] as probabilistic models. These graph-based representations of the joint 

probability distribution over all modeled variables offer causal probabilistic modeling 

[4], optimal to investigate cause-effect relationships, e.g., what impact a strategy has 

on energy consumption, given that probabilistic factors, like weather or the building 

usage, affect the outcome. As their calculus allows for the inference of probability 

distributions over variables given evidence or assumed circumstances, it becomes 

feasible to investigate the range and likelihood of possible outcomes. Furthermore, 

Bayes nets allow sensitivity analyses to determine the possible impact of factors [5], 

e.g., to investigate the dependency of a system’s performance on the environment.  
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While the literature listed above provides extensive knowledge on Bayesian net-

works, the remaining article only assumes familiarity with the core concepts: Bayes 

nets are graphs with (random) variables as nodes. Directed edges between nodes show 

their relationships, i.e., probabilistic or causal dependencies, encoded as conditional 

probability distribution of a variable given all its parents. Causal relations are often 

functional: Given the cause, the effect is determined in a functional manner, with the 

conditional probabilities that encode the likelihood of a variable’s states given other 

variables’ states either at 0 or 1 – impossible or always true under the specified condi-

tions. Probabilistic dependencies encode influence that is more random and flexible, 

e.g., a different likelihood for room occupancy given that the building is nearly full in 

comparison to situations where the building is mostly empty. Bayesian networks may 

either be modeled manually via knowledge engineering, or learned from data. Togeth-

er with their real-time capabilities, this makes them suitable for many domains. 

Several modeling techniques exist that enable the efficient use of Bayes nets for 

system modeling, e.g., by supporting re-use with object-orientation [6], and semi-

automated construction of networks from knowledge bases [7] or system descriptions 

[8]. All this ensures a reduction of efforts as well as consistency: As we set out to 

compare strategies for system-level control for a given building that has a given envi-

ronment, we use identical network building blocks, called network fragments, for the 

fixed points of our analysis, adding individually developed fragments for the variable 

parts. As all these fragments are constructed according to the same principles, they can 

be merged easily into a full Bayesian network. 

3 Probabilistic System Summaries 

In this section, we detail our probabilistic modeling that renders investigations of 

architectural alternatives for smart behavior. Essentially, the approach consists of a 

methodology to construct, in a comparable fashion, a Bayes net for each control strat-

egy under investigation together with its context, i.e., a summary of the system and 

environment. Special nodes in the networks allow the computation of utility values of 

the control strategy, e.g., for energy consumption or comfort, given the assumptions 

encoded in the networks, since the Bayes nets represent the joint probability distribu-

tion over all modeled variables. The modeled strategies thus allow for experiments, 

e.g., to compare the utility values of various strategies given different assumptions. 

3.1 System Summaries for Efficient Investigations  

Our goal is to encode a global view on the system, in our domain a smart building, so 

that the impact (cause and effect) of strategies may be investigated. This global view 

requires insights in the distribution over possible values of key variables in the sense 

of a summary: There is, e.g., one variable for room occupancy and not one for each 

room. A distribution over this variable together with dependent variables is sufficient; 

for example, one needs to know that 70% of the rooms are occupied within a given 

scenario and that this level of occupancy results in a certain energy need. 
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Such a causal and probabilistic modeling that encodes a global view at the building 

allows for small models. This limits modeling efforts, especially compared to simula-

tions that include individual rooms. However, even small networks hold a great  

number of parameters: With discrete states as possible values of the modeled varia-

bles, a node in the graph holds one parameter per state for each possible combination 

of the states of all parent variables. This leads to thousands of parameters in bigger 

networks. However, parameters may be computed automatically for functional  

dependencies, greatly reducing efforts. For non-functional dependencies, parameters 

are determined via a knowledge engineering process: estimates of the parameters stem 

from statistics, e.g., on room occupancy, or from an evaluation by experts. The object-

oriented approach to model allows doing so in a constructive manner: a fragment 

encapsulates a piece of the domain, so that its modeling provides no challenge, as its 

relationships are easily understood. The subsequent construction of the Bayesian  

network from fragments follows a strict methodology, which may be used manually or 

even semi-automated, e.g., from a knowledge base (see references above and Chapter 

7 of [9] for details of fundamental modeling techniques). 

3.2 Use Case: Network Fragments for Smart Buildings 

For an easily understood illustration of our work, we start with the following set of 

probabilistic variables (in italics) and the dependencies between them: 

a) Usage of the building, a measure of utilization that impacts the likelihood of 

room occupancy. 

b) Condition of room, a measure how outside factors set a room status, e.g., the 

temperature due to direct sunlight. It impacts, together with room occupancy, the 

need of the room with regard to services that consume energy, e.g., to cool the 

room down. 

c) Services provided for a room, a measure of service-level provided for a room, 

which depends on room occupancy and the need of the room. (Furthermore the 

policy, not shown, which is not probabilistic, but user determined, as it describes 

a decision, e.g., to save energy. See below.)  

d) The consumption of the room follows from the services provided to the room.  

e) The energy consumption of the room determines the energy consumption of the 

building. The latter is a utility variable, i.e., a variable that shows a decision’s 

utility value, in this case the aforementioned policy. 

f) Discomfort within the building, another utility variable, which results from the 

discrepancy between the needs and services provided in occupied rooms.  

Fig. 1 depicts the network fragments for these variables. It becomes visible that the 

fragments can be fused into a network that describes a building: conditions and occu-

pancy determine need, services respond to need and consume energy, and a delta 

between need and services results in discomfort in occupied rooms. The probabilities 

are easy to determine: with statistic for variables without parents, with distributions 

for probabilistic relations, with causality for functional relations.  
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Fig. 1. Network fragments of simplified smart building use case 

More elaborate models might mirror reality with less abstraction, e.g., by distinguish-

ing between offices and meeting rooms instead of summarizing all rooms. This is, 

however, for the system architect to consider: a probabilistic system summary may be 

generated from known details as well as from more general insights. The network’s 

causal nature ensures that different abstractions work together.  

3.3 System-level Control Strategies 

The decision process, i.e., the smarts of the building, is not explicit in the network 

fragments we introduced above. While it could be encoded within fragment c, which 

models the services provided to a room, this would hide the reasoning which is the 

goal of our investigation. Instead, we compose fragments that mirror the decision 

strategy and thus complement the other fragments that mirror the environment and 

processes. These fragments encode the causal effects of the strategy given the data 

available to the decision taker, incl. the current energy saving policy, summarizing 

both the decisions based on the available data and its effects on the system. 

To analyze different strategies comparatively, we require a model for each strategy. 

The network fragments forming these models have two distinct aspects: the reasoning 

process, encoded in the network structure, and probabilities that define the strategy’s 

parameters. The structure is engineered from the understanding which information is 

processed how within the system for decision takings. This might include complex 

steps, e.g., to account for missing data where the building automation has to use esti-

mates. The strategy’s parameters, on the other hand, are typically computed or deter-

mined with experiments, e.g., to find a policy set-point for services given a certain 

context so that a required energy saving is ensured. The modeling of the control  

strategies follows the same probabilistic summary techniques as the modeling of the 

environment and system interactions. It is, e.g., sufficient to know a distribution over 

alternatives for services set-points, disregarding where exactly a set-point is in effect. 
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3.4 Use case: Network Fragments for Control 

In continuation of the simplified example, we show two distinct ways of building 

automation. Fig. 2 depicts the Bayesian network for smart rooms that take local deci-

sions while considering global requests: Given local data on room occupancy and the 

condition of the room, the need of the room is determined. Given that and a policy on 

energy savings, the room sets the services provided. Usage of the building sets the 

distribution of the room occupancy. Utility nodes on discomfort and consumption 

follow functionally. This network holds close to 400 parameters. Fig. 3 shows a smart 

building that enacts a global strategy, and thus altogether a very different information 

flow and computational model. Here, information on the needs of the rooms and thus 

the needs of the building is collected, the outcome is compared to the constraints set 

by the energy saving policy, which leads to insights into required savings, that are 

then used to set an appropriate strategy that fulfils the savings while minimizing  

discomfort. This latter step exploits the information available through the collection of 

the room data: If, e.g., the calculation shows that the use of an aggressive saving  

strategy in empty rooms is sufficient to meet the requirements, discomfort in other 

rooms may be avoided altogether – a fact that an individual smart room could not 

have taken into account. The network holds over 1000 parameters. Fig. 4. shows a set 

of parameters that define set-points on how an energy saving policy for smart rooms 

changes the services provided to a room given its needs. It is key to understand that 

the complete models handle summaries in the form of distributions: if such conditions 

are given, this mixture of decisions will be taken, resulting altogether in these effects. 

 

Fig. 2. Simplified Bayesian network for smart room building control 

3.5 Network Formation 

The final step in the modeling process is the formation of the network structure, i.e., 

the construction of the graph from the network fragments and other necessary nodes. 

This process, which may be partially automated [8], mirrors the information flows of 

the strategy and its realization, i.e., functional aspects as laid out above and other 
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architectural aspects. Fig. 2 and Fig. 3 show the out-come of this process. In these 

networks, we thus see a local decision process in smart rooms that deduct the services 

provided from locally available information while taking the global energy policy into 

account, while the smart building decides its strategy after global budget calculations. 

 

Fig. 3. Simplified Bayesian network for smart central decisions building control 

 

Fig. 4. Strategy for smart rooms: services provided given occupancy, need of room (level  

requested) for three energy saving policies (NIL, LIGHT, and HEAVY constraints) 

If we encounter non-functional concerns, especially w.r.t. the realization architecture, 

we approach the modeling of their impact on the reasoning in the same way. Imagine, 

e.g., a masking of occupancy information for a building section due to privacy con-

cerns, which results in incomplete information in the respective node. If the building’s 

control is realized without mechanisms to compensate for this, we would soften the 

distributions of the room occupancy to allow for a wider range of values within our 

calculations. If the building’s control has a setup to estimate these figures, we would 

include this flow of information, resulting e.g., in a room occupancy that follows from 

a combination of observations and an estimate model, which might be based on date 

and time, or car park observations. Fig. 5 summarizes workflow and considerations of 

the network generation process: The Reasoning Network encodes the information 

flows and functional aspects. If the realization architecture warrants an adaptation, the 

additional steps result in the final Bayesian network. 
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Fig. 5. Process of network generation 

4 Experiments to Investigate Strategies 

To compare the impact of the modeled decision strategies, e.g., the one for smart 

building with rooms without decision power and the one with smart rooms but no 

decision power for the building, we conduct a set of experiments. In each of those, 

applicable environmental settings, like building usage, are set (entered as evidence) in 

the respective Bayesian network (one per strategy). The effects of all possible energy 

saving policies or other circumstances on target variables like discomfort and con-

sumption are computed individually via the probabilistic inference of the network, i.e., 

the circumstance is set and the Bayes network infers the distribution of all target vari-

ables given the evidence entered for the environmental settings. 

This setup allows for experiments on the sum of all environmental circumstances, 

but also investigations that are specific, e.g., for high occupancy under extreme weath-

er conditions and demanding policies. While a presentation of our actual results is 

pointless within this presentation of the approach due to the simplification of the net-

works, we present some details that we consider useful to gauge the approach. With 

regard to the efforts, we note first that an in-depth comparison of two strategies is 

possible within a few hours, while a high level estimation is merely a matter of 

minutes once the modeling is done. Second, we advise to run additional experiments 

with the purpose to test the models, establishing a standard engineering practice to 
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safeguard results and thus subsequent business decisions. Mostly, such test will look 

into fragments and their links, but also wider aspects are sensible. In our example, we 

checked that the target variables consumption and discomfort show identical values 

for all comparable experiments if no energy saving policy is in effect, but we also 

required that a smart building can leverage its information advantage, i.e., mere smart 

rooms should not outperform it on these indicators. 

In addition to these investigations, it is possible to reason backwards, from effects 

to possible causes, e.g., to check the probability of circumstances that lead to levels of 

discomfort that are unacceptable. This is relevant for the dimensioning of systems and 

the setting of strategies, as it mirrors service-level agreements. Another type of exper-

iments is the investigation of so-called counter-factuals that describe an alternative 

reality, e.g., a different building in which the condition of the room leads to different 

needs of those rooms, e.g., due to stronger insulation. This is useful to initiate change 

and improvements in a sensible manner. In [2], we detail the workflow for all types of 

experiments and provide insights into the stability of the results inferred from proba-

bilistic summaries w.r.t. the precision of the network parameters. 

5 Operational Use 

Once a suitable decision strategy is found with the analysis methods described here, it 

is possible to implement it with live reasoning that uses a Bayesian network which 

takes observational data into account. The Bayesian network used for analysis forms a 

direct input for this; it is sufficient to adapt the level of details to the one observable 

for the building automation, keeping the structure of the reasoning intact. This works 

due to the construction of the network as system summary – analysis and operational 

control use identical reasoning.   

6 Discussion 

We introduced a method to model decision architectures of smart systems-of-systems 

that take their context, configuration, and current situation into account to change their 

behavior according to a dynamic or pre-set strategy. Our modeling summarizes the 

system, its behavior, and the impact of control decisions. This summarization is  

encoded in Bayesian networks; it uses probabilistic distributions over all key variables 

and their relationships. Using such a probabilistic summary allows to investigate  

architectural alternatives regarding system-level control strategies and the intelligent 

management of scenarios. This can be done with little efforts in experiments in which 

effects – and thus costs and benefits – of alternatives are computed and compared. 

Given the light-weight and modular manner of modeling, this sequence of modeling, 

experimental analysis, and investigation of cause-and-effect relations grants the bene-

fits of an exploration of the design-space of the system’s control architecture and 

behavior that is based on computational science. This allows system architects to take 

sound decisions, e.g., on where to put the ‘smarts’ of a smart building. 
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6.1 Relation to Engineering and AI 

Our work addresses the architecting of smart behavior and control structures of smart 

systems-of-systems. It is therefore at the interface of system-of-systems engineering to 

artificial intelligence; two communities that only recently started to interact. It is our 

observation that existing work of these domains often take the contribution from the 

other domain out of their considerations: AI puts forward algorithms for smart behav-

ior given a system layout – system engineering investigates designs assuming fixed 

behavior patterns (which are often close to traditional engineering). We believe that 

these more isolated points-of-view disregard the impact of a system’s architecture to 

the possibility, quality, and efficiency of computations for behavior and control, and, 

vice versa, the demands of such computations on architecture. Realizing that the 

‘when’ and ‘where’ of computations affects the ‘what’, we identified the need for 

advances w.r.t. the architecting of behavior and system-level-control, for which we 

propose our probabilistic system summaries as one modeling and analysis technique. 

While we see our main contribution in this focus on a smart system-of-systems’  

architecture, we advise a strong link to operational aspects of decision strategies for 

future work. Medina-Oliva et al., e.g., propose to support the assessment of main-

tenance strategies of industrial systems using probabilistic relational models (PRM) in 

[10]. Their use of key performance indicators as optimization goals within a probabil-

istic framework is similar to our use of utility variables, pointing to a feasible inte-

gration of this work with sustainable operations management [11]. 

6.2 Implementation and Feasibility 

The efforts to conduct an architecture investigation with probabilistic system summar-

ies is very low, especially in comparison to alternatives like a detailed simulation 

where all individual objects are modeled. This assessment is based on experience, as 

we cannot pursue alternative approaches for various techniques in detail. We can, 

however, pinpoint various additional advantages: First, the models are Bayesian  

networks, for which both commercial and open-source software tools exist that offer 

well-established algorithms and suitable human-computer-interfaces. There is no need 

for additional engineering tools. Second, the modeling is dual purpose in the sense 

that models for analysis may be used for the operation of the smart system as well – 

thus reducing engineering efforts. Given the capabilities of smart systems, building 

automation systems in our domain, and the efficiency as well as real-time suitability of 

Bayesian networks, it is feasible to realize this with little to no extra costs. 

However, we must re-consider the modelling efforts together with the efforts to fuse 

network fragments when we extend our approach to include more aspects into the archi-

tectural summary, e.g., for operations management as proposed above. Work by Koller 

et al. on probabilistic relational models [12] together with the foundations on probabilis-

tic frame-based systems in [13] covers the modelling of large complex domains with the 

coherent probabilistic representation of Bayesian networks. As this work has many  

application domains, we expect further advances regarding tool support, further guaran-

teeing the feasibility of industrial use of modelling system summaries. 
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Abstract. The UniText tool is a concept in development that takes into account 
the distributed nature of documentation, which consists of multiple documents 
linked to several parts of the system described at different levels of abstraction, 
and produced by different people with different authority levels. UniText can 
manage the traceability of all the documentation units according to several cri-
teria (author, date, context, tasks, sub-projects, delegation of projects), as well 
as suggestions and discussions about the documentation, in order to help build-
ing and maintaining a consistent documentation from all these pieces of infor-
mation. The UniText venture is designed to structure the work of managers who 
are responsible for documentation in R&D projects, in order to improve clarity, 
motivation, efficiency, capabilities and to absorb and respect all contributions 
of all stakeholders. 

1   Introduction 

Documentation is a key issue in complex projects and it is often a very time-
consuming activity which has a low perceived value, when the same units of text must 
be repeated over and over in multiple documents, correlated differently, with several 
levels of synthesis and/or analysis and aimed at many stakeholders points-of-view. 
Out-of-date, misdelivered and/or uncorrelated documents lead to unnecessary mis-
takes and configuration issues with the consequence, among several, being extra costs 
and delays due to partial re-working. 
 
Documentation management is "local" and "asynchronous" -- when the reference 
documents are part of costly contracts within an "extended enterprise" -- and is also 
subject to "change management" -- thus creating added requirements for updating 
peripheral documents needed for contractual changes, negotiations, decisions, new 
iterations for handling an ever-evolving flow of data, etc. In response to the need for 
documentation management stream-lining, UniText has been developed as an inte-
grated documentation management system, based on small units of text, linked in a 
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network of contexts, locally organized in hierarchy, and automatically managed in 
configuration by date. 
 
This software will link colleagues, their authority, the propagation of access rights, 
including delegation of projects, sub-projects and incidental tasks. Ideas will be man-
aged in a network of context and date, and will have discussion attributes at different 
levels including offers of anonymous suggestions (whose contribution will carry no 
weight of commitment), straightforward decision-making (carrying the weight of 
commitment of a set of signers) and descriptions of work (carrying the weight of 
commitment of a set of signers who can describe the existing system). 
 
UniText is a complement to the management/evolution of documents, due to tremen-
dous reduction in the number of updates and iterations made to individual documents 
removed from a particular project's stream of documentation management. Within 
UniText , ideas are managed in configuration with virtual contents that can be ma-
nipulated by several users. A dynamic project management workflow system enables 
vibrant discussion, clear and shared decision-making. In this way, UniText will create 
a virtual think-tank environment to consolidate the set of applicable documents. 

Fig. 1.  UniText Concept Overview. 
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2   Existing tools and methodologies 

The UniText concept proposes a compact intranet/internet-based environment 
wherein “text units” are managed in configuration with a project’s global set of data 
in order to produce inter-related documents. Text units are units of text, as in short 
sentences, for example, chosen for their applicability within requirement management 
which are published and shared amongst a project’s stakeholders. 

 
Emails, for example, are text units which are not currently capitalized upon in order 

to produce final documents with any configuration management structure. The usage 
of text units is common on the web, but this capability has not been exploited yet to 
produce complex documentation in systems design. Management of “document-like” 
pages is also common in Wiki pages. Project management standards are also well 
described, as stated in the Reference section of this paper, and the UniText goal is to 
implement software solutions to comply with these environments and standards. The 
originality of UniText is to create a new usage of distributed text units, from a synthe-
sis effect, now possible thanks to mature means available through intranets and the 
internet.  

 
The UniText concept is not a revolution in tools or methodologies. Let’s look at the 

common process to negotiate documents in systems R&D : 

Fig. 2.  Usual process to elaborate and discuss documents. 
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3   Issues addressed in documentation update 

As we can see in Figure 3 below, many documents have to be updated from ver-
sion n or Vn to the next version, n+1 or Vn+1. 

 
In large and complex projects, a lot of subtle information, complexity and quantity 

of communication are lost. As shown above in Figure 2 it is not possible to communi-
cate well outside of a “core team”, or a reduced set of people responsible for a part of 
the project/product/service with limited and manageable interface with the outside 
world. 

 
 

 
 

Fig. 3.  Issues addressed 
 
 
The main issue considering cost and delays is the difficulty to predict how many itera-
tions will be needed to obtain a final set of documentation satisfactory to all stake-
holders. We generally know the goal, which final documentation is needed, but how 
to go there requires iterations. 
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4   Organization of the UniText concept. 

 

 
 
 

Fig. 4.  Organization of the UniText concept 
 
The UniText concept is centered around the person, and around a network of ideas, 
globally in the network, and locally in a hierarchy. The existing intranet/extranet 
technology enables the different interactions required for forging the efficient links 
between men, decisions and ideas. UniText’s internal database is meant to be local 
and asynchronous, centered on the person. As a person, do I need to know the global 
OBS of the project, the global organization of my customers, of my company, of my 
suppliers? UniText’s local philosophy negotiates the inter-dependency between peo-
ple at the individual level, the one, two or three stakeholders who will back me up as a 
project leader or a hierarchic. The local data model of UniText describes links be-
tween people, with propagation rules: What delegation do I receive? What delegation 
can I propagate? This relationship between stakeholders and data propagates access 
rights, ordering what access rights to which project they receive and what access 
rights they can propagate. In complex projects, the repository of files and documents 
generally requires a system administrator to permit access to different shared hard 
disk directories. 

 
The ambition of UniText is to declare a bottom-up logic, and to enable access 

rights to stakeholders as naturally as one can give a document to a colleague from 
hand-to-hand. The goal is to extend a lot of freedom to contribute to the compilation 
of documentation to all stakeholders. All ideas and suggestions would find or create a 
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correct context to be written in. The result would be the motivation and respect of 
stakeholders who will have access to an easy way to communicate their concerns in a 
transverse way to the right people, at the right time. 

5   Conclusion 

The UniText project is a free software concept to be used within extended enter-
prises, from clients in-charge of CSDM to final detailed-parts suppliers, managing 
documentation, related to projects. This software is an attempt to organize locally, at 
the individual stakeholder level, the best management practices in high-tech industries 
like aeronautics, where complex documentation is required and has to be maintained 
for financial, contractual, reliability, long-term maintainability, traceability and safety 
reasons. The goal of the association Les Amis de UniText  is to develop an initial 
software model within DRUPAL. DRUPAL will enable security and web compatibil-
ity. The initial software data model will contain nine tables and a total of around nine-
ty fields. 

 
Your input and contributions of ideas, programming, testing and financial donation 

are welcome.  
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Abstract. The scope of this paper is collaborative, distributed safety
critical systems which build up a larger scale system of systems (SoS).
Systems in this context are independently designed and can operate au-
tonomously following both global SoS goals and individual goals. A major
aspect of SoSs is the evolution over time, i.e. the change of its architec-
ture as a result of changes in the context of the SoS or the changes of
individual or global goals. The aim of this paper is to define a modeling
concept for evolution specifying all possible changes of the SoS over time.
This evolution model is used to generate and analyze future architectures
enabling the prediction of future violations of static specifications. We
derive so called dynamicity contracts and restrict the evolution model in
such a manner, that false architectures are not reached.

1 Introduction

In recent years the co-operations and inter-connections between individual, ge-
ographically distributed systems heavily increased, leading to a new paradigm
called Systems of Systems (SoSs). Also in safety critical areas the significance
of these topics increased. As an example, much effort has been invested in the
development of Car-to-Car communications with the aim to increase the safety
in traffic and optimize traffic flows. Another example is the dynamic partitioning
of the airspace with respect to time investigated in the SESAR (Single Euro-
pean Sky ATM Research) program. The recent partitioning of the airspace is
performed in a statical manner with respect to time, i.e. the trajectories are
not changed during the whole landing approach and the take off. The shift to
a dynamic partitioning, which is called 4D-trajectories, involves a much more
intensive co-operation between the tower and each airplane.

To distinguish between complex systems and SoSs, Mark Maier defined a
set of characteristics [1], like the geographical distribution or the operational
independence. The more a system exhibits these characteristics, the more it is an
? This work was supported in part by European Commission for funding the Large-
scale integrating project (IP) proposal under the ICT Call 7 (FP7-ICT-2011-7) "De-
signing for Adaptability and evolutioN in System of systems Engineering (DANSE)"
(No. 287716).
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SoS. The main characteristic we are interest in is the evolutionary development,
i.e. the change of the architecture of an SoS during its lifetime. A model for the
evolutionary development can be created based on prognosis on possible future
evolutions of the SoS. As an example, statistical data could be used to do a
prognosis on the future traffic density in a district of a city. We propose graph
grammars to model the possible evolutions of an SoS. These transformations
could also be specified via temporal logics as we proposed in [2]. However, the
specification with graph grammars is more intuitive than temporal logic.

Graph grammars describe the adaption to a context change in form of trans-
formation rules. With these transformation rules the inter-connections of the con-
stituent systems and thereby their roles and interaction protocols are changed.
The trigger of such transformation rules are the constituent systems itself: When
systems adapt or change their local goals and thus affect their local behavior,
change their services offered to the environment, or need some services from their
local environment, a request to change some parts of the SoS architecture are
triggered from the corresponding constituent systems. In [2] we already discussed
the initiations for transformation rules from constituent systems.

Besides the evolution model, we will consider static specifications of SoSs by
contracts defining invariants and constraints on the architecture of the SoS. An
example for a static contract is that systems applying inconsistent roles should
not co-operate. The set of static contracts of an SoS defines all legal architec-
tures of this SoS. Beginning with an initial SoS architecture, the evolution model
successively generates a set of successor architectures. Transformations are ap-
plied locally resulting in sequences of transformations which could lead to an
architecture violating the static contracts. In this paper, we derive so called dy-
namicity contracts which restrict the dynamics of the evolution model of the SoS
to prevent the SoS entering an architecture which violates its static specification.
We extend this approach by tolerating a finite set of intermediate architectures,
which violate the static specifications. These intermediate architectures have to
be left finally and a safe architecture has to be reached within a specified num-
ber of changes. The idea to allow temporarily intermediate faulty architectures
is inspired by the fault tolerance time intervals defined in the ISO 26262 [3].
After the occurrence of a fault, a safe system state has to be reached within a
defined time interval. If this interval exceeded, an hazardous event could occur.

To model the static architecural part of an SoS we use the UPDM framework
[4]. UPDM is a unified Profile for DoDAF (Department of Defence Architecture
Framework) and MODAF (Ministry of Defence Architectural Framework). It
supports the capabilities to model architectures of complex systems, system of
systems, and service oriented architectures. Beside milestones, no dynamicity
aspects of systems of systems were considered in this framework.

1.1 Related work

In [5] a method for modeling and analyzing the dynamicity for multi-hop ad hoc
networks was presented. Statistical estimation theory was applied to model the so
called configuration of a multi-hop wireless network. In [6] a supporting model
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called dynamicity aware graph relabeling system is introduced. This model is
used for ad-hoc networks to take mobility into account. Ultra large scale systems
are the topic of [7], where the main characteristics are captured and specified,
e.g. decentralized control, conflicting requirements, and continuous evolution.
In [8] some major issues in self-coordinating systems are depicted. The main
statement is that a tight integration of all disciplines in the development process
of such large scale self-coordinating systems has to be established. An approach
for the design and analysis of multi-agent systems was presented in [9]. Agents are
able to sense and manipulate specific aspects of the environment. Sets of agents
form community types, which interact in the modeled environment with some
interaction specifications. In [10] self-adaptive systems were presented. Initially
a system architecture with defined components, their interfaces, and a set of
coordination pattern is given. Coordination pattern define protocols between
components via roles. Reconfigurations are defined via graph transformation
rules and are initiated by environmental changes.

Automatic verification of the real-time behavior including the reconfiguration
is supported by CHARON [11], Masaccio [12], and Mechatronic UML [13]. There
are some approaches for modeling the structural aspects of adaptive systems [14,
15] or the behavioral aspects [16, 17] but none of them consider both aspects.

1.2 Outline
The following section introduces the fundamentals of our work, i.e. the considered
modeling formalism called UPDM, the contract-based specification formalism,
and the formalisms needed to express transformations. Section 3 illustrates our
approach to derivate dynamicity contracts in order to prevent the SoS to evolve
in architectures which violate its static specification. In Section 4 we illustrate our
implementation and give some example scenarios. Finally, Section 5 concludes
the paper and discusses some further work.

2 Fundamentals

The basic modeling elements of our approach are components as structural ele-
ments, and graph grammars. Our components are enriched by so called contracts,
specifying the allowed context of a component and its guaranteed behaviour.
Components and contracts are detailed in the following section.

2.1 Contract-based Modelling

We use Heterogenous Rich Components (HRCs) [18, 19] to model systems and
its artifacts in a black box manner. The dynamics of an HRC can be specified by,
e.g., an external behavior model. For each HRC a set of specifications in terms of
contracts [20] is defined. A contract is a pair consisting of an assumption (A) and
a guarantee (G). The assumption specifies how the context of the component,
i.e. the environment from the point of view of the component, should behave.
Only if the assumption holds, then the component will behave as guaranteed.
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The system decomposition can be verified with respect to contracts without the
knowledge of the concrete implementation. The specification of both assump-
tions and guarantees can be provided based on a pattern based language like
introduced in [21].

Having a formal specification for the component and its sub-components the
so called Virtual Integration Test (VIT) [22] can be performed. It is called virtual
because no implementation for the sub-components or any testbed is required.
This analysis is performed based on the specifications, the interfaces, the connec-
tions, and the structure of the composition. This test checks if the composition
of the sub-component contracts implies the contracts of the surrounding compo-
nent. In this work we assume that the components are implemented according
to their contracts and call an architecture valid iff the VIT is successful.

2.2 Rewriting Rules
An architecture of an SoS is a composition of CSs at a specific time, where roles
and inter-connections of all systems are specified. Changes of an architecture of
the SoS are defined by a set of rewriting rules. Rewriting rules consist of a left
hand side and a right hand side corresponding to architectures of the SoS. In
this work, rewriting rules restructure the architecture of an SoS by composing or
separating system instances in a well-defined way, and applying the right roles
to the corresponding systems. So, a single transformation affects a subset of
participating system instances, their inter-connections, roles, and modes. In the
following, we will formalize the concept of graphs and rewriting rules.

A graph is defined as a tuple G = (V,E, s, t) where V is a set of vertices, E is
a set of edges and s, t are a source and a target function defined as {s, t} : E → V.
Let L,R be two graphs. A rewriting rule r : L→ R is defined in such a way, that
whenever an instance of L, called match, is found in a graph G, this instance can
be replaced through an instance of R leading to the transformed graph G′. For
two graphs H,G let h : H → G be a graph homomorphism, mapping nodes and
edges of H to G. The homomorphism consists of two functions hV : VH → VG
and hE : EH → EG, such that µG ◦ hE = hV ◦ µH , with µ = {s, t}. A rule
r : L→ R can be applied to a graph G leading to a changed graph G′, in short
d : G →r G

′, if there exist two homomorphisms h1, h2, such that h1 : L → G
and h2 : R → G′. In Section 3 we will apply a set of rewriting rules specifying
the dynamic behaviour of an SoS.

2.3 Modeling the SoS

System of systems (SoS) consist of several constituent systems (CS) which are
instances of systems or even SoSs themselves. To distinguish between complex
systems and SoSs Maier proposed five criteria for the "SoS-ness" of a complex
system, which are introduced in the following [1]:
– Operational independence of elements: The CSs can operate independently.
– Managerial independence of the elements: The CSs are separately acquired

by different managerial entities.

Proceedings of the Poster Workshop at CSD&M 2014 92

Correct by Prognosis: Methodology for a Contract-Based Refinement of Evolution Models



– Evolutionary development : An SoS evolves over time, developing its capabil-
ities as the CSs are changed, added, or removed.

– Emergent behavior : The SoS itself offers additional services beyond the capa-
bilities of the CSs including unexpected and potentially damaging behaviors.

– Geographic distribution: The geographical extent of the CSs could be “large”.

We focus on the evolutionary development aspect of SoS and therefore concen-
trate not only on the architecture at a specific time but also on the evolution of
the CSs and their re-configurations. We distinguish two levels of behavior, i.e.
system dynamics, and evolution. System dynamics deal with the question, how
systems exchange data via their inter-connections. The topic evolution poses the
question, how systems and their inter-connections are changed over time.

System dynamics are covered by the UML/SysML behavioral models and
diagrams, e.g. state charts. We use contracts to specify the assumed and guar-
anteed behavior of each CS.

We address the evolutionary development and extend the milestone-based
representation of SoSs in UPDM. A milestone represents an architecture of the
SoS at a specific point in time. We will focus on the system view which basically
represents systems itself, their resource roles and inter-connections. The SV-1
allows to characterize the inter-connections of the CSs for a single architecture.
The milestone plan (AV-2) is the planed evolution of the SoS taking the entire
life-cycle of the CS into account. This plan is created manually and explicitly
since each milestone consists of an entire SoS architecture.

The problem we address is that the owners or managers of the CSs follow
their own goals, and change or influence changes of their CSs independently from
a central authority. We define goal as an optimization metric which represents
how good (or bad) a CS (or an SoS) performs. These values can be statically
computed for an architecture of the SoS, or depend on the system dynamics
and are measured during execution. The owners of a CS are assumed to monitor
this values and decide to change the behavior or connectivity of their CS to
improve their goals. This change might take place on the CS level by switching
into another mode or on the SoS level by changing the inter-connections to other
CSs. In the first case this behavior is part of the CS specification and covered
by the contracts of the CS. In the second case the change is beyond the system
borders of the CS and therefore not in the scope of the specification of the system
dynamics. The evolution behavior of the SoS is based on changes which might
impact the dynamics of the SoS.

3 From Evolution Model to Contracts

A model for an SoS consists of an initial architecture, a static specification and
an evolution behaviour. As said before, evolution behaviors define the possibility
of re-configuring a given architecture as a result of e. g. changing environmen-
tal conditions, or some adaption of cooperations between a set of systems. We
will apply graph grammars to model such a behaviour. The benefit of the usage
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of evolution models is the possibility to generate and analyze future architec-
tures enabling the prediction of future violations of specifications. Changes of a
given SoS can be explored before they occur in reality in order to prevent in-
valid architectures of the SoS. Typically an infinite number of architectures will
be generated by graph grammars. In our concept, we will apply the concept of
bounded model-checking, i.e. we will only consider a finite number of architec-
tures reached by a grammar specification. This also has a practical relevance,
as in general the evolution model shall only predict the possible behaviour for a
finite time frame instead of an infinite time frame. To obtain a finite set of ar-
chitectures, we could apply abstraction techniques like the Partner Abstraction
introduced in [23].

3.1 Derivation of Evolution Contracts
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rj
r0,...,rn

r0,...,rk

rj
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Gn

Gn
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...
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...

rj
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r0,...,rn,rm,rk
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... ...

  cnew: (A: Gn+1 /\ (r0,...,rm) ,  G: !rk) 

Fig. 1: Example scenario for derivation of evolution contracts – Left: Initial sit-
uation for a given SoS model; Right: Derivation of new dynamicity contracts.

The concept of dynamicity contracts complements the static contracts for the
SoS and constituent systems. The static contracts restrict the allowed behaviour
of the overall SoS and each system, whereas the dynamicity contracts restrict
the dynamics of the evolution model of the SoS.

Starting from an initial architecture each reached architecture is analyzed if
it is valid. If invalid architectures are reached, a dynamicity contract is derived in
such a way, that the evolution model is prevented to generate this architecture.
Thereby, the assumption part of a dynamicity contract encapsulates the archi-
tecture, from which a violating one can be reached by the application of a rule
defined in the evolution model. The guarantee part then consists of the negation
of the corresponding identifier of the rule. Further, we extend this approach by
allowing intermediate architectures, which violate the static specifications, if a
valid architecture is reached after “some time”. In this work, we require that a
specified number of successive invalid architectures may be tolerated, and after
this number a valid architecture has to be reached. In future work, we will extend
this approach by specifying some allowed time frames.
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Consider the example of Figure 1, where the initial architecture G0 can evolve
to different future architectures by applying an evolution model consisting of a
set of rewriting rules r. Assume that we allow that during the evolution maximal
a single architecture may be reached which violates the static contracts. On the
left part of the figure the initial situation is depicted, where no restrictions exist
so far for our evolution model. If the sequence of rules r0, ...rn, rm is applied,
we can reach the architecture Gn+1 which violates the static specification. If we
would now apply rule rk we would again get an architecture violating the static
specification. In order to restrict our evolution model we derive the contract il-
lustrated in the right part of Figure 1. The contract states, that whenever we are
in an architecture isomorph to Gn+1 and we previously applied the sequence of
rules r0, ..., rm, the rule rk will not be applied. Note, that we need the architec-
ture within the assumption part, as rewriting rules are non-deterministic. The
sequence of rules r0, ..., rm can also lead to some architectures not violating the
static contracts as illustrated in Figure 1.

Next, we define our applied graph grammar formalism, and formalize the
derivation of dynamicity contracts.

Graph Grammars Let w = r0, ..., rn, ... be a word over an alphabet Σ,
pre(w, n) = r0, ..., rn be its prefix consisting of n+1 symbols, and w(n) = rn ∈ Σ
the (n+1)−th symbol. A dynamicity contract is a contract talking about graphs
and prefixed of words: The assumption (A) part of a dynamicity contract c con-
sists of a (possibly empty) finite prefix of a word w and a graph G, its guarantee
(G) consists of a symbol in Σ, in short c : (A : pre(w, i−1)∧Gi, G: !σ) for some
i ∈ N with σ ∈ Σ. The intuition is that whenever a finite sequence of symbols
pre(w, i− 1) is received and the graph Gi is reached, the next symbol shall not
be σ. With these dynamicity contracts we will restrict graph grammars in such
a way, that through the successive application of rules it always holds, that no
graph can be reached violating some static specifications.

A graph grammar is a tuple G = (G0, R, CD) where G0 is a start graph,
R = {r0, ..., rk} is the set of rewriting rules (each with an unique identifier), and
CD is the set of dynamicity contracts, which may be empty at design time. In
the next section we detail the iterative extension of this set. A graph grammar
can be translated to a finite ω−automaton TE = (S, so, Σ,→), where S is a set
of graphs corresponding to the set of states, s0 the initial state, Σ an alphabet
consisting of the identifiers of the rules in R, and →⊆ S ×Σ × S the transition
relation. All states are considered to be accepting ones.

A run ρ of TE over an infinite word w = r0, ..., rn, ... is an infinite sequence
of graphs G0 →r0 ... →rn Gn,→rn+1

... such that G0 is the initial graph and
(Gi, ri, Gi+1) ∈→ for all i, j ∈ N, for which holds that (A : pre(w, i − 1) ∧
Gi, G : !w(i)) /∈ CD. The language of a graph grammar is defined as the set of
words accepted by its finite automaton.

Derivation of Dynamicity Contracts A specification for an SoS is given by
the tuple SoS = (G, Cs) where G is a graph grammar specifying the evolution
model, and Cs a set of static contracts defining the allowed SoS behaviour. In
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general, the evolution model specified through the concept of graph grammars is
not initially consistent with the static specification specified as a set of contracts,
as rewriting rules are applied locally resulting in sequences of rules which could
lead to a graph violating the static contracts. This can happen because the
application of a rule does not check whether the reached graph harms a static
contract. In order to make the evolution model consistent with respect to the
contract specification, such paths have to be removed from the evolution model.
For this we derive new dynamicity contracts from these paths.

The easiest case is given, when a direct application of a rule violates a static
contract and no intermediate architectures violating contracts are allowed. For
such cases we can derive a dynamicity contract consisting of the current ar-
chitecture G as the assumption part, and the negation of the identifier of the
corresponding rule for the guarantee part. That is, we extend our dynamicity
contract set CD of G with the contract {(A : G, G : σ)}, if there exists a rule
σ : L→ R in G, and G→σ G

′ could be applied, such that G′ 6|= Cs.
With this extension the graph grammar will be prevented by firing rule σ

when an isomorphic graph to G is present. If violating graphs are accepted tem-
porarily, e.g. a finite amount of time, or a finite number of violating graphs,
we need to extend such dynamicity contracts with the history which lead to
a corresponding architecture. In this work, we will only consider the maximal
successive number of incorrect intermediate architectures, i.e. architectures vio-
lating the static specification.

Let ξ ∈ N be the maximal number of successive graphs violating the static
specification, which is defined to be tolerable. Let pre(w, n) = r0, ..., rn be a
prefix of a word, for which there exists a run ρ = G0 →r0 ... →ri Gi... →rn Gn
of the automaton of G, such that Gi, ..., Gn 6|= Cs and |{Gi, ..., Gn}| > ξ. Then
we derive the following dynamicity contract and extend the set CD as follows:

CD ∪ {(A : Gn−1 ∧ pre(w, n− 1), G : !w(n))}. (1)

Note that a word w could result in a set of runs instead a single run. In this case
our new dynamicity contracts are correct in the sense, that no legal evolutions
resulting in graphs which all fulfill the static contracts are excluded. This is
because the assumption part exactly states, that a rule shall not be applied if a
specific architecture is given.

4 Application of Methodology

To illustrate our approach we consider an emergency response scenario, con-
sisting of a set of constituent systems like fire stations and fire brigades. All
CSs participating in this SoS shall behave cooperative in order to minimize the
needed time for an operation in case of an emergency.

We use a new custom diagram via an additional profile which allows to model
rewriting rules graphically in IBM Rational Rhapsody c©. These diagrams allow
to add placeholders which refer to model elements of the Rhapsody UPDM
model. This reference mechanism ensures that the model itself and the rewriting
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rules are clearly separated. The rules contain four different kinds of graphical
elements for each CSs and their inter-connections, i.e. Reader, Creator, Eraser
and Embargo. Reader elements are unchanged elements of a corresponding rule.
Creator elements represent newly generated elements on the right hand side of
the rule. Eraser elements address elements of the left hand side which are re-
moved via the rule application. Embargo elements restrict the applicability of
the rule if the match can be extended by these elements. The Rhapsody model
including its rules are exported to GXL[24] files which are the input language
of the GROOVE[25] tool. GROOVE is used for the generation of architecture
alternatives and is also able to perform the isomorphism check of the generated
architectures. After applying GROOVE we get a set of architectures, and the
corresponding network representing the applied rules. As an example consider

(a) Rhaposody (b) GROOVE

Fig. 2: Excerpt of the Emergency Response System

Figure 2 and 3. The purpose of the fire service is to delete fire at any location
within a city and to save the involved people. The time between the incident
harms people and the treatment begins is critical for the recovery of the injured.
Therefore the goal of the fire service is to minimize the time between the noti-
fication and the arrival of the right amount of units to treat the injured people
at the incident location. Increasing traffic density typically extends this time
frame and might require to send units from locations with a larger geographical
distance but lower distance in travel time. To improve this, one option is to in-
crease the number of units like fire brigades but this is only partially possible.
Another option is to increase the awareness of the fire head quarter about the
required number (and kind) of units at the location. This can be achieved by
improving the communication technology, in this scenario the change from the
current TETRA 1) to the LTE2) communication technology. The application of
such a rule leading to an architectural change is illustrated in Figure 3(b). In
1 TETRA: Terrestrial Trunked Radio, ETSI EN 300 392-2 v3.2.1
2 LTE: Long-Term Evolution
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(a) Rhaposody (b) GROOVE

Fig. 3: Rule Translation: Rules in Rhapsody (a) are automatically translated into
rules in GROOVE (b)

this example, the evolution model contains only a very small set of architectures
because the rule is only applicable once per fire brigade and the number of fire
brigades is low. If one would add a rule adding fire brigades to the model the
number of architectures would be infinite. In the complete model several fire sta-
tions are coordinated by one head quarter and also the number of fire brigades
is higher. Since the fire brigades are coordinated by the different fire stations
and must cooperate during operation it is essential that those brigades use the
same communication network. If each brigade is updated to the new technol-
ogy individually, invalid architectures are possible which can be characterized
as (at least) two brigades coordinated by the same fire station using different
networks. The evolution must be restricted to avoid those architectures. Typi-
cally not all those constraints can be derived from reasoning about architectural
pattern only but the reachable architectures have to be analyzed including the
system dynamics. This can be done via simulation or static analysis (e.g. tim-
ing analysis as proposed in [2]). The results of the analysis are annotated to
the reachable architectures and support the identification of contracts for the
evolution itself.

Fig. 4: Left: network of architecture alternatives; Right: annotated network.

In the left part of Figure 4 a network of reachable architectures is illustrated.
In the right part of Figure 4 a (simplified) network of architectures is presented.

Proceedings of the Poster Workshop at CSD&M 2014 98

Correct by Prognosis: Methodology for a Contract-Based Refinement of Evolution Models



For this network the invalid architectures are marked in red. From this net-
work global constraints are derived which restrict the application of rules. These
conditions are the previous architectures of any edge ending in an invalid ar-
chitecture. The evolution contract takes this condition as assumption and the
negated invalid architecture as guarantee.

5 Conclusion

We presented a modeling concept for evolution specifying all possible changes
of the SoS over time as an extension of the UPDM framework. We introduced
a novel approach for deriving dynamicity contracts restricting such evolution
models in order to prevent reaching invalid architectures with respect to the
static specification of an SoS. Our prototype implementation offers so far an ex-
port mechanism from UPDM models created with Rhapsody to GROOVE, and
feed back the generated architecture alternatives to Rhapsody. For the gener-
ated models we can apply our previously introduced virtual integration checker
[26] and manually derive dynamicity contracts. Currently, we aim to close this
loop, i.e. the generation of architectures and calling the verification back end
to automatically generate dynamicity contracts. In future work we also plan to
include the notion of time for the evolution models to enable reasoning about
timing constraints for the evolution.
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Abstract.  This paper focuses on coping with system quality in the early phases 

of design where there is lack of knowledge about a system, its functions or its 

architect. The paper encourages knowledge based evaluation of system quality 

and promotes probabilistic thinking. It states that probabilistic thinking facili-

tates communication between a system designer and other design stakeholders 

or specialists. It accommodates tolerance and flexibility in sharing opinions and 

embraces uncertain information. This uncertain information, however, is to be 

processed and combined. This study offers a basic framework to collect, pro-

cess and combine uncertain information based on the probability theory. Our 

purpose is to offer a graphical tool used by a system designer, systems engineer 

or system architect for collecting information under uncertainty. An example 

shows the application of this method through a case study. 

Keywords: system; quality; uncertainty; design; evaluation 

Nomenclature 

  expected value  

  relative weight  

id  a random number representing the system quality over the i-th requirement 

ki
d   a random number representing the system quality over the i-th requirement ac-

cording to the k-th stakeholder  expected value  

   relative weight of requirements  

m  number of stakeholders 

n   number of requirements 

ir  a random number representing the importance of the i-th requirement 

ki
r   a random number showing the opinion of k-th stakeholder over i-th requirement 

ks  a random number representing the importance of the k-th stakeholder 

jks   a random number showing the opinion of j-th stakeholder over k-th stakeholder 

sq   a random number representing the system quality 

Var     variance 
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1 Introduction 

To deliver a quality system, a system designer should first identify, clarify, and doc-

ument system requirements [1]. These tasks are performed in the earliest phase of a 

project life cycle and in the presence of a high level of uncertainty [2]. These re-

quirements are not fixed and may change throughout the development stages [3]. On 

the other hand, some requirements e.g. maximization of benefits are explicitly or im-

plicitly present in all design phases, and different terminology may be used for them. 

For example, design objectives or concept drivers are commonly used in the concept 

phase while the program of requirements or design criteria are more likely to be used 

in the embodiment phase. It is important to note that the requirements keep the focus 

of the design team on the most important design aspects or main needs and they pro-

vide references for the evaluation of system quality. 

Therefore, system requirements have explicit roles through the design process. It is 

mainly because of the presence of a systematic approach [4] in this process and also 

because of the societal demands for meeting the standards [5] in engineered products. 

These are reflected in tools, processes and standards. An example is the popular 

method called the house of quality which   relates user requirements to design re-

quirements in order to ensure quality end-products. To achieve quality systems, de-

signers need  to define proper system requirements as early as possible [6] as  they 

help judging the relevance of new information.  

The evaluation of design alternatives are on the basis of these requirements. In oth-

er words, every design alternative has to be able to address the initial requirements. 

As a result, these requirements form criteria for evaluation of system quality. These 

design criteria may change through the design process and may have different degrees 

of importance. To assess system quality, a system designer has to rank them at the 

early stages of the design process. Ranking methods is of great value in decision 

models, and the use of multi criteria decision models (MCDM) typically involve crite-

ria ranking.  

1.1 Information elicitation 

To define system requirements, identification of stakeholders is one of the earliest 

steps. A review research by Pacheco and Garcia [9] confirms that an incomplete set of 

stakeholders may lead to incomplete requirements. A system designer has to pay at-

tention to the problems arising from the scope, understanding and validation of re-

quirements [10, 11] in the course of communication with stakeholders. 

Figure 1 presents the functional diagram for identification of stakeholders and 

communication with them. It shows some new stakeholders may be realized through 

the course of communication with already-known stakeholders. To document the  

stakeholder’s needs and collected feedback , Salado and Nilchiani [12] suggest a set 

of questions for discovering new stakeholders in order to identify a complete set of 

stakeholders. Complex systems often include a relatively high number of stakeholders 

with different (conflicting) interests [13]. In such cases, the process of information 
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elicitation, documentation and integration is a necessity to achieve informative con-

clusions. 

 

Identify 
stakeholders

More stakeholders 
identified?

Yes

No

Integrate the 
collected 

inforamtion

Communicate 
with 

stakeholders

Document the 
needs

Realize the key 
requirements 

Fig. 1. The process of identification of stakeholders, communication with them, inte-

gration and prioritization of the collected data. 

1.2 Ranking process  

Ranking of requirements (or criteria) based on their importance is well discussed in 

decision models. The use of multi criteria decision models typically involves a sys-

tematic ranking process as for instance indicated in [4, 14]. The influence of the rank-

ing process on final decisions is for example explained in [15]. A review of subjective 

ranking methods shows that different methods cannot guarantee accurate results. This 

inconsistency in judgment explains difficulty of assigning reliable and subjective 

weights to the requirements. A systematic approach for ranking is described in [16] 

that is a generalization of Saaty’s pairwise structure [17]. Given the presence of sub-

jectivity in the ranking process, sensitivity analysis of the design criteria is used to 

study the influence of variation and the ranking process on the decisions made [18]. 

Furthermore, some approaches e.g. the task-oriented weighing approach is effectively 

used. This approach is meant to limit the subjectivity of criteria weighting [19]. It 

suggests an algorithm to rank criteria objectively while considering the uncertainty in 

criteria weight [20]. The approach is based on introducing fuzzy numbers that impos-

es specified membership functions, which has been also used in [21, 22].  

However, there is an obstacle for systems architectures or engineers in communi-

cation of the proposed methods with different stakeholders. The stakeholders can be 

individuals, corporations, organizations and authorities, with different fields/ levels of 

knowledge and experience [2]. The stakeholders have interest in the project and they 

desire to express their knowledge and expertise to improve the design. They also have 

expectations which have to be addressed at the end. Besides, it is advised to designers 

to rely on the experts in order to manage design uncertainties since it is proven that 

experts provide frameworks for making knowledge based decisions under uncertainty 

[23, 24]. This offers a human solution in terms of preferred alternatives. The uncer-

tainty in importance of design requirements is also of human nature which should be 

reflected in the weighting process. To address these, we present the principles of our 

method through the next section. 
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1.3 Evaluation of system quality 

To estimate the system quality, an intuitive method is used. Detail description of 

this method and its formulation emerge through the rest of this paper. It provides a 

consistent framework to value the system under uncertainty and observe how well the 

system addresses the stakeholder’s needs. This outcome provide valuable sources for 

the system designer or system engineer to monitor the strong and weak point of the 

system. Figure 2 presents the functional flow for evaluation of system quality in a 

pluralistic approach where the stakeholders’ opinion is fundamentally contributed to 

quality evaluation. In this perspective, communication plays an essential role and the 

proposed method aims to facilitate this communication. 

 

Communicate the 
key requirements 
with stakeholders

System quality is 
satisfactory?

Yes

Measure the 
overal system 

quality

Measure how much the 
proposed system 

addresses requirements

Integrate the 
collected 

information

The proposed 
system is chosen 

A new design 
alternative ?

YesNo

Propose a new 
alternative 

system

Improve the 
proposed 

system

No

 
Fig. 2. The work flow for evaluation of system quality. 

1.4 Presentation 

We aim to present a realistic and intuitive approach that can communicate to people 

with different fields of knowledge and expertise. The method must be transparent, 

easy to implement and readily adaptable by different users. For this purpose, graphs 

are used to effectively communicate with different users. The format presented in 

Figure 3 identifies the importance of a requirement according to a stakeholder’s opin-

ion. The linguistic scale or the numeric scale can be used for the ease of communica-

tion, and one can assign the range of possible importance to a certain requirements. 

 

 

 Fig. 3. An example of a stakeholder’s opinion about the importance of the i-th stakeholder iS . 
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A probability distribution function (PDF) is assigned to this recorded data. Symmetric 

opinions are assumed here in this paper as described in [25, 26] and the collected data 

is treated as a random variable with a Gaussian distribution aiming to achieve set of a 

stochastic weight factors. 

2 Formulation 

2.1 Ranking of Stakeholders 

Having m  stakeholders, each stakeholder evaluates the importance of all the stake-

holders. This information is presented by stochastic variables
1 2 1

, ,...,
mk k ks s s , where 

jks represents the opinion of j-th stakeholder over the importance of k-th stakeholder, 

and its expected value and variance are respectively shown by
jks and Var

jks  . 

The expected relative weight and variation for the importance of each stakeholder is 

achieved by the following equations.
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2.2 Ranking of requirements 

Now m  stakeholders assess the importance of the i-th requirement ir , and this infor-

mation is represented by stochastic variables 
1 2
, ,...,

mi i ir r r , where 
ki

r  presents the k-th 

stakeholder’s opinion over the importance of the i-th requirement. As a result, the 

overall expected value and variation of the opinions over the importance of the i-th 

requirement 
ki

r  can be calculated by the following equations. 
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2.3 Evaluation of system quality 

A quality system must be able to address the initial requirements. Using the proposed 

method of this paper, the designer can quantify the stakeholders’ opinion and evaluate 

how successfully the system addresses those requirements. For this purpose, stake-

holders evaluate the system quality with regard to the system requirements and this 

information is labeled as 
1 2, ,..., id d d , where id  represents the stakeholders’ opinion 

over the i-th requirement. The collected data is shown by stochastic variables 

1 2
, ,...,

mi i id d d , where 
ki

d  presents the k-th stakeholder’s opinion over the importance 

of the i-th requirement. As a result, the overall expected value and variation of the 

opinions over the system quality with regard to the i-th requirement 
id  is calculated 

by the following equations. 
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And the overall system quality ( )sq  and its variation can be shown through the 

equations below. 
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1. Algorithm 

The block diagram of workflow for evaluation of system quality is shown by Figure 4. It shows 

three main steps to evaluate system quality. The first step, which is of essential importance, is 

to identify the stakeholders and their requirements. Then the stakeholders and the realized re-

quirements are ranked. Having this data, the system quality is evaluated.  

Identify 
stakeholders/ 
requirements

Rank stakeholders/ 
requirements

Evaluate the 
system quality
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 Fig. 4. The functional block diagram for the algorithm. 

The following steps present the ranking process for requirements: 

o List m  stakeholders. 

o Draw tables and list stakeholder 1 2( , ,..., )ms s s  using the numeric or verbal for-

mat shown in Figure 3.  

o Ask the stakeholders to fill the tables. This step concludes m  series of tables. 

Use 
jks  format to label the collected information. 

o Use Equation 1-2 and calculate k   and Var k  . 

o List n  requirements.  

o Draw tables and list requirements 1 2( , ,..., )nr r r  using the numeric or verbal for-

mat shown in Figure 3. 

o Ask the stakeholders to fill the tables. This step concludes m  series of tables. 

Use 
ki

r  format to label the collected information. 

o Use Equations 3-4 to calculate ir   and Var ir   for each requirement
ir . 

o Draw tables and list requirements using the numeric or verbal format shown in 

Figure 3. 

o Ask the stakeholders to evaluate the system against the requirements and fill the 

tables. This step concludes m  series of tables. Use 
ki

d  format to label the col-

lected information. 

o Use Equations 5-6 to calculate id   and Var id  . 

o Use Equations 7-8 to calculate the overall system quality and its variation. 

o If new stakeholders or values are realized, reiterate from the first step. Reuse of 

the collected information is possible.  

This process integrates the collected information and results an overview to a sys-

tem designer for sorting the requirements based on the stakeholders’ opinion. Next 

section presents an example application that shows the process and expected out-

comes. 

3 Example application 

This section presents an example application to describe the proposed method. This 

example presents a stair-mobility project. This example shows an early estimation of 

the design quality in early phases of a project lifecycle where usually a high uncer-

tainty level is present.  

A company in cooperation with TUDelft defined this project, and a team of stu-

dents worked on this project and an individual designer finalized it. The aim of this 

project was developing a concept for chair stair-lifts used by adults in the Western 

Europe with minor disabilities. This could represent a target group that start feeling 

pain in hips, knees or ankles but also consider fatigue and fear issues during the as-

cend or descend of staircase.  

Based on the stakeholder’s requirements and designers’ vision, several require-

ments were defined to ensure desired functions. For demonstration purpose, we refer 

to two of them: natural interaction and ergonomics. Natural Interaction prevents stig-
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mata surrounding stair lifts, and ergonomics ensures that the product generates a natu-

ral interaction with its user. These requirements are illustrated in Figure 5. This figure 

shows the opinion of three stakeholders, and they quantified the stair lift system using 

our proposed method. Here in this paper they are evenly graded for demonstration 

purpose, and a numerical scale has been used in the figure. 
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Figure 5. (a) Three stakeholders present their expert opinion on the proposed design for stair-lift system. 

 

Applying the algorithm explained in Section 2 results in Table 1. This table pre-

sents the integrated and concluding results. Two design requirements and three expert 

opinions on these requirements are presented in this table.  

 

Table 1. This table presents the integrated results for requirements and system quality.  

 
 System requirements System quality 

Requirements  

Expected values 

for require-

ments 

 (E[
i

r ])% 

Standard 

deviation of 

requirements 

 (Var[
i

r ])% 

Expected 

value of 

quality 

 (E[sq])% 

Standard 

deviation of  

quality 

 (Var[sq]
 
)% 

Natural interac-

tion 
71.6 17.3   

Ergonomics 63.7 24.5   

   67.7 29.9 
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Conclusions 

This study describes a methodology to measure system quality on a pluralistic basis. It 

embeds the importance of design stakeholders and requirements. The proposed meth-

od enables and encourages a designer to communicate with stakeholders or experts 

and collect certain or uncertain information, combine this information and valuate 

system quality. The application of this method has been shown through the ColdFacts 

project. 

The proposed approach promotes the probabilistic thinking and establishes the 

principals of a method for using uncertain information based on the probability theo-

ry. This method facilitates information collection and information integration in large, 

complex or high-tech systems[13]. Furthermore, it can be integrated with some cur-

rently used methods in system design or systems engineering.  
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Concept 1 

Interaction 

(w=0.6) 
Ergonomic (w=0.4) 

 

Ex-

pected 

value (%) 
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Expected 
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Limits 

(%) 

     

Company 75 
80-

70 
65 70-60 

Retailer 65 
70-

60 
50 60-40 

Med. Per-

sonal 
75 

80-

70 
76 80-70 
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System Engineering has become increasingly complex over years. Not only the 
designed product itself must fulfill more requirements (functional, performances, 
ergonomics, interoperability, safety, …) but additional constraints such as 
environmental friendliness, globalization, OEM / Suppliers relationships, 
intellectual property, regulatory compliance and many more must be integrated in 
the design process. This implies an extended multidisciplinary collaboration 
between system engineers and beyond with all participants and stakeholder of the 
project. 

The Unmanned Aerial System (UAS) use case illustrates how a modern tool 
suite can dramatically optimize the product development process. All the required 
information is made accessible in an integrated environment to ensure 
collaboration, project management, wise decision making and ultimately to help to 
imagine sustainable innovations capable of harmonizing product, nature and life. 
 

1   Introduction 

Civilian UAS is fast growing market which promises countless usages such as 
aerial imagery (marketing, advertising, journalism,…), photogrammetry (GIS), 
infrastructure inspection, crop science, fire fighting, search and rescue… 
Each scenario has a specific mission profile and associated set of constraints. 
 
 Scenario 1 Scenario 2 
Purpose Sport event coverage Railway inspection 
Flight Plan On demand (Manual control) predefined waypoints 
Flight Distance <100m Beyond line of sight 
Typical cruise speed < 40 km/h > 60km/h 
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Take Off  Vertical Hand launched or catapult 
(mandatory above ~3kg) 

Landing Vertical Belly landing or parachute 
Payload 1.5Kg (DSLR camera) 300g (compact camera) 
Camera Gimbal 3 axes (mandatory) 1 or 2 axis (optional) 
Required endurance 20mn with payload 

(repeatable with quick battery 
replacement) 

> 1h 

Safety risks Very high (Flight near 
bystanders) 

Medium (Flight in open 
country) 

 
With today’s solutions, scenario 1 is typically addressed with a multicopter 

such as DJI S1000 (Fig. 1) while scenario 2 is addressed with a fixed wing aircraft 
such as Delair-Tech DT-18 (Fig. 2). 

 
Fig. 1  DJI S1000 

 
Fig. 2  Delair-Tech DT-18 

Multicopter are easy to operate as they can take-off and land vertically and 
provide augmented stability. They can also hover which make them very suitable 
for steady aerial shooting. But they have limited endurance and cruise speed. 

On the other end, fixed wing aircrafts are aerodynamically efficient. They have 
better cruise speed and endurance. But they are more difficult to operate due to 
take-off and landing constraints. 

These very specific and radically different architectures prevent flexible usage 
and increase cost of ownership as operator is forced to own multiple UAVs to 
support various scenarios. 

A new generation of Vertical Take Off and Landing (VTOL) UAS is 
considered to bring the benefits of fixed wing aircraft to the flexibility of 
multicopter usage. This innovation requires a robust system engineering 
methodology and tool suite which is explained and illustrated in this article. 
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2   System Engineering on the 3DEXPERIENCE Platform 

2.1   The Systems Engineering promise: early decision makings to 
build cost-effective solutions 

One of the main challenges is to build a cost-effective solution that meets 
stakeholders’ needs and constraints. The Systems Engineering promise is to 
enable trades-off for early decision-makings that select from various requirements 
and alternative solutions on the basis of net benefit to the stakeholders. 

 

 
Figure 3 - Systems Engineering guides a collaborative team working in a 

shared knowledge space for virtual system co-evolution 
 
To reach this goal is in practice complex as several inhibitors may influence: 

• The maturity of the organization in Systems Engineering may vary from 
one department to another, for one team to another. 

• The Engineering is in silos: collaboration between teams is weak and is 
mainly based on a “document” or “deliverable” basis. 

• The tool suite that support the Systems Engineering process have no or 
low coupling 

 
In such contexts, trades-offs are often based on informal or incomplete criteria and 
rely on the knowledge of a set of architect experts. 
  

2.2   RFLP 

The acronym “RFLP” (Requirements, Functional, Logical and Physical view) has 
been since the 80s a known description of the core elements of Systems 
Engineering. It has been supported in by MIL-STD 499B “Military Standard – 
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Systems Engineering” (first version 1974, draft revision 1994) that was then 
replaced by IEEE/1220 (first version: 1994, revised in 1999 and 2005) “Standard 
for Application and Management of the Systems Engineering Process”. 
 
RFLP provides a unique data referential to support a Systems Engineering process 
with requirements (R), functions (F) and logical product definition (L) such as 
components including 0-1D models, physical product definition (P) including 
CAE multidimensional models. 

 
 

Figure 4 - Typical Systems Engineering Process 
 

RFLP is a framework that supports a Model Based Systems Engineering process: 
it is a unified system definition with 4 fundamentals facets: 

• Requirements: describes all the requirements that a system has to 
fulfill, from stakeholders’ requirements to system & design 
requirements, 

• Functional: describes the system services, and the  functional 
architecture with functions and flows that the components of the 
system must provide, 

• Logical: describes the components architecture with components of the 
system, theirs interfaces and the allocated functions & flows. 

• Physical: defines the life-like system components, including the 
disciplines 3D Modeling (Mechanical, Electrical, Fluidics…) 

 
 

The RFLP implement link model provides a full traceability from Requirements to 
Physical in both directions. 
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2.3   The 3DExperience Platform for Systems Engineering 

The 3DEXPERIENCE Platform is a business experience platform available on 
premise and in public or private cloud, and whose purpose is to enable 3DS’ 
customers to create experiences for their ultimate customers or consumers. It is a 
new generation of platform that enables all disciplines in a company and its 
ecosystem. 

 
The 3DEXPERIENCE Platform is built upon the applications from different 

brands that are connected through a common database backplane: 
• Social and Collaborative applications. 
• Model Based Systems Engineering and 3D Modeling applications 

Content & Simulation Applications 
• Information Intelligence Applications 

 
The 3DEXPERIENCE Platform for Systems Engineering consists of the main 

following integrated applications: 
• Traceable Requirement Management to develop and manage 

requirements and tests with traceability all along the system life cycle 
• Functional & Logical design to define functional and components 

architectures with interfaces definition, in a model based approach 
• Behavior modeling to add dynamic and/or static models from various 

engineering fields (electrical, fluids, mechanical…) to the components. 
These models can be based on the open source language Modelica (1) 
designed directly in the 3D Experience Platform or models coming 
from external sources thanks to the FMI exchange standard (Function 
Mock up Interface) 

• Virtual physical prototypes to run experiences including 3D, HIL, SIL 
codes into in V&V process 

• Report Generation to generate documentation from the objects 
managed in the 3DEXPERIENCE Platform  

 

 
Figure 7 - The 3DEXPERIENCE Platform for Systems Engineering 
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3   UAS Use Case 

This UAS use case has been developed mainly by a single engineer who had 
initially none to limited skills on UAS technologies, RFLP and Modelica 
language. 

This represents an effort of:- 
- 2 months on training mainly on RFLP and Modelica based behavior 

modeling Apps. 
- 2 months on UAS documentary research, mainly on autopilot, 

aerodynamics, propellers, brushless motors and controllers, MAVLink 
Ground Control Station communication protocol. 

- 8 months of dynamic behavior and 3D modeling on various tradeoffs. 
Additional engineers have contributed a cumulated effort of 3 months, mainly 

on FMU (2) development (UDP communication), 3D Styling and 3D virtual 
environment creation. 

3.1 Introduction  

The original idea is to combine a multicopter architecture to provide VTOL 
capability with a flying wing to provide aerodynamics efficiency and endurance. 

 
The key drivers considered for the UAS alternative architectures are: 

- Aerodynamics efficiency mainly driven by the 3D exterior shape and 
center of gravity position relatively to aerodynamic center. 

o The key metric is the “Lift to Drag” ratio which characterizes the 
efficiency of the wing to produce the lift required to sustain the 
aircraft versus the drag which has to be compensated by the 
propulsion. 

- Stability. It is mainly driven by the airfoil choice and the static margin, i.e. 
the distance between aerodynamic center and center of gravity (CoG) 
divided by the mean aerodynamic chord. The usual process is to adapt the 
CoG by placing massive mechanical parts and equipments at the 
appropriate location. But on this design, as the CoG is constrainted to be 
near the center of thrust of the multicopter, this implies strong constraint 
on the aircraft shape to make sure that the aerodynamic center will be 
located rear the CoG. 

- Propulsion  
o engine layout : Y3, Y6, X4, +4, X6, X8 
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o Propeller size and pitch 
o Maximum continuous power 
o Thrust to weight ratio. It is generally admitted that is must range 

from 1.5 to 2 for provide safe multicopter handling. 
- Use of a maximum of components on the shelf (COTS) to reduce costs. 

3.2 RFLP 

Within 3DEXPERIENCE integrated environment, the RFLP referential is 
instantiated to support the end to end design process.  

 

3.3 Models 

Multi dimensional (0..3D) models are developed in parallel to provide the required 
information to evaluate most critical key performance indicators (KPIs) on: 

- Aerodynamics efficiency 
- Thrust to weight ratio 
- Mechanical Design feasibility 
- Equipments and payload space allocation  
- Mission capabilities 
- Total cost of ownership 

3.3.1 3D Design 

A set of preliminary 3D design templates is created to provide external shape to 
CFD analysis and study propulsion layout, equipments and payload space 
allocation and center of gravity. Template instantiation and parameterization 
allows rapid iterations and alternatives studies (Fig 8). 
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Figure 8 - rapid 3D ideas sketching based on design templates 

3.3.2 Multi-body dynamics 

Thanks to 3DEXPERIENCE integration, 3D Digital Mockup can be translated 
into Modelica model, including body mass and inertia and kinematics joints 
definition. Resulting model can be completed with external forces such as 
aerodynamics effects and propulsion. 

3.3.3 Propellers 

The model uses the advance ratio J equation (3) and two two dimensional tables of 
experimental data (4) to relate J, rotational speed N, torque and thrust (Fig. 9). 

  
Figure 9 – Propeller model based on experimental data  

3.3.4 Electric Motors & Batteries 

The SmartElectricDrive library is used with 3 levels of accuracy (quasi stationary, 
transient and full BLDC). These 3 models are attached to the same logical system 
component. The model used for simulation is chosen at runtime depending on 
expected accuracy and performance needs. 
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Figure 10 – multi level Modelica models and their respective dynamic response  
 

3.3.5 Flight Dynamics 

A Modelica model implements the 6 equations (5) (Fig. 11) to compute 
aerodynamics forces and moments to be applied on UAV body. These equations 
use a set of aerodynamic coefficients so called “polar” such as “lift vs. drag” or 
“pitch moment vs. alpha” that must be computed by dedicated CFD software. 
 

𝐿𝑖𝑓𝑡 =
1
2
𝜌𝑆𝑉!(𝐶𝑧 𝛼 +   𝐶𝑧!"#$ + 𝐶𝑧!"#$%&'()#*"#+&,'- +⋯ ) 

Fig. 11– Lift equation (partially developed) derived from Bernoulli equation 

3.3.6 Flight Management System 

Multicopter stabilization is known to be sensitive to inertial measurement unit 
accuracy and delay (gyroscope and accelerometers sensors typical refresh rate is 
200 to 400HZ) and to motor ESCs refresh rate (50 to 400HZ or more). It is 
therefore critical to properly model the frequencies of the multiple stages of 
control loop in addition to sensor noise, quantization and bias. 
The hybrid discrete/continuous solving capability of Modelica is used thanks to 
the LinearSystem2 library which provides PIDs, noise, filters models which can 
be easily switched from continuous to discrete on a global or per object basis. 
Modelica technology takes care of properly combining discrete models (control) 
with continuous physics models. 
 
The multicopter control laws are superimposed with fixed wing aircraft control 
laws (Fig 12). 

Hover to forward flight transition sequence: 
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1. rear engines are tilted in an fixed duration arbitrary chosen to leave the 
aircraft enough time to accelerate to minimum flight speed 

2. When aircraft exceeds stall speed, forward engines are stopped 
3. Then engines doors are closed. 

Forward flight to hover transition sequence: 
1. rear engines are tilted to horizontal position 
2. When aircraft approaches stall speed, forward engine doors are opened. 
3. Once the doors are opened, the forward engines are started. 

 
Fig 12.Overview of hybrid multicopter – fixed wing stabilization control laws 

 
Two additional control laws have been developed: 
1. Improved yaw control. On a traditional multicopter, yaw control is achieved 
by creating torque about yaw axis by increasing the rotational speed of engines 
which rotate in opposite direction of expected yaw rotation and simultaneously 
decreasing opposite engines to keep the vehicle at constant altitude. But on 
large multicopter, the propeller torque might be insufficient and result in 
sluggish control and responsiveness. As the two rear engines of the proposed 
VTOL design can be individually tilted, yaw responsiveness is improved by 
slightly tilting the engine in opposite direction (Fig 13). CATIA System 
simulations have demonstrated that a !10° tilting range allows doubling the 
yaw rate and yet improving the yaw start/stop responsiveness. 

 
Fig 13. Improved yaw control thanks to opposite engine tilting. 

 
2. Wind handling during hover. Wind during hover will tend to push the 

vehicle in opposite direction. To maintain position, traditional multicopters 
autopilot will incline the vehicle to create lateral force in opposite direction from 
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wind. The wing positioned with low or negative alpha angle will produce negative 
lift. Additional power must be provided to conpensate this negative lift and this 
reduces endurance. To avoid this drawback, multicopter pitch control law is 
modified to constrain pitch angle to a fixed positive alpha angle. This makes the 
assumption that the UAV is always headed into the wind thanks to manual or 
automated control. The resulting drag force is compensated by slightly tilting the 
rear engines (Fig 14). Forward/rear movement is controlled by adjusting the tilt 
angle. CATIA System simulation has demonstrated that a 10m/s wind with a 
constrained "=4.5° produces 1/3 of the thrust required to lift the aircraft to the 
benefit of endurance. 

 
Fig 14. Longitudinal control and use of wind to lift aircraft during hover. 

3.4 Computational Fluid Dynamics (CFD) 

SIMULIA Fluid Scenario App is used to explore flight domain at various speed, 
angle of attack, sideslip angle, and engine doors position. This allows computing 
surrogate models (polars) used in Modelica flight dynamics model (Fig 14).  

 

 
Figure 14 – 3D to CFD to System simulation inside 3DEXPERIENCE 

3.5 Ground Control Station (GCS) link 

A GCS (6) is a software operated from the ground to remotely control the UAV. It 
allows monitoring the UAV system parameters and health status, defining the 
mission and sending the mission to the UAV. MAVLink (7) is an UDP-based 
protocol specifically designed to handle communication between the GCS and the 
UAV (Fig 15). A generic FMU model is developed to provide UDP networking. It 
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is then customized to describe the messages with an xml file. This allows 
extending the communication (message content, periodicity or event based 
send/receive) with no need to recompile the FMU code. 

 
Fig 15. Ground Control Station and UAS communication 

3.6 3D Virtual Environment 

CATIA is connected to 3DVIA (Fig 16) via a FMU using a TCP sockets. CATIA 
periodically sends the position and attitude of the UAV and additional information 
such as elevons position, engines speed to animate the UAV in 3DVIA scene. 

 

 
Fig. 16 

3.8 Autopilot SITL/HITL 

The flight control laws are modeled (discrete and/or continuous mode) using 
modelica. Once validated, it is convenient to replace this preliminary design by the 
actual C code running on PC (SITL) or running on real hardware (HITL). This is 
implemented with an FMU connecting the controller to the CATIA plant through 
UDP sockets. 
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4   Conclusion 

The complete UAS mission “play” experience (Fig 17) is simulated in real time on 
a single laptop (UAV virtual model in CATIA System, real Ground Control 
Station software and 3DVIA 3D virtual environment). 

 
Fig. 17 UAS 3DEXPERIENCE 

 
Further work will include optimization thanks to SIMULIA Process Composer 
(previously known as iSight) to systematically explore the UAS alternatives and 
fine tune their design KPIs. 
 
3DPEXPERIENCE provides a holistic RFLP-based framework to support end to 
end system engineering processes in complex multi-discipline organizations. 
UAS use case demonstrates that this tool suite is not restricted to largest 
companies and can be efficiently applied to small teams, especially on the Cloud. 
Ease of use and fluidity of the user experience, best in class modeling capabilities 
unleashes creativity to surpass the status quo. 3DEXPERIENCE provides a unique 
collaborative business platform and defines the new standard for product 
innovation. 
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Abstract 
The main message and added value of this analysis lies in the development of a 
possible structure of defense planning, plus process logics, and in providing in-
herent functional principles of a “system-generating system” in the field of de-
fense planning in a broader sense. This includes the identification of the interre-
lations of the researched basic principles.  
The present research starts with the hypothesis that system development, partic-
ularly in highly aggregated social entities, is usually initiated by organizational 
structures that represent a complex system in themselves. This paper attempts to 
address the inherent functional logics of this specific “system of systems”, 
which is the precondition for a successful development and for any control of 
systems and system-modeling per se.  
The described system focuses on creation, control and further development of 
those sub-systems that provide an adequate reaction to existential threats and 
future challenges in unpredictable, uncertain situations. Functional principles of 
military system-planning will be deduced, analyzed, and presented in an ab-
straction that still allows for practical application in the private decision-making 
sector, as well. A possible civilian benefit might be gained, where these sets of 
skills (a specific military “unique selling proposition”) are in demand. 
Military system planning is based on specific functional principles that are tai-
lored to leadership-decisions and system control in threatening, time-critical, 
and unforeseeable situations, usually in a volatile environment. 
Attempting to explain according to which military scientific deductions a “sys-
tem-generating system” in the area of defense planning could be developed, it 
will be shown in which areas military/leadership-science can offer research re-
sults also to civilian system development and where defense planning could 
benefit from other scientific branches. 
Into the direction of private economy an insight is to be given, according to 
which system-logic military decisions are made respectively which basic prin-
ciples guide planning-/ defense procurement-processes. 
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1 Good reasons to maintain independent, uniquely “military” 
development logics 

Military system development is exposed to a number of unfavorable influences of all 
three types of institutional isomorphic organizational change.2  

The requirement of measurability of public administration performance, e.g. the 
pressure to achieve maximum cost-efficiency by outsourcing and ongoing organiza-
tional changes that are often triggered by political pressure, leads to a situation that Di 
Maggio/Powell describe as “coercive isomorphism”.  

The unclear perception of a hardly predictable, future European threat situation, 
seduces national armed forces to “mimetic processes” that aim at unreflected copying 
and adapting of role profiles, regardless of thorough strategic evaluation, and regard-
less of whether the capabilities needed to cope with certain geopolitical challenges 
are required in the current situation of a respective state.  

The tendency towards professionalization of military organizational structures 
forces higher military leaders to align themselves with the skills of managers in pri-
vate businesses, whereby, according to Di Maggio/Powell, the normative component 
of isomorphism is addressed.  

However, armed forces, in sharp contrast to the private sector, have to follow the 
primacy of politics, but at the same time will have to preserve their specific, unique 
and independent assessment and system building logic, to develop it further, based on 
military requirements and to maintain their own code of values that necessarily has to 
be different from the one used in civilian society. 

Stephan De Spiegeleire states that defense planning reality shows a lack of human 
and social science components.3 When planning systems are responsible for the defi-
nition of long-term strategic goals, mirroring a level of systemic creativity, which 
allows to gain a distinct advantage over the (assumed) adversary, human-scientific 
and in particular philosophy-related approaches will be needed in addition to those 
that natural sciences provide. 

This paper offers a model4 by which a military-specific, independent “system gen-
erating system” in the field of defense planning can be designed, that builds on a mili-
tary/leadership-scientific basis. 

2 An abstract, ideal-typical structure of defense-planning and 
its inherent functional logic 

Current literature pays too little attention to the fact that system-creation as well as 
system management, is carried out by an organizational structure, which in itself 
represents a complex system. It also is neglected that inappropriate (organizational, 
methodical, hierarchical) alignment of the generating system is often the reason why 
the attached and subordinated systems do not work properly. A first result should 
explain, (a) how the core functional principles of the generating system in the area of 
defense planning work, (b) what problems can be identified, and (c) which of these 
solutions are usable for any civilian application. 
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Regardless of whether it is in the field of political leadership, diplomacy, private 
economy or public administration, planners complain about a missing strategic long-
term orientation.  

This, among other reasons, might be caused by the fact that the future becomes 
harder to predict, environmental conditions turn out more volatile, competition gets 
tougher and resources scarcer. And there are the early errors, already buried in the 
initial development cycles, which have sped up in a way that errors, coming from 
false or too short-sighted strategic goals, start to take revenge later on, punishing 
those who were responsible for faulty analyses and definitions in the first place (yet 
within their term of responsibility). In addition, cycles change, so do requirements, so 
do demands.  

Particularly at a time of international networking, multipolarity, globalization and 
asymmetric threats, the value of any generating system lies primarily in the farsight-
edness of its strategic objectives and the level of creativity it produces. Throughout 
the whole process, a high level of creativity is indispensable in order to develop the 
proposed or existing system further, so that it achieves superiority over competitors. 
Creativity is also needed to find strategic objectives, which preferably permit a non-
confrontational goal achievement (“Blue Oceans”), and force competitors to react. 

Thus, two principle options of system development can be identified – namely a 
gradual further development (adaptation), based on the already existing functional 
principles, or a fundamentally new idea, resulting in a new generating system, or at 
least in contributing advanced components to an already existing system. 

Especially in military planning it is absolutely vital to distinguish reliably and at an 
early stage for how long it makes sense to adapt and adjust (modify) an existing sys-
tem or principle (doctrine) and from when on it has to be changed over to a funda-
mentally new one. This does not only hold true for technological developments but 
also for other security-political paradigms, operational concepts, command/force 
structures and planning processes per se. The “Clipper-phenomenon” shows, how in 
the mid-19th century, the development of lighter and faster cargo-sailing-ships was 
hailed as a great technological achievement and widely praised as a success of the 
system “sail-ship”. However, in its final phase, it (the clipper) became a last swash of 
a passed technology, a final harbinger of the end of a line which would delay the 
steam ship only by a few years.  

Generating systems, in the field of defense planning, need to train leaders in the 
awareness and recognition of such developments. Regarding the identification of new 
developments (and possible new threats) the observance of trends is mandatory; here, 
civil sciences can provide the necessary “early warnings”.  

Since any further development of systems adheres to the same judgment processes, 
the same mathematical, rational and physical rules as well as resource conditions for 
all competitors, superiority will only be achieved when a winning-margin in creativity 
can be gained or when one opponent makes a mistake. But such a grave error - as 
military history and leadership doctrine show - should not be taken for granted by 
system planners. 

This deduction shows, that creativity is a guiding principle to which a generating 
system, not only in the field of defense planning, should be aligned, in order to 
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achieve planning- and leadership-superiority, or as Henry Ford had explained in sim-
pler terms, “If I had asked people what they wanted, they would have said faster hors-
es”. 

 
Fig. 1. Ideal-Typical Organizational Structure of a Fictitious MoD 

Regarding the concrete search for new principles which are to provide a defense plan-
ning system with planning, command and control superiority, one can start from a 
typical system-architecture of a fictitious European Ministry of Defense (MoD). This 
starting point might not represent an actual organizational structure of a real national 
MoD, but should be understood as an ideal-typical structure, derived from a military-
scientific leadership doctrine that responds to analyzed requirements for planning 
systems. Naturally it would mirror typical structures of existing defense ministries. 
(See figure 1) 

The main advantage of this system-architecture lies in the fact that it supports a 
process-oriented defense planning approach. The organizational elements of defense 
planning are congruent with the classical planning process steps, following the typical 
sections like concept planning, definition of military strategic goals, research and 
development and capability/force-planning. These organizational elements are matrix-
type structured and cross sectionally responsible for all services and branches of ser-
vices. They are, with regard to defense planning and achievement, subordinated to the 
top defense planner, who is solely responsible for the entire defense planning process. 
This principle is also mirrored in the process-oriented structure of the European De-
fense Agency (EDA), and it meets the general trend of new partition-schemes within 
the capability planning methods that De Spiegeleire analyzes5. 

The organizational elements of defense planning, defense procurement and opera-
tions are directly subordinated to the Chief of the Defense Staff (CHOD). This en-
sures a dialectic interaction between planning and procurement, whereby a mutual 

Proceedings of the Poster Workshop at CSD&M 2014 130

Engineering a Parent-System, Designed to Generate Complex Sub-Systems in the Field of Defense Planning



blockade between the latter can be successfully avoided. Planning, procurement and 
operations represent steps of a process that directly feeds back requirements and les-
sons learned from earlier programs and from current operations into the capability 
planning directorate. The logical linkage of both principles represents the ideal ra-
tionale for combining defense planning in a narrower sense, defense procurement and 
operations, to defense planning in a broader sense. Above that is the logical process 
chain “capabilities procurement operations”, indispensable for a reliable and realistic 
life-cycle management (cf.  De Spiegeleire, Trend 2. Towards Life-cycle Capability 
Management). 

One of the core principles for the alignment of generating systems in the field of 
defense planning lies with the deliberate separation of creative steps and their follow-
on implementation. In the suggested model, this principle applies fully to the relations 
of (a) defense planning and procurement, and (b) fundamental planning and capability 
planning. The organizational element, responsible for the development of a military 
strategy, contributes to the defense planning-relevant policy. By doing so, it shortens 
the distance between political leadership and military planners via the Chief of the 
Defense Staff. 

The capability/force planning-element combines and harmonizes the personnel, 
materiel, infrastructure and educational aspects of deduced capabilities and thereby 
avoids incorrect planning, usually caused by an overestimation of the materiel com-
ponent (cf. De Spiegeleire, Trend 1. Towards a Broader Definition of ‘Capability’). 

The broader scientific basis on which modern defense planning is built, is main-
tained by including the organizational element - research and development (R&D) - 
into defense planning. The R&D element is responsible for the corresponding process 
step and, in close cooperation with the research and educational level (like defense 
universities, industry, think tanks, etc.), provides the scientific basis for the armed 
forces and has an impact on military/leadership science, the relevant humanities and 
social sciences as well as natural sciences (cf. De Spiegeleire, Trend 5. Broadening 
the Scientific Base). 

3 Generating a parent-defense planning system and 
 derived sub-systems 

An ideal-typical system architecture of a fictitious European MoD has been offered 
above. Now it must be decided which elements serve the generating system of de-
fense planning and which ones primarily support its generated sub-systems (see 
figure 2). In order to make the entire network between the generating parent-system 
and the derived sub-systems intelligible to all, any defense planning system requires 
a definition of “organic leadership”.  

Organic leadership is to be understood as a systemic network, consisting of a stra-
tegic goal-setting, operational planning, tactical implementation (including C4I), 
leadership in a narrower sense, management/administration and process-control with-
in the armed forces. Each individual component includes (a) a combination of leader-
ship qualities for goal-setting, planning/evaluation, command and control, human-
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oriented leadership, target/actual comparison, and (b) specifications for the different 
echelons respectively process steps of the defense planning system in a broader sense 
(military-strategic, operational and tactical level).  

Leadership qualities are processed in interactive cycles within each echelon and, at 
the same time, is the sequence of evaluation steps that are assigned to the different 
hierarchy levels, executed in a separate, overarching iterative cycle. By this simulta-
neity of different autonomous process-cycles, can one of the core principles of the 
generating defense planning system be defined and explained. 

Pursuing the hypothesis that a generating system determines the derived sub-
systems of defense planning, the constitutive principles of the parent-system and their 
functions can be identified. Subsequently, it will have to be analyzed in which way 
any of those principles might influence the development of sub-systems. Finally, it 
must be answered how all these elements can be aligned and controlled in order to 
achieve planning/C2- superiority by means of implementing them at all levels of the 
sub-systems. 

 
Fig. 2. Interrelation “Parent-Defense Planning System” – Derived Sub-Systems 

4 Analysis of the core functional principles of a parent-defense 
planning system6 

4.1 Functional principles based on history of thought, military leadership-
philosophy or other military/leadership-scientific foundations 

The core of fundamental functional principles is mainly formed by those who focus 
on the creation of the generating parent-system of defense planning out of history of 
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thought-related, leadership-philosophical or military/leadership-scientific findings. 
As they are mostly abstract and quite generalized, they would apply to almost all 
derived system processes without much adaptation. Additionally, they represent 
basic principles that were barely subject to ongoing historical changes. 

The separation of the strategic and operational level: This principle represents a 
bundle of basics of strategic leadership which jointly serve the overarching goal of 
relieving the strategic level from too concrete short and mid-term planning and further 
execution-tasks; in turn, will this separation principle allow focusing on the creative 
quality of the strategic objectives. Regardless of whether it is about the leadership-
theoretical dualism of philosophical deduction and pragmatic operating instruction, or 
about the differentiation between creative phantasy and critical-analytic thinking 
within the circular strategic planning process - all these functions aim at “liberating” 
the strategic level from the constraints of technicalities. Checking identified options 
for feasibility already in the phase of strategic goal-finding, must lead to a loss of 
creative quality. 

Of course, the feasibility has to be checked, whether by one and the same staff el-
ement in a subsequent separated phase or by a different staff element which is respon-
sible for operational planning and the implementation of strategic goals. The latter 
variant which uses different staff elements requires a system of simultaneously con-
ducted, autonomous planning-processes on all echelons of military leadership, as 
explained above. 

General military leadership doctrine provides an approach to cope with the de-
mands arising from the dialectic relation between goal-setting and feasibility-check 
within the strategic planning cycle. It suggests an iterative change of planning-
directions from “visionary to pragmatic” to “pragmatic to visionary”, based on the 
hermeneutic-circle principle which was developed by Clausewitz. As can be shown, 
the visionary power of strategic goals will be strengthened by separating goal-setting 
from feasibility-evaluation. Military leadership doctrine describes the dialectic rela-
tion of the latter in form of a metaphor: Soldiers of a marching unit follow the polar 
star, which represents their need of the farthest possible orientation-point to guide 
them - although no marching soldier ever really wants to reach it. 7 (cf. De Spie-
geleire, Trend 6. Breaking the Dictatorship of the Present). Because far-sighted stra-
tegic goal-setting, in most cases, requires restrictions (in the present), the overall logic 
of which is seldom comprehensible to the subordinate levels, human-oriented leader-
ship is a bridge between strategic goal-setting and operational planning, and, by the 
same token, an effective instrument to gain the trust of the subordinates for the strate-
gic goals.  

This model of separation also fits private businesses, as they also contain strategic 
and operational levels – both providing the strategic management with the option to 
pursue intended long-term goals without being locked in immediate, creativity-
hampering constraints of short-term (economic) success. What military science cer-
tainly will expect from the civilian research branches (besides technological early 
warning), are ideas for creativity training, preferably under stress conditions, and 
testing methods for finding or developing creative talent. 
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Dialectic interrelation between theory and empiricism: The Prussian military 
theorist Carl von Clausewitz developed a scientific method around a synthesis of 
Kantian rational a-priori-thinking, and the empiric critical-analytical research of mili-
tary-historic experiences. This principle will be used as one of the cornerstones of the 
parent-system model: Its correct understanding would prevent planners from changing 
structures, due to (wrong) “Lessons Learned” that are not checked adequately for a 
systemic rationale of malfunctions. The battle of Cannae e.g. would then not be 
praised for its tactical brilliance anymore – it would much rather have to be taken as 
an example for choosing wrong strategic goals.  

Application of operating instruction versus self-dependent evaluation: Given 
the required humanistic and military scientific education of military leaders, the quali-
fication for any self-dependent evaluation - in combination with “mission-oriented 
leadership” - significantly raises the quality, effectiveness, and self-regeneration ca-
pability of any parent-system. Already Martin van Creveld found that German staffs 
in World War II could be kept much smaller in numbers than American ones, because 
they could build upon a professional independent-evaluation capability and were 
therefore able to do without a large number of pre-developed contingency and other 
more detailed plans.8 

“Divinatory Component”: Dealing with the qualification of military leaders for 
self-dependent evaluation, one will certainly have to tackle what Clausewitz called 
“Takt des Urtheils”, “Coup d´oeil” or the “Divinatory Component”. However, could 
the analysis of these principles easily lead to the fallacy that such qualities were based 
on God-given, magic, and almost innate ability. By contrast, effective military system 
planning has to start with the understanding that the above evaluation capability de-
rives from rationally developed conceptual doctrines. These are taught, learned and 
internalized by frequent practice to make the leader think he acts out of intuition, 
although in fact, there is always a rationally developed evaluation logic in the back-
ground. Indeed, such evaluations, in the eyes of outside observers, may lead to the 
impression that decisions were taken intuitively.9  

Operational creativity versus critical analytic assessment: As the analysis of 
military operations and experience from operations and tactics proves, failure and 
defeat is mostly due to the lacking ability to recognize other (hitherto unnoticed) op-
tions. Military science has therefore started to develop the doctrine of system-
generation, based upon the ability for operational creativity. 

In this context, Professor Bernd Rohrbach (lecture at the 14th General Staff 
Course/NDA Vienna) assigned leadership capabilities to the “operating modes” of the 
human brain. Typically, each of these qualities hinders the other, when called up sim-
ultaneously. According to the different individual capacity of staff members with 
regard to operational creativity and to critical analytical thinking, Rohrbach identified 
a specific talent for “inventions” or for “management tasks”. Logically, a well bal-
anced ratio between both qualities will predestine a person as a possible superior 
leader. In case decision-making processes have to be carried out by one person alone, 
Rohrbach (“Deferred Judgment”) suggests to blank out at first the rational mode (in 
order to have all brain-capacities available for finding options) and, in a next step, to 
suppress the creative mode (in order to raise the critical-analytic assessment quality). 
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Mission-Oriented Leadership: This principle provides the basis for extending the 
overall creative system-performance through decentralization of execution. It allows 
for using the mental capacity of all subordinate levels to achieve the overall goal, but 
in contrast to the principle of all "Powers to the Edge", by strict target-orientation in 
both directions, i.e. by methodically specifying “room for maneuver” (top-down), and 
by supporting the self-harmonization of subordinate levels, while at the same time 
encouraging and permitting creative inputs going from the bottom to the top (“bot-
tom-up” process).  

Military Scientific Basis: Military science will have to provide the required scien-
tific quality in the core-subjects of the military leadership doctrine. Only this, not yet 
sufficiently completed scientific expertise in the core-subjects will allow for a harmo-
nized synergetic input from the side of military scientific accessory subjects in the 
fields of human and social science (in particular military philosophy), military history 
and natural sciences.. Defense universities, in close cooperation with military and 
civilian research and development elements, will have to act as backbone for broaden-
ing and deepening the military scientific basis. 

Especially in a period of declining defense budgets, it has become increasingly 
necessary to preserve and develop collective system-knowledge (“soft skills”). That 
might be comparable to a tree that throws off leaves before winter and collects its 
lifeblood in the trunk, in order to be able to sprout again next spring. 

Code of Values: Systemic Defense Planning will also have to take into account 
aspects of values, because the overarching goals like “primacy of politics”, “campaign 
and mission-effectiveness” will require a code of values which necessarily must differ 
from those of civil society. A deepened understanding of values is indispensable for 
the trust of the subordinates in strategic goals and thus, in the benefit of separation 
between strategic and operational defense planning level. A reliable code of values is 
also inalienable in order to immunize all echelons against unlawful orders and thus, to 
ensure the primacy of politics. 

4.2 Providing the basis for the structural/procedural alignment of derived 
sub-systems 

The functional principles tackled in this paragraph must be seen as an interface be-
tween the core of the parent-defense planning system and the derived sub-systems. 
As such sub-systems are less constitutive for the functional logic of the parent-
defense planning system, they are, for reasons of limited space, only mentioned here 
but not analyzed in depth. 

Process-orientation instead of divisional-organized structures: Process orienta-
tion favors the holistic development of skills under horizontal cross-viewing of the 
different services, branches of services, personnel/materiel/infrastructural/educational 
aspects of any addressed capability development (EDA provides the role-model for 
such a structure). 

Generalist-oriented role profile of military leaders: The general staff role profile 
for military leaders will gain in importance for creating and controlling process-
oriented planning systems. 
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General standards for derived system-planning processes: These standards 
comprise specifications regarding the iterative character of planning processes, their 
periodicity/pulse-frequency, and the rhythm of change between their visionary and 
pragmatic planning phases. The above standards represent the essential control in-
struments for the definition of the sequence of goal-setting and feasibility assessment 
steps and for the ratio between planning range and rotation frequency (of planning 
loops). They are the basis of all subordinated processes.  

5 The final result: “A suggested model of a parent- defense 
planning system” 

The product of the proposed research is a proposal for an (abstract) next-step model 
of a parent-defense planning system. (See figure 3). 
This model is based on functional principles, derived from history of thought-related 
leadership philosophy or acknowledged military/leadership-scientific findings. It is 
designed (a) for the regeneration of its own functional logic and (b) for the genera-
tion of the sub-systems’ strategic planning-cycle (e.g. threat assessment cycle) capa-
bility planning cycle, procurement cycle, operational planning cycle and the tactical 
decision making processes. 

 
Fig. 3. Model of a “Parent-Defense Planning System” to be proposed 
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Due to its level of abstraction, it can also be used for strategic and operational 

planning processes in the private sector or in the (security-) political decision making. 
The model is constructed as a dialectic synthesis of the antagonistic pairs of factors as 
analyzed above. 

System decisions (regarding e.g. a transformation of systems, the creation of new 
structures or processes) as well as planning/C2 decisions are to be made in an envi-
ronment that comprises two different intellectual domains: One of these domains is 
characterized by theory-heaviness (caused by philosophical-rational thinking) and 
operational creativity, while the other domain is based on the antagonistic pillars em-
piricism (systematic empirical research) and critical-analytic evaluation. 

The evaluation process usually starts with the finding of usable principle options. 
Such is normally done by a creative staff cell, consisting of e.g. J2, J3/Plans and J5 
(NATO-nomenclature) within the theoretical/creative domain. The Chief of Staff, 
whose responsibility it is to guarantee continued coordination and harmonization of 
creative and analytic staff cells, assists the staff with short-listing those options that 
are eligible for a working hypothesis. 

The commanding officer (CO) will then decide which (first) working hypothesis is 
dealt with in the first loop. As explained above, he bases his decision on an experi-
ence-based, but at the same time, a priori rational evaluation (“Divinatory Compo-
nent”).  

The choice of the working hypothesis is by no means to be understood as an antic-
ipated decision that only has to be “legitimized” by the “analytical” staff cell. By 
contrast, it is the task of this analytical staff elements to try as hard as possible to 
falsify the hypothesis (see Karl Popper`s “falsification” theorem and “induction-
problem”) – as any failed attempt to push the hypothesis “out of the saddle” will in-
crease its validity. 

The analytical staff cell takes on the role of the enemy/competitor/alternative op-
tion, and tries to falsify the working hypothesis by critical/empirical methods. In case 
there is a definite reason for doing so, the analytical staff cells might discard a chosen 
hypothesis; otherwise the latter crosses the boundary to the creative rational domain. 
There the “creative” staff cell decides if the checked hypothesis will be stored in the 
“not possible to falsify-basket” (and will have to wait for the final decision of the CO) 
or whether it has to be modified and sent into the next loop again. 

Finally, the CO, who is solely responsible for both intellectual domains, takes the 
decision by choosing one of the options that have already passed the evaluation cycle 
successfully. This assessment is based on his experience and at the same time on ra-
tional thinking. 

Thus, this approach combines the advantages of the empirical and the theoretical 
science-paradigm and also provides creative, far-sighted goal-setting capability, un-
derpinned by an independent, unerring critical feasibility analysis. Such process is 
finalized by an “acid test” under conditions of practical implementation. 
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Notes 

                                                             
1  Defense planning is understood here „in a broader sense“, i.e. as the overarching planning 

system, including defense planning in the narrower sense, defense procurement and op-
erations, whereas defense planning in the narrower sense only would comprise fundamen-
tal planning, research and development and capabilities-/force planning. 

2  Cf. Paul J. Di Maggio and Walter W. Powell: The Iron Cage Revisited - Institutional 
Isomorphism and Collective Rationality in Organizational Fields Author(s) in American 
Sociological Review, Vol. 48, No. 2 (Apr., 1983), pp. 147-160, Published by American 
Sociological Association Stable.	
  

3  Cf. Stephan De Spiegeleire (2011): Ten Trends in Capability Planning for Defence and 
Security, The RUSI Journal, 156:5, pp. 20-28. 

4  Any deeper analysis that aims at the creation of a complex meta-planning-system will 
have to include the findings of Kent Palmer, who builds upon Heidegger and Merleau-
Ponty (Cf. Palmer, Kent (2000): Reflexive Autoieptic Systems Theory 
http://works.bepress.com/kent_palmer/). However, had the philosophical basis of this re-
search - due to the required brevity – to be limited to Clausewitz and in particular to his 
dialectic antagonism between theory and practice.. 

5  Cf. Stephan De Spiegeleire (2011): Ten Trends in Capability Planning for Defence and 
Security, The RUSI Journal, 156:5, 20-28, trend 3 “Towards Capability Portfolios Based 
on New Partition Schemes”; the ten trends analyzed in this article are suitable as checklist 
for the overall effectiveness of planning systems - this is why the suggested ideal-typical 
model was to be evaluated against the backdrop of these ten trends – following quoted as 
„De Spiegeleire, Trend 1-10“. 

6  The assessment in this section follows - with respect to specific items - to some extent and 
in a figurative sense the analysis of military functional principles in the draft-thesis, which 
is submitted by the author, to the National University of Public Service/Faculty of Mili-
tary Science and Officer Training, Budapest (title: Relations between Functional Princi-
ples of Democracies and their Armed Forces, 2013). 

7  Cf. Hans H. Hinterhuber: Die 5 Gebote für exzellente Führung, Wie Ihr Unternehmen in 
guten und in schlechten Zeiten zu den Gewinnern zählt, F.A.Z.-Institut für Management-, 
Markt und Medieninformationen GmbH, Frankfurt am Main 2010, ISBN 978-3-89981-
228-2, p. 63. 

8  Cf. Martin van Creveld: Kampfkraft, Militärische Organisation und Leistung der deut-
schen und amerikanischen Armee 1939-1945, ARES-Verlag, pp. 65-71.  

9  See e.g. the intuitive and offensive qualities of Field Marshal Rommel. Since he never 
attended a general staff training course, he lacked a number of essential operational skills, 
like adequate defense tactics and the importance of logistics.  
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Abstract. The French national agency for old age pensions has evolved, along a 

systemic vision of all the issues to be covered, a generic set of tools to design 

and process structured file formats. This set of tools has turned into a produc-

tion grade modeling and validating suite which relies for its distribution on the 

continuous integration of its various components. As such, continuous integra-

tion has here turned into a system which industrializes the production of sys-

tems of tools, each characterized by the file format it implements and the ver-

sion under which it is released.  

1   Introduction 

Social security agencies have to rely on a massive influx of data to assess benefits 

and collect contributions. The data comes in thanks to structured file formats. Pro-

cessing and validating these files is not easy, because of the many changes in their 

specification each year.  

This is why the national agency for old age pensions (Cnav) wanted to avoid re-

writing endlessly its file processing applications, and wanted to maintain a constant 

level of processing quality. A general approach was necessary.  

To achieve this, the national agency has elaborated a generic set of tools [Rivière, 

Rosec 2013]. It was initially used on the N4DS standard, and then on the new DSN 

standard (N4DS = Norme de Déclarations Dématérialisées De Données Sociales, 

DSN = Déclaration Sociale Nominative).  

This approach can be applied well beyond the initial problem domain: collecting 

data from payroll systems.  

The suite of tools has been improved and extended along a systemic view of all issues 

to be covered when dealing with structured file formats: design, validation logic, test-

ing logic, documentation both of the file formats and the semantics of the business 

data they carry. 
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2   What is an interchange standard? 

Elaborating a generic set of tools for modeling interchange formats and for generating 

the corresponding validating components brings back to the original issue: defining a 

metamodel for an interchange standard. We define it by the following characteristics:  

 It should implement a conceptual model of the business domain;  

 It can be derived into a series of message models carrying the business data 

payload  

 Each message is a hierarchy of data blocks which respect a certain structure 

and multiplicity (0,*)  

 The structure of a block is defined as an ordered series of data elements 

which respect a certain syntax and multiplicity (0,1)  

 The value and syntax of a data element is defined by a business datatype re-

stricting one of four technical datatypes: string, decimal, enumeration, exter-

nal referential  

 Each technical datatype has facets which help define business datatypes: min-

imum and maximum length, a regular expression for string and decimal etc.  

 Semantic consistency between data elements is enforced by rules.  

 Because the interchange standard has to support the interchange scenarios de-

fined by its user community, message models can themselves be inserted be-

tween a header and a footer composed of blocks linked to the applicative log-

ic of the actual exchange system.  

 

On top of this metamodel one can model many interchange formats. Here are the 

metrics for a few of the interchange formats modeled with the suite of tools.  

 

Number of N4DS v01x08 DSN phase 1 DSN phase 2 

Data blocks 124 29 33 

Data elements 687 202 258 

Validating rules 995 198 210 

 

The DSN message is the first for which a conceptual model was elaborated before 

working on the corresponding file formats. The idea is to derive the message model 

from the class diagram (below). It should be noted that such a derivation cannot be 

100% deterministic and requires some choices [Elmasri, Navathe 2011]. 
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Fig. 1.  DSN phase 2 class diagram 

The figure below shows how various message models can be inserted between 

header and footer blocks. 

 

Fig. 2.  DSN phase 2 Message Hierarchy 

 

The figure below shows how the biggest DSN message model, the monthly DSN, is 

represented as a hierarchy of data blocks in the Designer.  
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Fig. 3.  DSN phase 2 Monthly Declaration Hierarchy 

Each data element is described in detail in the .pdf export of the specification. 

 

 

Fig. 4.  PDF export for a data element 

3   Tools, what for? 

The generic set of tools covers the following functionalities (corresponding tool be-

tween brackets):  

 Modeling an interchange format and defining its validating rules (Designer)  

 Documenting the data carried by the interchange format (Semantic Reposito-

ry)  

 Generating the specification of the interchange format as a .pdf + various .csv 

ex-ports (Designer)  

 Generating validating components which can be integrated in a process (Par-

ser within the Designer, Validating building block composed of Knowledge 

Base cum Validator)  
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 Generating a validating tool with a graphical user interface for a local com-

pliance check before sending files to the remote processing platform 

(Autovalidator)  

 Testing the generated components (Tester)  

 

This series of tools does not owe its birth to a careful plan. One should rather think 

of it as an emergence. It is through the efforts of the national agency to organize the 

original system of goals and means and the various artefacts supporting them into a 

coherent whole that new tools kept arising until the present list was obtained. 

How do these tools operate? This is what this part of the paper is about. 

3.1   The Designer 

This tool is at the heart of the suite. As previously noted, the Designer generates:  

 The specification of the interchange format which will be disseminated 

throughout the user community for implementation (.pdf, .csv export, XML 

schemas)  

 But also the knowledge base which will be read by the Validator to check 

whether the actual files sent by the users comply with the specification  

As a modeler of data structures, datatypes and messages, the Designer is fairly clas-

sical. But as a repository of validating rules relying on first-order predicate logic, it is 

not.  

 

 

Fig. 5.  Top part of the Designer UI 

In the modeling perspective, the screen is split up between the project view (top 

left), the outline view of the current model (bottom left), the view displaying the cur-

rent model element (top right) and the view showing the properties of the part of the 

model currently in focus (bottom right).  
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Fig. 5.  Bottom part of the Designer UI 

 

Rules are modeled under the data element to which they are attached in the func-

tional specification for the file format. 

 

 

Fig. 5.  Rule as displayed in the Structures and Properties views 

A rule has a subject and a context, that is, a position within the message tree from 

which all paths to the data elements called by the rule will be calculated. The textual 

DSL corresponding to the functional rule is entered in the model through a widget.  

 

 

Fig. 5.  Rule as displayed in the DSL widget 
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A message will be returned to the user in the report stream if the processed file 

does not satisfy the rule.  

 

Fig. 5.  Rule user message 

When the knowledge base is compiled, the rule will be implemented as a Java class 

along with the set of utility classes loading and unloading at runtime the data elements 

called by the rule.  

 

Fig. 5.  Java implementation of a rule 

3.2   The Validator 

When a file is processed by the Validator, it goes through several stages:  

 Conversion into XML  

 Syntactical validation  

 Semantic validation  

As the file is processed, the Validator emits a report stream. The screenshot below 

shows the console and part of the report as transformed from XML to HTML by a 

local script.  
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Fig. 5.  Command line view of the Validator against backdrop of HTMLized report 

The Validator has been improved: the report stream can be customized to the needs 

of any user community, thanks to an architecture which now separates events logging 

and report serialization  

The Validator has been rolled out in production for the DSN.  

A POC has been made to validate file formats circulating between old age pensions 

agencies to consolidate data about pensioners claiming the minimum entitlement.  

3.3  The Tester 

Work is under way on a testing tool which should: 

 Validate the initial knowledge base against the specification it implements 

 Ensure non-regression on validating components before roll-out  

 Generate semi-automatically test suites.  

The Tester is an RCP tool which loads a test suite file into a series of test cases 

which are then automatically executed and parsed to compare the obtained result with 

the expected result. 

3.4   The Auto Validator 

Users can now check whether their files comply with the specification before send-

ing them to the processing platform.  
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The Autovalidator tool reads the same knowledge base and executes the same vali-

dating logic as the Validator in production. 

 

Fig. 5.  Screenshot showing local validation with DSNVAL tool 

Anyone can download the Autovalidator tool for the DSN, DSNVAL, on the Inter-

net: http://www.dsn-info.fr/precontrole-dsn-val.htm  

3.3  The Semantic Repository 

A Semantic Repository now links data definitions coming from the conceptual data 

model of the business domain to their implementation in the file format specification. 

A query tool helps navigate through the Repository, using various approaches: selec-

tion criteria, full text research, keywords...  
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Fig. 5.  Welcome page of DSN Semantic Repository 

4   Implementation. 

All the tools call on the facilities offered by the Eclipse Modeling Framework.  

The Designer is built on top of the Eclipse platform. An effort has been made to 

organize its plug-ins into coherent features. It has moved from a mere graphical mod-

eler to a developing tool which federates into a specialized plug-in all the projects an 

interchange format relies on for its successful implementation: modeling projects, and 

Java projects too in the guise of the functions extending the textual DSL, the few re-

maining rules written directly in Java, the Java serialization for the report stream.  

A class known as a Norm Descriptor calls the validating logic persisted in the 

knowledge base. The knowledge base itself is a Java archive organized in layers ac-

cording to the processing stages of the Validator.  

In the models layer, one finds the files which describe the syntax of the model the 

actual files have to comply with, in terms of data blocks, elements and types.  

A Java project carries the logic for the semantic validating rules and the report se-

rialization.  

Report logic relies on a model which is shared by the Designer and Validator.  

The conversion algorithm which transforms the input files into XML has evolved at 

the beginning of 2014 to throw an error when a data block or element is out of se-

quence with regard to the “covering message” (the superset of all message models for 

a file standard). It thus contributes to the validating logic. Previously it generated extra 
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data blocks elements to generate a sequence of XML elements which would always be 

valid, but this strategy led to misleading error reports at the syntactical stage.  

This is the most recent change brought about by the need to bring the Validator to 

production grade level, after the replacement of the initial off-the-shelf engines. The 

semantic validation was ported from Saxon and Schematron to a Java API in 2012 for 

performance, and the syntactical validation was ported from Xerces to the same Java 

API because users did not understand report messages phrased in XML constructs.  

5   Continuous integration. 

Originally, continuous integration covered only the suite of tools which were then 

more or less used on a standalone basis by the unit which specializes in the generation 

of the format models and validating components within the national agency.  

But as the Validator was being prepared for production, it was considered safer to 

include in the testing strategy the knowledge base itself.  

Now continuous integration encompasses all source control repositories, whether 

for tools or file formats, and builds to roll out fully tested components can be special-

ized according to the phase and version of the file format for which deliverables must 

be shipped. 

 

Fig. 5.  Code repositories called by builds according to tools and deliverables 

Continuous integration has become a system which helps produce systems of tools 

for structured file formats, each system of tools and deliverables being specialized into 

a given file format and released under a certain version. 

Genericity still prevails thanks to the separation between models representing busi-

ness rules and transformations implementing the processing logic. 

One could almost describe the system of code repositories and build scripts as an 

autopoietic machine perpetually regenerating tools and deliverables. 
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6   Conclusion 

The suite of tools is used intensively and successfully for the DSN project.  

The national agency wants to make it yet again more generic in order to generalize 

its use for the validation of most or all structured data interchanges between other 

institutions and itself.  

It is also investigating the possibility of turning the suite of tools open source in the 

hope it nurtures a new way of thinking about and working with structured file formats.  
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Abstract   If we engineered systems like we produce movies, would our enterprise 
and endeavors prove leaner and more agile? We daydream on the greener pastures of 
movie making, an industry whose signature practices were born out of necessity, to 
adapt to major regulatory upheavals in the 30’s Hollywood, and have since proved 
remarkably effective & resilient. We journey through odd ways of tackling strangely 
familiar problems, subtly different organizational patterns, and seemingly unreasona-
ble, yet strikingly efficient practices. Could we gain some insights or fresh ideas, to 
renew and better up our own ‘complex system engineering’ practices?  
 

Keywords Processes, People, Lean, Agile, Movie Making, System Engineering  

 

1 Introduction 

Is a movie a system? Of the kind we routinely design & develop in our ‘complex 
systems’ industry? Such a discussion would probably prove entertaining, and possibly 
shed some semantic light on our daily struggle with system modeling. Yet, we choose 
to focus our own investigation on a different point of view, of a teleological rather 
than ontological nature.  

 
There are at least two goals that are worth considering, and could be deemed as 

‘equivalent’ in both worlds: 

• Design and sell (or provide) a profitable product (or service). Obviously, movie 
producers invest money so as to gain strong return on investment in the process. 
With direct control of their stakes, they have strong incentive to make things right, 
and they generally have succeeded, with superior return and gains, despite some 
odd, spectacular failures. While profitability is certainly a goal we share in ‘our 
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part of the world’, we often fall short, as so clearly demonstrated e.g. in the soft-
ware industry [2]. 

• The success of the ‘End Product’ lies in some ‘good properties’ that reflect a sound 
architecture. It would be a bit conceited to actually synthesize what makes a good 
movie in the same way as Vitruvius did a long time ago for Architecture1 [3]. 
Nonetheless, ‘good’ movies are actually architecturally conceived, and we should 
look into this process. 

As a preliminary, let us remark though that many modern movies or TV series are 
endeavors on a scale rivaling many traditional ‘complex systems’, involving millions 
of dollars spent each week, with tight, imperative schedules (24 episodes each year 
for a TV series), hundreds of contributing people, in distributed teams located in 
many countries & locations.  

 
‘How movies are made & produced’ may appear, at first glance, quite alien & es-

tranged from the way we classically engineer systems. After all, in his thought-
provoking book [12], Goranson traces the key inspiration of many of these practices 
to the experience of the… Nantucket Whalers! On a closer look, though, we pick 
hints & ideas that resonate with our own daily issues in system engineering:  

 

• Modern movies often have a complex lifecycle, as they are distributed through a 
growing variety of channels, from theaters to TV broadcast, DVD and video tapes, 
on-demand pay-per-view, in various markets, timeframe, formats, countries and 
languages. 

• Shifting webs of relationships link stakeholders commanding these various chan-
nels, with opportunities (or regulatory requirements, e.g. in France) of complex 
risk & profit sharing schemes, cobranding and joint promotional efforts, including 
toys, books, music, sequels, prequels, derived comics, and all the paraphernalia of 
modern marketing. 

• These result in significant up-front investments, either in concept definition, actual 
shooting, post-production, marketing and distribution. To perform these tasks, the 
industry enlists a bewildering variety of highly specialized companies and individ-
uals, from unique special effects (FX) teams to dedicated insurers, or apparently 
mundane but key, specialized carpenters2 or dedicated catering. 
                                                             

1 According to Vitruvius, a ‘good’ architecture shall meet the following Vitruvian set of three: 
firmitas (solidity or robustness), utilitas (convenience or usefulness), venustas (beauty or 
sensual delight). 

2 Goranson [12] gives an enlightening example with the shooting of the movie Waterworld, 
which required building up floating sets. Instead of trusting highly-paid & specialized car-
penters & movie professionals with developing these sets (an expensive but sound, $3M so-
lution), the studio decided, inspired by its new, novice Japanese owners, to pick up subcon-
tractors specialized in sea-faring buildings. In so doing, they failed to capture the innumer-
ous, implicit knowledge & language of movie-making professionals that, in so many crucial 
details, is critical to delivering movies on time, and in having all specialized teams dance in 
tune. The implied delays ended up costing about $80M… 
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• Already in the 30’s in the United States, the movie industry was highly concentrat-
ed and competitive, leading them to adopt such “modern Lean” practices as flat or-
ganizations, just-in time or prequalified suppliers [12] 

• Today, movie production is still a living example of “Lean” principles in action. 
Indeed, an obvious keystone of movie production is that customers define value: 
every movie aiming for profit focuses on a specific audience, and tackle to its ex-
pectations. Producers devote extensive care and critical attention to the project ear-
ly on, studying it at length, getting feedback from numerous and various contribu-
tors, formulating ‘the right project’ before committing shooting resources, looking 
for an overarching and generative ‘High Concept’ [14], a fitting cast and crew, 
committed financers and distribution partners, and extensive research on potential 
risks, Intellectual Property and regulatory issues.   

• Actual shooting will only proceed once pre-production has achieved a clear, shared 
vision of the project, targeted audience & success factors, and once potential risks 
have been properly identified, accounted for and mitigated. Shooting will then pro-
ceed at an amazingly fast pace, with the innumerous specialized contributors ‘mag-
ically falling into place’, seamlessly cooperating to shave out unnecessary delays 
or unplanned rework out of the value stream. To this end, scenes are shot out of or-
der, some stars and actors will only appear on stage for a couple of days, sets will 
be prepared in parallel, and so on. Clearly, time is of the essence, the main cost 
driver at this stage, and the whole process is ruthlessly optimized accordingly.  

• Actors on a stage may spend most of their days idly waiting, with a few seconds of 
shooting randomly interspersed, a seemingly shocking lack of productivity for high 
paid, otherwise demanding stars. For the clear focus of the whole production is not 
on the specific productivity of individual assets, but on ability of the whole produc-
tion to deliver quality on time. 

• Another feature of movie production is agility, in the sense of agile engineering. 
Although there are processes for making movies, directors will more likely interact 
directly with actors. They will also react in face of change (e.g. unexpected weath-
er changes, star actor with food intoxication, or grossly out of shape, as Marlon 
Bando joining the shooting of Apocalypse Now), adapting on the spot, turning 
planning ordeals into artistic opportunity. And obviously the emphasis is on mak-
ing a fitting movie, i.e. a valuable end product, rather than on generating plethoric 
documentation3. As a matter of fact these are the fundamental values of lean, agile 
engineering. 

• Actually, documentation and support processes are not absent from movie making, 
and play a key role, e.g. when a script girl expediently notes, with amazing accura-
cy, all details of a scene. But these roles only exist insofar as they are critical to the 
quality and performance of the whole process – and, as such, are granted as much 
care and respect as other roles & tasks.  

• In addition, many producers and directors will actively engage with the targeted 
audience throughout post-production, testing the movie on smaller focus groups. 

                                                             
3 Although the paper edition of the scenario is part of a movie’s collectibles, it is obviously not 

the purpose of the movie-making process! 
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This guides editing and cut, a critical step to tune the pace, tone, sense and impact 
of the movie, and to fit the music score, FX, rushes, and numerous other parts into 
a cohesive and expressive whole. Actually, in a ‘design for flexibility’ kind of way, 
the director will often take a few extra shots of a scene to hedge risks, explore al-
ternatives, and gather supplementary material (in a cost efficient way), so as to en-
able ‘real options’ later on, at cutting stage.  

• Obsession for ‘the right product’ thus percolates throughout the whole project, 
from the pervasive front-end exploration to the post-production and distribution 
stage, combining a process-oriented mindset (shooting) with serendipity and atten-
tion to key ‘emergent properties’ afforded by the consistent efforts of many, varied, 
specialized, cooperating talents.    

2 New roles and organization for the system project team 

2.1 From duo to triumvirate 

Complex system projects are often lead by a duo: the project manager (aka direc-
tor, or leader), and the system engineer (or system architect, or chief engineer, etc.), 
splitting de facto the project into two distinct, overlapping domains: engineering and 
management. There are numerous debates on who leads whom, who drives whom, 
who decides what, and so on. Actually, in our own, humble opinion, there is no con-
vincing consensus yet as to the roles and the responsibilities of these two key players. 
Even the names of the roles are not so clear, as they keep changing through time & 
space. 

For example, it is quite frequent in system engineering primers, to present the sys-
tem engineer as a conductor of orchestra, a leader, enabling multiple disciplines to 
work together in a balanced and fruitful way. But a project leader claims also to be the 
leader… of the project (of course). And the importance of the composer, i.e. the one 
who thinks and designs the masterpiece to be then executed/realized, is often lost. 

 
Let us imagine that we have both these distinct roles, as in music or in movies: 

• The composer, or the writer, who we shall call the System Scenarist. He under-
stands the complex problem to be solved, by taking into account the voices of the 
customers and the many potential stakeholders; he finds the solution, investigating 
and exploring numerous alternatives in the process; he generates, converges on and 
selects an efficient concept, capturing and defining the solution, based on his expe-
rience, the accumulated knowledge of its enterprise and, obviously, his own talent. 

• The conductor, or the director, who we shall call the System Director. He leads the 
numerous people involved in the system development4 process. 

                                                             
4  We should take here an extended meaning for ‘system development, not restricting it to the 

implementation process (as in ISO 15 288, or SE Handbook) but encompassing all the tech-
nical processes. 
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Note that both of them require a solid technical, scientific, mathematical (and so 
on) background. In other words, both are engineers, their differences lying rather in 
their behavioral skills and focus: one is leading, while the other is creating. 

 
To ‘achieve’ successful movies, i.e. loved and cherished by the audience (the end 

customer, shall we say) and generate superior profits, we need, in fact, a third and 
critically important player: the production.  

Quoting Film Training Manitoba [11], “Producers are the driving force behind 
any project. They are essentially the ‘managers’ of a movie production. […] Many 
producers also have extensive experience in many aspects of filmmaking and have 
worked in many different positions on film or television projects. […] Producers se-
cure investors and put together the financing for a production and they are ultimately 
responsible for all financial aspects of a film. They must have strong business man-
agement skills, […].” 

So let us add this key role to the two previous system roles: 

• The System Producer, or perhaps shall we call him ‘System lifecycle and profitabil-
ity Manager’. He will be in charge of the financial and contractual aspects of the 
system production all along the system lifecycle. As in movie production, he shall 
have a significant experience and a deep, practical knowledge on ‘how to perform 
system engineering’, being able to support the development team and give sound 
advice. In other words, not a ‘yet another Excel sheet holder’, but someone who is 
really, deeply involved and committed to the process. 

2.2 Process is good, people are better 

Even if the various roles of the triumvirate (System Producer, System Scenarist and 
System Director) are distinct and complementary, ensuring a ‘per design’ good bal-
ance in the leading team, much of the success lies in their actual interplay: how do 
they fit together, do they work on good terms, with mutual understanding and respect? 

To these three core pillars of ‘a movie-oriented system production’, we should add, 
and not neglect, a complementary function that considerably fosters the success of a 
project: the casting. 

Spotting the ‘right’ actors, and the right mix of actors, is a major and defining fea-
ture of movies success. 

It is for instance striking to learn how the initial casting of ‘LOST’ had such a 
strong influence on the TV show (and its unquestionable success) [5, 6]. Some char-
acters were added during the casting because it was recognized that the auditioned 
actor could bring significant value to the show, leading the writers to challenge them-
selves. Many young, talented women were auditioned for the role of Kate, but, when 
it was the turn of Evangeline Lilly (a totally unknown actress at the time), everything 
stopped. It had to be her, and no one else. Even the emotional tension that appears to 
certainly emerge between her and the character of Jack, played by Matthew Fox 
changed radically the initial script. Jack was actually supposed to die at the end of the 
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pilot! In a true agile form, everyone adapted to exploit this opportunity, unleashing 
new waves of creative thought & insights in the process. 

Casting, or building up the right team is not restricted to ‘recruiting’ the good ac-
tors, but is extended to all supporting disciplines. A movie director will certainly 
strive to surround himself with his favorite cinematographer or his favorite artistic 
direction, according to the specifics of the project. These key players will come to-
gether around a specific project, around a common purpose. And, in a ‘fail fast’ kind 
of ways, early discussions between the key players may reveal irreconcilable takes on 
the project, leading some directors or star actors to quit the endeavor early, so as to 
open space for others that would better serve the project. 

This leads us to question our usual way of assembling engineering teams. Too of-
ten we have seemingly blind faith in the process, as the one path to success and prof-
itability. Since processes can be ‘objectively’ monitored through KPI (even the use of 
that acronym for key process indicators, so widely spread within the community, is 
almost a way of self-satisfactory reliance on ill-understood but smoothening habits!), 
they form a comfortable and lazy policy to rely on, and they lead to potentially ‘Fail 
most successfully’ [13]. 

It is much more challenging to raise an actual policy of casting engineers, unleash-
ing their combined talents to ensure success (as a pun to the reader, did you ever have 
a chance to do it in your practice?).  

Quoting Ed Catmull, cofounder and president of Pixar: “We believe the creative 
vision propelling each movie comes from one or two people and not from either cor-
porate executives or a development department. Our philosophy is: You get great 
creative people, you bet big on them, you give them enormous leeway and support, 
and you provide them with an environment in which they can get honest feedback 
from everyone.” 

Did we do otherwise when racing to the Moon? 

2.3 Engineers do only engineering 

Nowadays, we are often trivializing engineering trade. A spreadsheet, a slideshow 
presentation tool and an email client make up the basic, essential toolset for engineers, 
increasingly overwhelmed with dumb reporting, administrative & management tasks.  

On the other hand, in movie production people seem to be more focused on their 
core job, relying on the support of specific assistants. E.g. the movie director has a 
first assistant to track daily progress, prepare and organize the schedule of the day, 
make sure that logistics follow up…  

This may appear luxurious, but it ensures at its best that when a major decision is 
made, everyone is properly aligned, and that the decision is properly enforced. When 
Georges Lucas chooses among many raised propositions, for a character appearing 
only for a few seconds [8], then all follow suit. The management process behind that 
not only works perfectly, but it does not need him at all (by the way, e.g. configura-
tion management in movie productions such as Star Wars is no small feats). 

When turning on a profit is of such paramount importance to movie producers, 
their apparently paradoxical solution is to engage extra people, so as to free key play-
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ers from administrative or management tasks. This is Lean in action: optimize global-
ly, focus on the flow, ban rework whenever possible, continuously measure & im-
prove… 

All of this is in stark contrast to current common practices in our industries, where 
engineers have to perform all the management work, because of a patent lack of assis-
tance, and, from time to time, quit their beloved reports to perform a precious few 
seconds of actual engineering! 

Let us imagine how profitability could be increased if we re-focused engineers to 
do engineering and only engineering, supporting them with appropriate assistants to 
perform all the management and logistics tasks.  

For example, a System Scenarist will mainly work on the creation process to ‘dis-
cover’ the optimal concept, exploring a broad playground, generating and assessing 
bunches of alternatives. For that, he will reason on high-level abstraction of the sys-
tem under study, reflect on prior arts, failures and attempts, and provide probably 
more literary insights of the system to be realized. Then the precise iconic or graph-
ical models needed for the system development (be it storyboarding or digital 3D 
mock-up in movie production, descriptive models like the various views of an archi-
tecture framework in system engineering) will be entrusted to some technical assis-
tants, both human and digital. 

3 New main lines for engineering a system 

3.1 Life-cycle management and cost models 

Movie making focuses on cost issues from the start on, and these concerns will in-
fuse all processes of movie production. The movie industry actually developed eons 
ago what is nowadays called Activity-Based Costing accounting practices, long be-
fore the term was coined, or even the need widely acknowledged. 

Indeed, before a movie project starts shooting, its funding must be guaranteed, with 
a clear business case, and investment commensurate to the expected revenues (i.e. 
coming from the theatre projections, the sales of DVDs and all sorts of collectibles 
related to the movie). 

Translated into system engineering, this would imply that acquisition costs are de-
termined relatively to utilization costs and revenues. Although this is the general rule 
for large-scale complex systems requiring public-private partnership investments 
(such as construction of new airports or major constructions such as tunnels – e.g. the 
Channel tunnel – or bridges – e.g. the Millau bridge –), it is clearly not yet an honored 
practice in many actual processes in the industry. Usually, only lip service is devoted 
to genuine global cost & value management. Indeed, although agreement processes 
(acquisition and supply processes) are explicitly mentioned in the 15288 System Life-
cycle Process, their imbrications with the technical engineering processes is hardly 
described. 

The way a movie production team develops ab initio the financial support of the 
movie could be also a source of inspiration for system engineering. This activity is 
clearly a key focus of the System Producer. 
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Lifecycle management for movies is a continuous process: teasers are progressive-
ly introduced on the commercial distribution market while the movie is being shot, 
carefully crafted stories about star actors are leaked, and once the movie is released, 
advertisements and commercial exploitation of the movie last for some time, being 
replaced by other kinds of commercial exploitation once the movie is retired from 
screens and begins its new life as a source of private projection revenues or diffusion 
on television channels. 

Analog concepts for system engineering could be introduced within the stages pre-
ceding in-fielding, which would profit ultimately the utilization phase, where ac-
ceptance of a new product or service is not always easy, and is hardly anticipated by 
the acquisition teams. 

Other issues deal with the end of the lifecycle: disposal of a movie is never actually 
the case, although some movies fall into oblivion, which could be seen as a state of 
definite retirement. However many movies become then ‘classics’ which is another 
way of recycling them. 

Similar situations for systems engineering would be implementing sort of a circular 
economy process within the systems engineering process, which would be well 
adapted to the newest trends permeating our society in quest for sustainability. This 
implies building differently the basics of the current widely spread engineering way 
of life, which relies heavily on sequential activities and iterations of that sequential 
process, but cannot cope with circularity. 

 
3.2 Project phases and progress oriented 

Focused to the only objective of the movie opening and exploitation, movie mak-
ing processes involve a set of widely acknowledged stages: development, pre-
production, production, post-production and distribution/exploitation [9, 10]. Each of 
these stages has clear objectives, tasks to be performed, and ‘definitions of done’ as 
preconditions to next-stages transition. For example, the pre-production is all about 
preparing the shooting. It includes tasks like storyboarding, casting, selecting loca-
tions, designing and building sets, and so on.  

Even if project phases, synchronized with system lifecycle stages are part of all 
system engineering primers & handbooks, most standards expand the central idea that 
performing a system engineering approach boils down to deploying a set of processes 
(25 according the INCOSE SE Handbook [4]). When engaging or training seasoned 
professionals, we routinely observe that precious little consideration is paid to how 
these processes have to be actually run and adapted, in tune to the project progress.  

For instance, to mimic the movie production, there could be a ‘phase 0’5 while de-
veloping a system, when the concepts and the business case are jointly elaborated. 
This requires a strong involvement and commitment of the System Scenarist, the Sys-
tem Director and the System Producer. In other words, designing the architecture of 
the system & engineering costs are the two faces of the same coin, and imperatively 

                                                             
5  Naming this phase more precisely would raise endless discussions at this stage… 
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have to be jointly developed by the core team, with a comprehensive view of the 
whole system lifecycle.  

3.3 Everything starts with an idea.  

Let us add a few useful aphorisms to the bunch of heuristics system designers 
should use:  

• You should build your ‘thing’ around a central idea or concept. Use this idea or 
concept to build everything (it is generative).  

• If you cannot explain your concept, your idea to your grand ‘ma, forget it. 
• Don’t hesitate to throw an idea away, and start with a fresh one. 

These heuristics originate from the architecture [15], and have consistently proved 
useful both in movie making and in system design. 

In movie production, the pitch, even the famous ‘high concept’ [14], is the starting 
of everything, and at least the minimal, shared understanding that everyone (the cast 
and the film crew) have to ‘get’ so as to deliver consistent & convergent results. 

For instance, the ‘pitch’, or the original concept for the sci-fi TV show ‘Battlestar 
Galactica’ (BSG), was explicitly & emphatically not to produce “yet another space 
opera show with nice FXs”, but instead to explore the concept of “putting the humani-
ty faced to its own finiteness and its own creation”, thus setting up a clear, open, dra-
matic and generative basis for narration, thus for ‘designing the system’. 

Actually, when BSG was under development, the production submitted to prospec-
tive lead actors a script of the pilot including, by mistake, the production manifesto 
explaining, in a couple of pages, these key design choices & concepts [7]. It com-
pletely changed the way the actors approached reading the script, capturing their im-
agination & will, generated creative energy, inspiration, and alignment, and drew to 
the show talented stars that would have declined it otherwise. Such is the e.g. case 
with Edward J. Olmos, of Ridley Scott’s movie ‘Blade Runner’ fame, who was clear-
ly instrumental in the success of BSG development. 

Nowadays framework in system engineering tends to ‘explain’ their system 
through a bewildering multiplicity of system views and diagrams (9 different diagram 
kinds in SysML, 48 views in NAF 3.0, 52 views in DODAF 2.0! Can’t wait for the 
third edition…), but most often fail to bring forward a holistic, global, generative 
view that sums up the intention into one big idea or comprehensive concept. In other 
words, system engineers are not trained or used to ‘pitch’ their system in one or few 
sentences, making us understand why ‘we will love it’, and how our work may con-
tribute to the value overall. 

4 Conclusion and Acknowledgment 

It was ‘off-the-record’, unofficial work performed by the authors, who enjoyed 
themselves exploring these side topics, and trying to renew our vision of system engi-
neering by exploring development practices in other industries. The analogy with 
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movie production proved to be fruitful and illustrative, and convinced us to push for-
ward these early forays. Or, as goes the saying, with a rumble voice: We will be back! 

We would like to warmly thank Michel Guillerm, a French independent movie di-
rector, for the oh-so fascinating discussions we’ve had with him, and the passionate 
patience he had leading us through the inner workings of movie making. 
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Abstract. More than 30 years have past since the first enterprise ar-
chitecture (EA) management framework has been published. While the
field has reached a certain maturity in science and practice, a paradigm
shift is just beginning. The emerging trend to regard an enterprise as a
complex adaptive system might allow to redefine and achieve the holis-
tic nature of EA management approaches. Thereby, the focus on static
aspects of the architecture might be extended by taking behavioral as-
pects into account. In this paper, we argue (1) that currently available
EA management approaches fall short in achieving the desired holism, i.e.
viewing the system (application landscape) as a whole, (2) apply orien-
tor theory to support decision making by deriving coordinated goals and
principles for application landscape design and (3) show how a system-of-
systems approach of applied orientor theory could look like. We conclude
the paper by sketching out an appropriate research agenda.

Keywords: enterprise architecture, complexity, environment, orientor
theory, decision support

1 Introduction

For quite some time, researchers regard enterprises as open dynamic systems [34].
Thereby, they overcome the self-centering view of traditional economics and or-
ganizational theory as well as the reductionism prevalent in recent enterprise
architecture research. Thereby, they also extend their view to take the environ-
ment and respective interactions into account [18]. It seems that this extended
viewpoint allows for a deeper understanding and development of new methods in
the context of accelerating changes requiring steady adaption. Disruptive tech-
nologies, increasing regulation and changing customer demands are just a few
general examples. It is obvious that enterprise architects have to design the en-
terprise and especially the application landscape to optimize fitness with respect
to these challenges. Therefore, science has to provide methods to support this
process. As a first step into this direction, we propose to search for other disci-
plines which already established similar thinking to develop solutions for similar
problems. In this paper we describe one of those modeling approaches which has
been successfully used in ecology and economics, namely orientor theory. We
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show how orientors might be used to create a formal and deeper understanding
of the behavior of application landscapes as a whole taking also their environ-
ment into account. Thereby, we not only provide a conceptual integration of
different aspects of relevant behavior but also show their dichotomies. Grounded
on the assumption that agents with deeper understanding of the system behavior
make better decisions the application of orientor theory is a promising tools to
model the behavior of enterprise architectures. Finally, we conclude the paper
by describing a conceivable road-map for enterprise architecture research that
accounts also for dynamics of the enterprise.

2 Problem Statement

2.1 General Goals of EA Management and its Claim for Holism

Even a short literature review reveals that holism is frequently attributed to
EA management approaches. A search for the terms “enterprise architecture”
AND “holistic” in Google Scholar performed in April 2014 resulted in more than
4.670 articles and book chapters. It is more often than not the case that holism is
considered to be a mandatory attribute of EA approaches [25]. Therefore, there
is general agreement on the scope of EA initiatives and models. Nevertheless,
this is not the case for concrete goals EA management initiatives should pursue.
In literature, EA benefits such as improved change management and improved
risk management are mentioned frequently [25], some authors also promise an
increase of market value [32], better customer orientation and improved align-
ment with business partners [16]. It becomes obvious that EA initiatives have a
wide-ranging scope covering the whole enterprise as well as the enterprise as a
whole in its environment.

2.2 Reductionism and Complex Systems

The fundamental idea behind modeling static non-living aspects of an organi-
zation with entities and attributes, i.e. EA documentation, to understand or
design the system is called reductionism. This philosophical position holds that
a system can be completely explained and understood by looking at its con-
stitutive elements and their relationships. Thereby, each phenomenon can be
explained in terms of relations between other more fundamental phenomena. In
contrast, the science of complex systems teaches us that one inherent character-
istic of complex systems is their emergent behavior [14] which is also applicable
to organizations [23]. Nowadays, emergent phenomena are considered to be the
exact opposite of reductionism, they can hardly be traced back to the interac-
tion of phenomena of single elements. Colloquially, this notion is formulated as
“the whole is more than the sum of its parts” which dates back to Aristotle.
The problem that arises from the prevalent reductionistic approach of EA man-
agement is that the focus on the micro-level is not appropriate to completely
explain or even design the behavior on the macro-level. This is especially sur-
prising since, as shown before, the macro-level is the area of interest of holistic
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EA management. Furthermore, many researches have shown that organizations
qualify to be regarded as complex adaptive systems [34, 12] since they exhibit
complex, adaptive and emergent behaviors due to multiple interacting agents [8].
To qualify for a reductionistic approach we need to be aware of the laws declaring
how theories on the micro-level, e.g. the resistance to change of a single appli-
cation, relates to theories on the macro-level, e.g. the resistance to change of an
application landscape. As long as science has not accomplished to reveal such
laws, a pure reductionistic approach, e.g. by collecting a huge amount of data
on the micro-level, is doomed to fail when trying to support design decisions
on the macro-level. Although reductionism in general faces criticism in scientific
literature (e.g. [15, 20]), we only want to point out here that if reductionism is
applied it has to be done on a strong theoretical basis.

2.3 Reductionism is Prevalent in EA Management

A well-known problem in EA modeling is to define the breadth and depth of
EA documentations, i.e, relevant elements and their level of detail. If not done
correctly issues related to overmodeling and overuse of detail might occur [1].
Typical issues include analysis paralysis, delayed delivery of results and high
costs for data collection. The observation that many companies in practice faced
such problems clearly indicates that the holistic idea of EA management has
often been interpreted by reductionists. Hereby, the assumption seems to be
that the more elements and the more details are modeled or documented the
closer one gets to a ‘holistic’ approach. Another way of interpreting holistic in
this context would be to look at the whole system, e.g. an application landscape,
instead of focusing on its constituting elements.

As mentioned before, (IT) cost reduction is one of the major claims of EA
management. Existing literature suggests that EA facilitates building a more
standardized IT platform with fewer technologies, leading in turn to simpli-
fied interfaces, higher reliability through reduced operating platform complex-
ity, and lower maintenance and support costs [37]. Thereby, the assumed law
seems to be that an application landscape’s cost is just the sum of the costs of
its elements. While this holds true in a narrow context, it might not be true
from a holistic point of view. On the one hand, while infrastructure operating
costs might decrease, application development costs can increase due to neces-
sary workarounds required in a fixed technology context. On the other hand,
cost reductions based on technology standardization and structural complexity
reduction are only short term cost optimizations. Risks associated to exten-
sive standardization might cause expenses in the future and have therefore be
regarded in respective calculations. To our knowledge, most cost cutting ap-
proaches based on EA management neglect the system’s of path-dependence.
The statically viewed EA has a history which has to be taken into account. For
example, investments have been made for some elements in the past while their
expected benefits will materialize in the future. Consequently, they cannot be
changed without loosing (parts) of the promised benefits. Furthermore, IT sys-
tems are not autonomous elements within the application landscape which can
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be changed easily. For example, an organization employs IT staff with specific
knowledge which could get lost in case of standardization. Additionally, stan-
dardization activities on the application landscape might require standardization
activities within the business layer.

2.4 A Paradigm Shift in Enterprise Architecting

Despite the fact that many existing EA approaches applied a naive reduction-
istic thinking even in the absence of concrete laws to build reductions, we see
evidence for a paradigm shift in enterprise architecting from reductionism to
holistic thinking. For example, the co-evolution path model describes how an
enterprise as a whole behaves in the context of its environment [18]. While the
complexity of the environment increases, the enterprise has to increase its com-
plexity as well. But an overshot could be very dangerous and therefore each en-
terprise has to maintain an adequate level of complexity over time. An overview
of complexity work in EA management can be found in [33]. Additionally to
hard facts as provided by existing EA approaches, we also see an opportunity
in supporting EA decisions indirectly via creating a better understanding of the
system as a whole among EA decision makers. The benefits of shared mental
models, conventions and language have already been recognized in the context
of virtual teams [22], customer relationship management [27] and lab experi-
ments in general [35]. Therefore, we argue that models facilitating such shared
mental models or language should also be established for the domain of enter-
prise architecting because a shared IT-business understanding allows companies
to conceive, implement and use innovative IT applications to improve process
performance [28].

3 Applying Orientor Theory to Model Application
Landscapes in their Environment

As outlined before, we want to extend the scope of EA models towards achieving
a holistic view. A literature review conducted in 2014 revealed, that currently
the dynamic aspect as well as the subjective aspect of an enterprise’s complexity
is underrepresented in EA literature [33]. Therefore, we employ orientor theory
as a method which might be able to create such shared mental models in the
context of application landscape design. Bossel [5] defines orientors as the “set
of criteria that are relevant for the evaluation of system development [...] that
systems (or their managers) use to orient their decisions and actions regarding
the system”. Although orientor theory originates from ecology, it has been used
to describe complex systems in arbitrary contexts [6].

3.1 Benefits of Orientor Theory for Application Landscape
Decisions

The application of orientors is a means to cope with situations in which the
desired state of a system is not agreed upon the designers. Due to the large
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number of different interest groups directly involved in planning and decision-
making processes influencing an application landscape, several points of view
have to be taken into account. Especially in ecosystems, where orientor theory
has been developed, in such situations a single objectively derived best solution
does not generally exist [13]. Therefore, orientors form conditions that we can
apply to systems in order to judge their sustainability [36]. Because decisions
about extensive application landscape (AL) transformations are made in boards
where people with different views and goals converge, the application of orien-
tors and especially their dichotomy can help to establish shared understanding
of the problem among the decision makers. That shared problem understanding
can help establish development priorities and keep senior management focused
on generating benefits from new IT capabilities has already be shown in prac-
tice [31]. In addition to that, orientors also offer strategic guidance for decision
making processes on different levels of governance. A framework based on ori-
entors would allow to balance different interest and therefore ensure the whole
system’s viability.

Furthermore, the application and modeling of orientors not only allows to
assess the current state of a system and better understand opposing goals but also
allows to agree upon desired orientors the system should follow. Based on such
framework and concrete strategies goal derivation can be facilitated. Therefore,
orientor theory should be of interest especially for EA approaches following the
Enterprise Ecological Adaptation school of thought [19], whereby sustainability
and organizational coherence are major goals.

3.2 Orientor Theory and its Implications for EA Management

According to orientor theory each system orients towards six environmental as-
pects namely normal state, scarce resources, variety, evolution, variance and
other systems. Here, we focus on the AL as the system under investigation in-
cluding applications, infrastructure as well as the people interacting with them.
Figure 1 depicts the six pairwise contradictory orientors and their respective
environmental influences.

Existence The existence orientor refers to the normal state of the environment
which means that the system has to maintain its state variables constant to
enable functioning under given circumstances. This orientor requires:

– A protective shell preserving the systems from threats able to push the sys-
tem state out of the acceptable range

– No failure of system structure
– No self-destructive behavior

Following the existence orientor an AL would, e.g., install firewalls to protect
applications from hackers. To prevent failures of the system structure all relevant
stakeholders have to be involved in AL design decisions which in practice is still
an issue [21]. IT capabilities for this orientor include IT service management as
well as a monitoring capability.
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Fig. 1. Application landscapes modeled according to orientor theory [5, 10]

Effectiveness The effectiveness orientor refers to scarce resources in the envi-
ronment and how they can be secured. Within the system, resources have to be
distributed wisely and used in an efficient way, e.g. budget, time and knowledge.
Externally, the system has to ensure efficient acquisition of scarce resources by
connections to the environment and other subsystems. Knowledge acquisition
through hiring new employees can be difficult, for example in the domain of EA
management [21]. In order to acquire budget, executive support or management
commitment is needed. But this is often rather low regarding EA management
which is often seen as an operational initiative rather than a strategic concept
with long-term redemption [17].

Following the effectiveness orientor an AL has to continuously balance ef-
forts to make processes and applications more efficient with efforts creating as-
sets which are non-efficient but effective in the long run. The better the ratio of
efforts and outcomes the more orientation towards effectiveness. But that does
not imply that the ratio has to be good at any point in time. To stay viable the
system has to maintain a positive ratio on average over time. Therefore, an inte-
gration of EA management and project portfolio management is inevitable [11].
However, the system needs to ensure access to required resources from the en-
vironment. For application landscapes this implies, e.g., access to people skilled
in programming languages in use or skilled enterprise architects which are still
issues in practice [26, 21]. Another means to accomplish efficiency is to increase
standardization within the AL or especially within the infrastructure layer.
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Freedom The freedom orientor refers to the variety of the environment and
describes the system’s freedom of action. Thereby, a system needs as much free-
dom as its environment offers variety [2]. In general, a system has to secure itself
from overextension by using one of the following strategies:

– Reacting by using the systems repertoire
– Reacting by influencing the system’s environment
– Reacting by searching for a new environment

Following the freedom orientor an AL would try to achieve a maximum of ac-
tion alternatives and limit the amount of fixed structures. These include but are
not limited to long-term contracts with infrastructure or application providers,
a high penetration of a single vendor within the AL as well as non-redundant
processes and applications. Another ability relevant for ALs is to cope with tech-
nological progress, especially with disruptive technologies as they might limit the
whole system’s viability if the system is constrained in its action alternatives.
Some companies even changed their environment in presence of a significant
environmental, i.e. external, change by moving their headquarter overseas [3].
Employing diverse workforce, having a modular AL and decentralized gover-
nance structures also supports the freedom orientor.

Adaptability The adaptability orientor regards the evolution of the environ-
ment. If a system is not able to elude from threatening influences it has to
adjust its parameters or even its structure. In general, systems can either adapt
their structure or their behavior. Changing the system’s structure can result in
a new system differing explicitly from the old one. In contrast, changing only
the behavior is also considered as co-evolution and which is mostly suitable if
small environmental changes occur. Such adaptability requires a certain degree
of self-organization. In particular, the following conditions facilitate adaptivity:

– versatile system components
– variety within the system structure
– redundant but physically different processes
– decentrality and partial autonomy
– memory as information storage to enable learning

Following the adaptivity orientor would require, e.g., a modular architecture
with loosely coupled applications, data and technology components which allows
to set global standards while also allowing regional differences [30]. In order to
apply versatile components and variety within the AL applications can be build
on different technologies and programming languages and conscious acceptance
of functional redundancy. Since adaptivity requires the ability to learn knowledge
management becomes vital for adaptive ALs, cf. [9]. An example for a structural
change of the AL is a transition to a service oriented architecture. Fostering an
open organizational culture and having flexible structures directly supports the
adaptivity orientor.
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Security The security orientor regards temporal variances of influences and
ensures that the system is safe from unforeseen harmful influences. Therefore,
the system needs to be mostly independent from unstable environmental factors
and dependent only on stable environmental factors. In general, this can be
accomplished, e.g. by

– setting up buffers to contain overloads and bypass supply gaps
– establishing self-regulating structures
– defusing potentially harmful threats

For application landscapes following the security orientor would imply, e.g.,
to keep enough knowledge within the company to overcome potential supply
gaps on the market. Furthermore, to establish self-regulating structures an com-
prehensive monitoring and governance capability is needed. Defusing harmful
threats in this context could be achieved, e.g., by setting up uninterrupted power
supply units or different connections to the Internet. Setting up resource buffers,
e.g. via server virtualization, secures individual applications from request over-
loads. Especially the implementation of appropriate risk management and con-
tinuity management support the security orientor.

Coexistence The coexistence orientor refers to other systems influencing the
system and anticipative behavior. Each system has to consider the behavior and
interests of other systems for its own interest. Usually, each influence from the
environment has an ‘unsystemic’ component as well as a component consisting
of the behavior of other systems. Since sometimes a specific system is of spe-
cial interest, that system has a special role within the coexistence orientor. It
requires:

– the ability to realize that another system is affected by some influence
– the availability of behavioral patterns

While one can imagine a huge amount of relevant systems for an applica-
tion landscape an important one should be the enterprise or business units.
Being informed about current strategies, e.g. to increase the number of cus-
tomers for a certain product, allows the application landscape to invest in respec-
tively required capabilities such as scalability. Other systems of interest could
be providers of infrastructure or applications. Environmental influences like the
dissemination of cloud computing might influence the adaptivity of them and
therefore indirectly influence the AL. Therefore, sensors as well as analytics ca-
pabilities are required for the coexistence orientor.

3.3 Mapping Established Enterprise Architecture Principles to
Orientors

In order to steer an enterprise architecture (EA) in general and an application
landscape (AL) in particular adopting EA principles is a pervasive means, cf. [29].
Because principles are used to steer an application landscape towards a specific
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direction, they obviously qualify to be mapped on the six basic orientors. We will
do this for three exemplary EA principles formulated in the industry standard
TOGAF (The Open Group Architecture Framework) [38].

Common Use Applications “Development of applications used across the
enterprise is preferred over the development of similar or duplicate applications
which are only provided to a particular organization”. This principles directly
orients towards effectiveness because the intention is to save costs and time
during implementation and operation of different IT systems performing the
same tasks. Thereby, it renounces the freedom as well as the adaptivity orientor.
If applied, freedom in term of action alternatives will be limited because, e.g.,
the number of available add-ons is limited if only one solution is used. Setting
global standards also prevents or impedes local evolution and therefore limits
the adaptivity of the AL.

IT Responsibility “The IT organization is responsible for owning and im-
plementing IT processes and infrastructure that enable solutions to meet user-
defined requirements for functionality, service levels, cost, and delivery timing”.
This principle obviously orients towards the existence of the AL because defined
responsibilities ensure that someone really cares about a system or entity. How-
ever, the principle reduces the regard to other systems, e.g. the business units,
because keeping the AL viable might become more important than keeping the
depending business units viable.

Technology Independence “Applications are independent of specific tech-
nology choices and therefore can operate on a variety of technology platforms”.
This principle clearly orients towards adaptivity because if applied it allows for
a grater variety of components. On the one hand, e.g., if a new data storage
providing better performance is offered by the environment the AL can exploit
these performance gains. On the other hand, the orientation towards effective-
ness is lowered because defining and managing interfaces and shared protocols
which might be subject to evolution increases costs.

3.4 A System of Systems Approach

In the previous section we outlined how orientor theory could be used to model
the role of application landscapes (AL) within their environment. But since
ALs are designed systems such orientor model could also be used to support
design decisions. Therefore, an enterprise architect has to decide which orientor
is most important for the AL. But, an EA or AL could also be regarded as a
system of systems [24] wherein the behavior of each individual is explained by the
structure and arrangement of the lower individuals of which it is composed [7].
Because in such setting each sub-system again can be regarded as a system
and modeled with orientors we can use the orientor approach to model ALs,
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domain landscapes, application clusters as well as single applications. Although
such approach has already been proposed in general [4], we want to elaborate
the relationship of systems’ and sub-systems’ sustainability here. Until now, the
system-of-systems orientor approach assumed that the system’s sustainability
depends on the sustainability of each sub-system. The challenge is to identify
the different orientors responsible for the system’s sustainability, i.e. viability
of the company. In the context of ALs, this could mean that the sub-system
consisting of all applications supporting production processes have to orient more
towards effectiveness and therefore standardize protocols and vendors whereas
the sub-system consisting of all customer-facing applications has to orient more
towards adaptivity since the environment is rapidly changing, e.g. mobile devices.
But we also want to point out, that the system’s viability can also be achieved
by explicitly leaving sub-systems to die. This includes, e.g., IT carve-outs or
discontinuance of a whole line of business.

4 Conclusion and Outlook

In this paper, we argued why existing EA management approaches fall short
in providing a holistic approach and introduced orientor theory as a means to
describe a system, i.e. application landscape, as a whole in the context of its
environment. By linking aspects of existing EA management approaches to re-
spective orientors we put them into a more general and coherent framework and
thereby identified opposing forces. Furthermore, for each of the six orientors we
derived implications for AL management and outlined how a system of systems
approach could be used to apply orientor theory for sub-systems like domain
landscapes or application clusters as well. In addition, we mapped well-known
EA principles to the six basic orientors, identified that their application shifts
an AL towards one orientor while dismissing another and thereby demonstrated
the benefits of applying orientors for AL management. In order to underpin the
applicability of the proposed modeling method researchers have to observe its
application in practice. If the framework should be used to assess and steer ap-
plication landscapes concrete measures have to be defined for each orientor. In
case of a sufficient data base we suggest to analyze, for example, if companies
within the same industry branch or of equal size orient their application land-
scape development towards the same orientors. It would also be worthwhile to
examine the use of domain-specific orientors empirically. Furthermore, we sug-
gest to analyze other approaches which are able to model system behavior, such
as causal loop diagrams, in the context of application landscape management in
order to model behavior in more detail.
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Abstract: this paper aims to share industry experience in managing the reuse and 
variability in the industry and to analyze the linkage between this topic and system 
engineering. Reuse and variability management are two faces of the same coin and 
strongly influence business performance. Hard products industries (where 
mechanical and structural engineering were historically dominant) and soft 
systems industries (where electronic and software engineering are dominant) 
addressed the questions from different perspectives. After describing the observed 
practices for managing the reuse and variability from the physical product 
standpoint, and taking in account concepts and approaches used in “Soft” 
industries, we analyze how systemic approach should help in better mastering the 
variability. In conclusion, we identify some principles and rules which would need 
to be investigated through research to better link PLM and systemic approach in 
variability management  
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1   Introduction 

As we will see across this paper, variability and reuse management is a topic 
which crosses the full life cycle of complex products and systems and address all 
the engineering disciplines. One of the identified difficulties is that variability 
management have often been addressed separately by different methods and IT 
systems according to their positioning on life cycle and engineering disciplines. 
My own experience presented in the first sections of this paper, is mostly relevant 
to the management of the variability implemented in PLM and ERP systems. It 
focuses on variability management relying on product structure (from the classical 
perspective of BOM management supported by both classes of systems, but also 
from the perspective of the 3D Digital Mockups used by a large bench of 
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engineering disciplines for concurrent engineering. But this perspective is too 
limited. I intuitively thought that system engineering should be analyzed in the 
variability management context for two main reasons: 
• First, electronics and software is massively invading all traditional products 

whose design and development previously relied on structural and mechanical 
design. Even if these engineering disciplines are often treated with separated 
methods and dedicated IT application, mutual dependencies are growing. 
Complex systems/product definition need to be managed from a consistent 
point of view for configuration, including variability management and changes 
across time. 

• Secondly, my experience focused on physical product variability management 
and the problems encountered convinced me that a systemic approach is 
required to better manage the variability. This relies on the fact that variability 
is strongly linked to the way we structure and manage the requirements in 
parallel with the definition of the system/product architecture. 
 
This also pushed me to do a brief research review where I found interesting 

papers. A part of them were centered on the domains of the physical product 
variability. But I also discovered that a lot of the research papers address the 
question of variability from the software engineering perspective. These papers 
helped me to clarify and confirm some intuitions I got from my own experiences. 
They also help me to formulate the reasons why I think that system engineering 
and system modeling approaches may provide a strong foundation to design and 
model the variability. They provide a way to consistently articulate variability and 
architecture definition during the development process of complex systems 
/products.  

2   Business approaches and drivers for variability management 
in industry.   

We will mention here two industries which showed a strong concern on 
variability management, just to underline the business impact it had. 

 
In the Information Technology industry, IBM introduced early in the 60s an 

ambitious modular and configurable architecture of business computers with the 
IBM 360 systems. This program was very successful and constituted one of the 
main reason of the further dominance of the market by IBM [Manet Hamm 
O.Brien 2011]). IT industry is now an industry where standards (OS, telecoms, 
DB, Internet….) and layered architecture took an essential part in its uninterrupted 
growth. 
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The automotive industry is probably one, in hard products domain, which faces 
among the most complex challenge to manage variability. A car is a technical 
complex object (several thousands of parts) and has to sustain a very large 
variability [Jiao, Simpson, & Siddique 2007]. [Volkswagen 2011] & [Renault 
Nissan 2013] summarize the respective approaches of Volkswagen and Renault-
Nissan groups to manage their variability based on approaches to platforms and 
modules. We may summarize them by the following principles. 

• Vehicles of these brands are organized by vehicle families. Often a vehicle 
family covers one market segment for a brand and includes all types of 
bodies for the brand and the segment, with different possible engines. One 
vehicle family generally reuse one single platform family (sometimes two 
for market–cost optimization). 

• A platform family is generally common to several vehicle families of one 
or several brands and may cover one or more vehicle segments. The 
platform integrates the chassis and all equipment generally hidden to the 
customer while the complementary part of the vehicle includes all 
elements of style directly perceived by the customer. 

• Common modules are designed to equip the whole range of platform 
families in order to maximize the scale economy. A similar function (e.g. a 
seat), may be implemented through one, or a very limited number of 
module families. Each module generally include the variability required to 
cover common market needs for all platform and vehicle families. 

 
Multiple sources of research papers and articles develop the business drivers 

for variability and reuse management. 
• [Jiao, Simpson, Siddique 2007] provides a comprehensive review of state 

of arts research on product family design and platform-based products   As 
part of the work the economic justification section references most 
important papers on this topic.. 

• For the software industry, an economic model is proposed by 
[Rokunuzzaman & Choudhury 2006].  It estimates benefits to reuse 
software components for building a customized software solution. [Lim 
1994] gives metrics collected during two reuse programs of Hewlett 
Packard.  

• [Pil, Holweg 2004] analyzes the variability and its economic drivers 
focusing the study mainly on the automotive sector. They gives order of 
magnitude of the variability and focus on how the products variability has 
to be linked to the order fulfillments strategy. Their paper well illustrates 
the strong focus that hard products industries had to manage variability 
from the physical product and supply chain perspective. 

 
Table 1 hereafter proposes a summary the main business drivers for the 

variability and reuse management for hard products industries. 
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Table 1 
 
Drivers for Variability Drivers for Reuse 
(B2C) Customer diversity of demand  
(ie: Car bodies, painting, engine, 
equipment’s …) 
 

Supply chain costs and delays reductions  
• Production (scale effects) – Internal / 

External (supply chain) 
• Standardization / flexibility of 

production process and facilities 
• Capacity planning 
• Order to delivery delay 
• Quality improvement (repeatability) 
• Development reduction cost (initial 

and change management) 
(B2B) Ordering company 
differentiation  
(ie: Aircraft companies specific cabin 
layout – engine – electronic systems 
variants, length, capacity, mission…) 
 

Development delays / costs / risks 
• Development reduction cost (initial 

and change management) 
• Innovation value focus 
• Risk minimization  
• Tests validation reduction 

(B2C – B2B) Country constraints 
• Regulations 
• Climate 
• Customer Usages 
• Infrastructures … 

Innovation 
• More focus on value innovation 
• Faster introduction in existing 

products (standardized modular 
architectures) 

(B2C – B2B) New Technologies 
introduction 

Flexibility – Speediness to change and 
adaptation. (same changes to apply on a 
wider spectrum) 

[Main business drivers for variability and reuse for hard products industries] 

3   Approaches and gaps for managing variability in IT Systems. 

3.1   Management of variability in CRM, MRP/ERP and PLM 

As explained by [Pil, Holweg 2004], the variability management encompasses 
the full life cycle of the products. This is illustrated by Figure 1 hereunder 
reproduced from their paper. 

 

Proceedings of the Poster Workshop at CSD&M 2014 176

Reuse / Variety Management & Systems Engineering



 

 

Figure 1: [Pil, Holweg 2004] – Holistic view of Product Family Design and 
development. 

 
 
CRM (Customer Relationship Management), MRP/ERP (Manufacturing 

Requirements Planning/Enterprise Resource Planning) and MRO (Maintenance, 
Repair and Operations), each of these systems manage the product during one of 
its “physical” life cycle stages. So they are impacted by reuse and variability 
management. Variability management requires capabilities for each of these 
domain systems. They may be standard capabilities provided by market software 
packages, but they also often rely on specific development extending these 
software package or working as stand-alone systems/applications. 

 
The industry experience I present in this paper is mainly focused on practices 

used in PLM (Product Life Cycle Management). PLM is the system used to 
support the design and definition of products and of the life cycle processes and 
resources related to these products. The PLM supports and coordinates all 
engineering disciplines and manages all the technical information attached to the 
product and its product life cycle. So, PLM is placed at the critical stage where 
variability and reuse are designed. PLM architecture is built around a PDM 
(Product Data Management) system which offers central services to store, retrieve, 
classify, and configure all technical data (models and documents). The different 
applications or systems used to sustain each of the engineering discipline activities 
are commonly articulated and integrated with the PDM central system to build the 
overall PLM system architecture. Software engineering and configuration 
management remains relatively autonomous. Nevertheless there is need to better 
integrate them within the PDM systems to enable a consistent multi-level 
configuration management. 
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PLM variability definition has vocation to be the reference basis for the 
configuration models used by CRM and MRP/ERP systems or applications. The 
configuration models of the product families used by each system need to be 
maintained and synchronized across the change management process.  

3.2 Main practices used in PLM for managing the variability 

We present here PLM observed practices for managing the reuse and 
variability. We compare practices mainly applied for managing the reuse and 
variability in product structures representing the physical product. As explained in 
section 4, for hard product industries, requirements and functional variability were 
historically managed through documentation in a traditional development process. 
Impact of system and software massive intrusion in these industries changed the 
game. But, from our experience, we still see system and software and PDM 
managed very separately.  

 
In the following, we will use the words 
• system/product to specify the high level “final” system/product which has 

to be designed and developed and which represents the higher level of 
integration. If, in physical product structure, we should speak only on 
product, we extend the concept to system/product in the perspective of 
system integration in our analysis as presented in section 4. 

• Sub-systems/modules to specify the element of a product/system definition 
which could be reused between different higher level systems/products. As 
the high level product is represented by a product structure defining its 
composition, a module may be itself defined by a product structure 
representing its own product composition. 

 
The 3 dominant practices are summarized in Figure 2 extracted from [Reiser 
2009] 

 
Practice a: Duplicate and specialize systems/products structures (independent 
development of products) 
 
The principle is to create a specific system/product structure for each (top level) 
product. The reuse is done by initial copy or several partial copies from structures 
of similar system/product. The inconvenience of this approach is that the 
duplication of common elements encourage the specialization of the definition, 
even if there is a significant business advantage to maintain a common definition. 
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Figure 2: Product portfolio development approaches [Reiser 2009] 
 

 
 
Practice b: Separated products top structure sharing common configured 
product components (development with conventional reuse) 

 
In this approach, common sub-systems/modules internal structure are 

instantiated in each top system/product structure, but remain unique. If the 
common sub-systems/modules holds variability, it is only the resolved 
configurations which are instantiated where needed. The main advantage is that 
this approach forces to maintain a better communality of sub-systems/modules 
across the different systems/products where they are used. The constraints and 
limits are: 

• sub-systems/modules need to be designed to address requirements of 
future product-systems (at least at the architectural design level). 

• changes to sub-systems/modules need to be controlled with all different 
upper levels systems/products using them. 

• sub-systems/modules variants need to be explicitly configured (specific 
references) in the upper-level systems/products structure.  

• on multi-level architecture, rules for managing and updating the 
configuration of the different systems/products (number of Configuration 
Items (CI) levels –revision number absorption levels and rules), and 
process for propagating changes on upper levels need to be carefully 
designed to minimize the number of revision updates. 

• when there is a large number of combinations of options-variants, 
impacted by a change, the process to update and maintain all these 
combinations may be complex. Revision numbers have to be updated on 
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all parent structure representing these combinations and may need some 
PLM automation. A good approach is to group several changes and to 
apply revision number changes on the upper structure only when the group 
of lower level changes has been fully defined and validated.  

• Another condition is to really have a unique structure to maintain the 
common part of different configured variants structures. On the contrary a 
change in the common part implies to update each configured variants 
where it is duplicated. This could be painful and leads to error if this is not 
automated in some way. 

 
Practice c: Define a common system/product family structure. 
 
This practice consists in creating a unique structure for product family holding the 
whole variability description for the family. This rely on options – variants 
mechanisms. This practice is detailed in the following section. 

3.3 Practices used in PLM for managing system/product family 
(product lines oriented development) 

Practice a: Product family unique structure carrying the variability description 
for the whole family by production effectivity 

 
The principle is to have a unique structure for a family of products and to 

associate a production effectivity to the proper elements of the structure. A 
production effectivity is generally a set of serial numbers, a range of date 
delimiting a batch of production for the same products, a batch ID. The 
configuration of one specific system/product instance (physical product produced 
or planned to be produced) may be retrieve by selecting all structure items with a 
product effectivity matching its own production ID. This mechanism may also be 
implemented through a change management process as summarized in Figure 3 
here under. 

 
This approach seems well suited to industries where the variability is driven by 

a custom to order process where specificities of each variant/option cannot be 
anticipated and may be very specifically linked to the order requirements for 
customization. 
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Figure 3: Product family with variability managed by production effectivity 
 

 
 

Practice b: Product family unique structure carrying the variability description 
for the whole family by variability effectivities and logical rules 

 
This principles are the following: 
1. Describe the possible option/variants by a language based on: 

a. variability criteria objects holding each one a “dimension of 
variability” 

b. variability criterion values, each value corresponding to a variability 
possibility inside the same variability dimension 

2. Associate to item nodes in the structure a logical expression corresponding 
to the combination of option/variant values for which the structure under 
the item has to be retained. We name it variability effectivity or effectivity. 
This logical expression may contain logical operator such as NOT, AND, 
OR…  

3. A set of rules may be added to define compatibilities or dependencies of 
different options/variants. 

4. Finally, to define a particular product in the product family, we must select 
directly or indirectly one value for each option/variant criterion proposed 
at the family level. The selection request to configure one system/product 
instance may be explicit. In this case we must express each criterion object 
with its possible options/variants value (any number). Or it may be implicit 
(all values of criteria not specified are, by default, retained). The selection 
is then modified or rejected against the set rules for dependencies and 
compatibilities. 
 

The Figure 6 summarizes the main principles for describing the variability of 
the product family in a unique product family structure. 
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Figure 6: Product family unique structure using based on variability effectivity 
and rules 

 

 
 
When both the number of potential combinations and the volume of production 

are high, this approach enables us to directly and dynamically “solve” the 
configuration of the configurable structure by selecting the options/variants value 
for each criterion. But there are some constraints and limits: 

1. The system/product family configurable structure need to be properly 
defined (system/product items with, for each of them, the proper variability 
effectivity defining the options/variants for which this item substructure 
and definition is applicable). This implies the two following rules to be 
verified. 
• Any selection of options/variants values should not lead to an 

incomplete configured structure (no function/parts “holes” in the 
configured structure). 

• Any selection of options/variants values should not lead to a number 
of system/product items selected beyond the number expected (no 
function/parts “bump” in the configured structure).  

2. If this approach is basically used, the variability of a sub-structure has to 
be configured by criteria defined for the overall system/product family 
structure. This could lead to the impossibility of reusing this configurable 
sub-structure in another system/product family. In the automotive industry, 
platforms and modules variability management cannot be done in a single 
system/product family without strongly complicating reuse. 
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Practice c: Multi-level Product families  
 
It may be necessary to manage variability at different systems/product 

structures levels. This is the case in automotive for vehicles, platforms and 
modules. 

 
In this example, each level (vehicle, platform, sub-systems/modules) holding 

variability must be considered as a distinct system/product family (product line). 
The vehicle family structure will instantiate the platform family structure it reuses. 
Each of them (vehicle or platforms) will also instantiate the sub-system/module 
families structures they reuse. Applying variability effectivities principles, each 
family is supposed to have its own variability definition relying on a specific set of 
variability criteria and criterion values.  

 
When configuring a specific configuration at the higher level (ie: vehicle) by 

selecting value for each criterion specified in this family, three approaches may be 
used to select the proper variability of the lower level families. 

 
• Approach 1: Instantiate in the upper-level family structure only configured 

options variants of lower level family (see Figure 4 hereunder). Each 
configured option/variant of the lower-level family will be characterized in 
the upper level structure by a use-case (logical expression of options/variants 
of the upper family in which this structure has to be configured). The 
inconvenience of this choice is that the maintenance of the configured lower 
family structures may be heavy in case of changes. This is especially true 
when changes are located in their common parts and when the number of 
configured structures for the lower family is important.  
 
Figure 4: Instantiation of configured structure of the lower level family. 
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• Approach 2: Reflect all criteria and criterions values of the lower level 
families in the upper level. For example, all platforms and sub-
systems/modules criteria and criterions values will be directly included and 
visible in the set of criteria used at the vehicle level. We may easily 
understand that this approach will strongly increase the number of criteria 
used at the higher level and make the configuration process complex. In other 
words, with this approach, we expose all the internal variability of the lower 
family levels to the higher levels even when this does not create value. (e.g.: 
expose the internal variability of the seat with its options motor and heating 
when, at the vehicle level we want to use only a couple of criterion such as 
level of equipment and country/geography of sale to drive the internal 
configuration of the seat). This approach may be impracticable. 
 
Approach 3: Define the selected options/variants of the lower level family by 
rules enabling to convert variability effectivity of the higher level family to 
variability effectivity of the lower level family. This approach enables us to 
simplify the number of criterions used at the higher level, while enabling the 
use of a larger number of options/variants at the lower level. The complexity 
of the work is to define the mapping rules and to be sure that this mapping 
enables the effective respect of the two basic rules (“no holes”, “no bump”) in 
any resolved configuration. It is summarized in Figure 5 hereunder. 
 
Figure 5:Multi-level families with variability effectivity mapping 
 

 

3.3 Variability management in engineering – The question of 3D 
configurable Digital Mockups 

This is a complete topic which needs to be developed more. We will only 
summarize the main outcomes of our experience here without explaining them in 
detail. 
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The principle main goal of the 3D Digital Mockup (DMU) is to integrate all the 
3D definitions of the different components in a common model making a complex 
product. In this way, it sustains concurrent engineering and allows 3D Design in 
context.  

The first concern of variability management in DMU is that each engineering 
team needs to design the whole variability corresponding to the product items and 
potential families it has in charge. But reversely, it must take care only of the 
surrounding variability which could affect it. The approach of 3D Design in 
Context based on DMU pushes some companies to fully configure these mockups 
with variability and to do it at part level. Even when achieved, the observed fact is 
that it is very difficult for engineering teams to select among the multitude of 
surrounding variability combinations those which are the most constraining for 
their design. That is why I recommend to model physical architecture of the 
product in the DMU. For one product family, we may have variability in spatial 
architecture, but it would be considerably reduced compared to the whole 
variability of parts. Thus, we will privilege 3D Design in context with a context 
specified by architecture models greatly simplifying the variability selection of the 
context. 

 
Another important difficulty observed for configurable DMUs is the 

management the variability of positions of assemblies and parts. For the supply 
chain, variability management at the BOM level does not need to consider the 
positions. But DMU has to do it. It is extremely important to use an architecture 
relative positioning in DMU to minimize the variability. Otherwise, absolute 
positioning will introduce additional variability even where sub-assemblies are 
strictly identical, just because they have different absolute positions. 

 
So we recommend modeling spatial architecture of the product with the 

required variability and based on the following types of models: 
• Reference geometry models. They specify dimensions and provide the 

architecture of positioning through the set of triaxial geometric frame of 
reference needed to support relative positioning of lower level assemblies. 

• Geometric Interface Models. They specify the geometric interface between 
physical assemblies. 

• Space allocation geometry to define the overall space allocation for each of 
the physical assemblies.  

Proceedings of the Poster Workshop at CSD&M 2014 185

Reuse / Variety Management & Systems Engineering



 

 

4   System Engineering and variability management 

4.1 Impact of systems massive intrusion in traditional products 

Systems and software are invading traditional hard products to make them 
smarter and to allow them to operate as pieces of larger systems. This trend 
increases the complexity of products. For example, the automotive industry 
anticipates now an order 10 million of lines of code for the embedded systems of 
one car. Management of variability needs to cover this systemic dimension. Said 
in another way, in engineering, the variability of industrial products cannot be 
managed only under the angle of the physical products structures anymore, as it is 
often done, but needs to address the system variability (including functional, and 
behavior). Moreover, these two dimensions of variability need to be managed 
consistently in configuration (including the management of changes across times). 

 
The PLM/PDM systems role is mainly focused on sustaining the engineering 

activities for the definition of product families carrying internal variability 
(design, development and change), as well as the definition of the technical 
processes of their life-cycle and the definition of the technical resources involved 
by these processes.  

 
Figure 5 hereunder summarizes the different components of the PLM. It 

illustrates that the full coverage of all engineering activities relies on different 
sources of applications which were progressively integrated around PDM systems.  
It illustrates also that System and Software Engineering are still often being 
managed independently and reflects a need and a trend to make them converge 
under a consistent and integrated configuration and variability management  

 
Until now, the PLM/PDM focus was mostly dedicated to managing the 

technical dossiers (definition, manufacturing and maintenance) and the DMU. 
This explains that the focus of configuration and variability management in 
PLM/PDM was to manage the physical product structure and parts configuration.  

 
But there are two strong trends in the PLM/PDM landscape: 
• The transformation of system engineering with the development of Model 

Based System Engineering (MBSE) and a better integration of software 
engineering.  

• The very fast and strong intrusion of systems into traditional products which 
push PLM/PDM editors to better address and integrate system engineering 
under the PLM/PDM umbrella. 
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Figure 5: PLM progressively integrates all engineering specialized applications 
under the PDM umbrella for configuration, models and documentation 
management 

 

 
 
Sections 4 and 5 discuss the perspectives for using the System Engineering 

approach for improving reuse and variability management and overcoming current 
limits observed in current PDM practices to address them. 

4.2 Concepts and lessons from Software Variability Management 

Variability management has been largely studied in numerous research papers. 
There are differences between variability management of software and physical 
products. Software is largely immaterial, easily produced and can be easily 
changed while physical products often require expensive manufacturing facilities 
and tools and changes are difficult and costly or even impossible on the already 
manufactured products. But for many aspects, variability management faces the 
same challenge in both kind of industries. Moreover, due to the very important 
intrusion of electronic and software in traditional industry, variability in both 
domains needs to be managed consistently as the “mechatronics” nature of present 
products induces dependencies between them. The [Chen, Babar & Ali 2009] 
paper reviews research studies in variability management and software products 
lines management (SPL) which is an equivalent concept of products families. 
[Capilla, Bosch & Kang 2013] made a systematic review of the main concepts and 
principles used for managing variability. When looking at these papers and others 
cited in the bibliography, we may notice several interesting concepts, questions 
and approaches to solve them. 
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Feature modeling is a key concept to specify and model SPL. SPL is defined 
from the variability point of view by a feature tree. It structures the configuration 
model of SPL with two main types of nodes: variability points and, under them, 
options-variants nodes. Variability points means there is a variability choice to 
make at this level to configure the software product. The choice must be made by 
selecting one of the options-variants nodes proposed as child nodes. Option means 
that the node can be selected or not. Variant means that one of the variant nodes 
must be selected. [Kang, Cohen, Hess, Novak & Peterson 1990] proposes a 
method for identifying and specifying features (Feature-Oriented Domain 
Analysis FODA method). These basic principles are enriched with more 
possibility of specification of the cardinality of the choices and the possibility to 
add attributes and constraints in the model [Capilla, Bosch & Kang 2013] 

 
But numerous research papers point out some questions and difficulties and 

approaches to respond to them. We list hereunder these points and how they are 
linked to our observations and industry experience in hard products domain. 

 
1. Definition and number of features 

The way to define and choose the features to build the configuration model 
may be difficult because variability may be seen from different points of view 
and the number of features to support them may become important and 
complex to manage. [Capilla, Bosch & Kang 2013] said that features are used 
by a feature based approach as container of:  
• Capability that is delivered to a customer 
• Requirements containers i.e., units of requirement specifications 
• Product configuration and configuration management 
• Development and delivery to customers 
• Parameterization of reusable assets 
• Product management for different segments 
Difficulties to define variability criteria and values often encountered in the 
hard products industry would benefit from an approach based on requirements 
and feature modeling. 
 

2. Multiple point of views for variability:  
One of the reason for complexity of features modeling is the fact that the 
variability modeling must endorse different points of view. [Chen, Babar & 
Ali 2009] underlines first a distinction between external variability (as seen 
externally by the customer) and the internal variability or technical variability. 
It also shows that requirements are progressively defined and refined from the 
initial architecture definition stage to the running system across all the stages 
of software development. 
This is a current weakness of variability management in the hard product 
industry to essentially manage the physical product point of view and not the 
others. 
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3. Variability and product / systems life cycle definition artifacts:   
The definition of a complex systems or products is made through artifacts 
organized in different hierarchical structures, often managed relatively 
separately. The variability model has to be declined on each of these 
structures to retrieve and compose them accordingly to the configuration 
selected. [Jiao & Tseng 1999] addresses this topic by proposing an integrated 
data model mixing the different views consistently (not specific to software 
engineering). [Asikainen, Soininen & Männistö 2003] studies and compares 
how applications used to model and manage software architecture may be 
also used to manage variability through product configuration. This is also 
comparable to the industry experience presented in section 3 where we see 
how PLM is used to manage the variability, but with a focus on physical 
product structure and DMU.  
 

4. Multilevel variability – Multi-level product families  
[Reiser 2009], who deeply analyzes SPL for automobile, suggests that 
variability must be designed at different levels. This fits with our observation 
and approaches developed in section 3.2 well (multi-level products families). 
This requirement seems to be fundamental if we want to reuse a variable 
module in different variable platforms and in different variable vehicles. 
[Reiser 2009] develops a concept of configuration link which seems close to 
the concept of variability-effectivity mapping that we describe in section 3.2 
and whose mechanism is provided by some PLM/PDM software packages. 
This approach and principle should also enable “local” specification and to 
management of the variability by considering only those which are 
meaningful for the perimeter of the considered product family. Inside the low 
level product family reused, the variability effectivity definition is not 
constrained to be expressed by options/variants values of the higher level 
product families. Configuration links or equivalent variability-effectivity 
mapping rules are needed to select the proper lower level family configuration 
corresponding to the variability effectivity of the upper level. Another way to 
see it is that this multi-level approach may enable some decoupling of the 
specification of the variability of the upper level product family from that of 
the lower level reused product family. This make possible to hide internal 
complexity of the variability lower level product family from the upper one. 
The classic example for automotive is to decouple a commercial feature such 
as “level of equipment” (values: lux – comfort – economy) and “country” 
from the technical features used at a module level such as a seat. A technical 
feature at the seat level such as “heating seat”, for example, could be linked 
through a configuration link/mapping rules to the equipment level “lux” in 
Southern Europe and “comfort” in Northern Europe. 
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5   Conclusions: Using the System Engineering approach to 
define and model Systems/Products Families variability  

These are just embryonic and not yet proven ideas which came to me when 
confronting my experience and the research review I have made in SPL. These 
ideas are driven by the conviction that the system engineering and the traditional 
physical product engineering approaches need to be consistently integrated into a 
unified approach and model.  

 
From the experiences seen and described here, we may derive some 

conclusions and intuitions for the future: 
1. It is necessary to find a common approach for managing systems variability 

and product variability. Until now, the two approaches were traditionally 
managed separately. The hard products industries mainly focused their PDM 
and ERP systems on managing the physical product variability. Strong 
intrusion of systems in hard products industry and growing interdependency 
of functional and physical dimensions push for an integrated approach  

2. Variability criteria (features) are strongly related to requirements. In other 
words, it seems us that a variability criterion value may be quite formally 
linked to a consistent set of requirements.  

3. The system model (according to SYSML common standard) offers a way to 
simultaneously and consistently mix the requirements, the functional, the 
physical and the behavioral points of view. So, if we are able to model the 
variability through a consistent set of features (requirements regrouping in 
line with systems model components), we have a solution to the question of 
multiple points of view for variability.  

4. System level requirements are defined at the beginning of the system design 
and refined and allocated to the system architecture components in parallel 
with the architecture design. So variability definition is naturally and strongly 
related to the system engineering approach. Adding a feature concept to 
SYSML model (functional, physical and behavioral) offers a perspective to 
model variability progressively with the system architecture development, and 
to manage consistently the different points of view provided by SYSML. 

5. Variability must be multi-levelled and structured by an architectural 
approach. When defining a system level, it is only required to define or know 
the external specifications of the sub-systems it relies on, but it is not required 
to define them internally. This abstraction capability enables us to define the 
variability focusing the engineering effort for the relevant level of abstraction. 
The system engineering approach could strongly help to properly define the 
architecture of a complex system/product in a hierarchy of product families 
according reuse and variability strategy. Moreover, limiting the variability of 
the architecture itself by standardizing interfaces may enable us to fit in 
different module families without (or limited) side effects on neighbor 
modules it interfaces with.  
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There are still questions not addressed here, which would need to be studied, 

for example: 
• How, with a systemic approach, would we model manufacturing resources 

and processes (with the linkage of process to the product and with the 
variability at all levels product, process and resources)? 

• What does variability for behavior mean (simulation, test, validation)? 
What variability in behavior is driven by the system or product variability 
definition, and what variability is added by the methods and process for 
simulating, testing and validating? 

 
Nevertheless, for the reasons exposed above, it looks to us that the system 

engineering approach and that system-based-modeling-engineering (SBME) 
relying on SYSML could be a strong foundation for supporting the definition of 
complex systems/products with their variability. The configuration-
linking/variability-effectivity-mapping-rules needs to be articulated with the 
system/sub-system concept. In this perspective, classic product definition would 
be embedded into the system definition. This model would also need integration 
of proper positions management with the physical description of the system and 
with the system/sub-system architecture. 

 
I would be interested in getting feed-back of researchers about these ideas and 
possible research done on this subject I may have missed. 
 

Proceedings of the Poster Workshop at CSD&M 2014 191

Reuse / Variety Management & Systems Engineering



 

 

References 
 
[Asikainen, Soininen & Männistö 2003] Towards Managing Variability using 
Software Product Family Architecture Models and Product Configurators	
  	
  
Timo Asikainen, Timo Soininen, Tomi Männistö – Helsinki University of 
Technology – Software Business and Engineering Institute (2003 SoberIT). 
http://www.soberit.hut.fi/pdmg/papers/ASIK03TOW.pdf 
 
[Becker 2003] Towards a General Model of Variability in Product Families 
Martin Becker -System Software Group, University of Kaiserslautern 
Kaiserslautern, Germany - mbecker@informatik.uni-kl.de   
 
[Capilla, Bosch & Kang 2013] Systems and Software Variability Management 
- Concepts, Tools and Experiences -   
Capilla, Rafael, Bosch, Jan, Kang, Kyo-Chul (Eds.). SPRINGER  
http://www.springer.com/computer/swe/book/978-3-642-36582-9 
 
[Chen, Babar & Ali 2009] Variability management in software product lines: 
a systematic review,  
Proceeding- Lianping Chen (University of Limerick, Ireland) - Muhammad Ali 
Babar (University of Limerick, Ireland) - Nour Ali (University of Limerick, 
Ireland) - SPLC '09 Proceedings of the 13th International Software Product Line 
Conference - Pages 81-90 -Carnegie Mellon University Pittsburgh, PA, USA 
©2009 
http://dl.acm.org/citation.cfm?id=1753247 
 
[Jiao, Simpson, Siddique 2007] Product family design and platform-based 
product development: a state-of-the-art review  
Jianxin (Roger) Jiao - Timothy W. Simpson Zahed Siddique - Springer 
Science+Business Media, LLC 2007 - July 2007 
 
[Jiao & Tseng 1999] An Information Modeling Framework for Product 
Families to Support Mass Customization Manufacturing 
Jianxin Jiao, Mitchell M. Tseng) 
Department of Industrial Engineering and Engineering Management, The Hong 
Kong University of Science and Technology, Kowloon, Hong Kong 
CIRP Annals-Manufacturing Technology, 1999 – Elsevier 
 
[Kang, Cohen, Hess, Novak, Peterson 1990] Feature-Oriented Domain 
Analysis (FODA) Feasibility Study 
Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak,   
A. Spencer Peterson 
Software Engineering Institute - Carnegie Mellon University - Pittsburgh, 
Pennsylvania 15213 
November 1990 
http://www.sei.cmu.edu/reports/90tr021.pdf 

Proceedings of the Poster Workshop at CSD&M 2014 192

Reuse / Variety Management & Systems Engineering



 

 

[Lim 1994] Effect of reuse on quality, productivity and economics 
WC. Lim  Hewlett Packard– IEEE Software September 1994 
 
[Manet Hamm O.Brien 2011] Making the word work better – The Ideas that 
shaped a century and a company ‘IBM) 
Kevin Manet, Steve Hamm, Jeffrey M.O’Brien  
IBM Press/ Pearson 2011 
 
[Pil, Holweg 2004] Linking Product Variety to Order-Fulfillment Strategies 
Frits K. Pil – University of Pittsburgh - Matthias Holweg - Judge Institute of 
Management, University of Cambridge –  
Interfaces 2004 – Vol 34, N° 5 September-October pp 394-403 
 
[Reiser 2009] Managing Complex Variability in Automotive Software 
Product Lines with Subscoping and Configuration Links 
Mark-Oliver Reiser Fakultäat IV {Elektrotechnik und Informatik der Technischen 
Universitäat Berlin 
 
[Renault Nissan 2013] Common Module Family (CMF): a new approach to 
engineering for the Renault-Nissan Alliance 
http://media.renault.com/global/engb/alliance/Media/PressRelease.aspx?mediaid=
49441  
 
[Rokunuzzaman & Choudhury 2006] Economics of Software Reuse and 
Market Positioning for Customized Software Solutions 
M. Rokunuzzaman+ and Kiriti Prasad Choudhury+* 
*School of Engineering & Computer Science, Independent University, 
Bangladesh (IUB), Dhaka, Bangladesh and Beximco Pharmaceuticals Ltd, Dhaka, 
Bangladesh. zaman.rokon@yahoo.com, kpmoni@yahoo.com 
Journal of Software, Vol 6, n°1, January 2006 
 
[Simpson, Siddique & Jiao 2007]   
Platform-Based Product Family Development 
Timothy W. Simpson1 -, Zahed Siddique2,  and Jianxin (Roger) Jiao3 
1Departments of Mechanical & Nuclear Engineering and Industrial & 
Manufacturing - Engineering, The Pennsylvania State University, University Park, 
PA 16802; 

2School of Aerospace and Mechanical Engineering, University of Oklahoma, 
Norman, OK 73019; 
3School of Mechanical and Aerospace Engineering, Nanyang Technological 
University,Singapore 639798 - Springer 2007  
	
  
[Volkswagen 2011] Volkswagen Fact book 2011 
http://www.volkswagenag.com/content/vwcorp/info_center/de/publications/2011/
04/Volkswagen_Group - 
Factbook_2011.bin.html/binarystorageitem/file/Factbook+2011.pdf 

Proceedings of the Poster Workshop at CSD&M 2014 193

Reuse / Variety Management & Systems Engineering



 

 

 
[Zhang & Fan 2006] A Conceptual Framework for Product Lifecycle 
Modeling 
Wenlei Zhang1,2, Yushun Fan3 
1Shenyang Institute of Automation，Chinese Academy of Science, Shenyang, 
P.R. China 
2Gradute School of the Chinese Academy of Science, Beijing, P.R. China  
zwl@sia.cn 
3Dept. of Automation, Tsinghua University, Beijing, P.R. China  
fanyus@tsinghua.edu.cn 
Innovative Computing, Information and Control 2006 ICICIC ’06 Vol 2 
 
[Zhang & Fan 2007] A Conceptual Framework for Product Lifecycle 
Modeling 
Wenlei Zhang1,2, Yushun Fan3  
1 Shenyang Institute of Automation, Chinese Academy of Science, Shenyang, P.R. 
China 
2 Gradute School of the Chinese Academy of Science, Beijing, P.R. China - 
zwl@sia.cn 
3 Dept. of Automation, Tsinghua University, Beijing, P.R. China - 
fanyus@tsinghua.edu.cn 
J Intell Manuf (2007) 18:5–29 - DOI 10.1007/s10845-007-0003-2 

Proceedings of the Poster Workshop at CSD&M 2014 194

Reuse / Variety Management & Systems Engineering



Accounting for Uncertainty and Complexity in the 

Realization of Engineered Systems 

Warren F. Smith
1
, Jelena Milisavljevic

2
, Maryam Sabeghi

2
, Janet K. Allen

2
, 

and Farrokh Mistree
2
 

1 School of Engineering and IT, University of NSW Canberra, ACT, Australia 
2 Systems Realization Laboratory, University of Oklahoma, Norman, OK, USA 

Abstract. Industry is faced with complexity and uncertainty and we in academ-

ia are motivated to respond to these challenges. Hence this paper is the product 

of thoughts for exploring the model-based realization of engineered systems. 

From the perspective that the activity of designing is a decision making process, 

it follows that better decisions will be made when a decision maker is better in-

formed about the available choices and the ramification of these choices. Pre-

sented in this paper, in the context of an example of designing a small thermal 

plant, is a description of an approach to exploring the solution space in the pro-

cess of designing complex systems and uncovering emergent properties. The 

question addressed is that given a relevant model, what new knowledge, under-

standing of emergent properties and insights can be gained by exercising the 

model? 

Keywords: Decision-based, Model-based, Compromise, Complex Systems, So-

lution Space Exploration, Decision Support Problem 

1. MOTIVATION 

Designing, in an engineering context, is an activity that seeks to deliver a descrip-

tion of a product to satisfy a need in response to a stated objective and/or set of re-

quirements. In the process, it may involve invention and/or the application of science 

and engineering knowledge to resolve a solution. Given that multiple solutions may 

be proposed with differing measures of merit, it follows that the paramount role of a 

designer is that of a decision maker. It is further argued that understanding the inher-

ent choices and risks within the context of a design lead to justifiable decisions. In an 

age where issues such as efficiency, equity, sustainability and profitability are equally 

valid decision drivers the motivation to develop theories and approaches to explore 

the design and aspiration spaces is strong. Indeed, this is what motivates the academic 

design community in general and the authors of this paper in particular. 
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2. FRAME OF REFERENCE 

Design choices can be explored through first building sufficiently detailed and valid 

mathematical models, and then exercising these models and seeking understanding of 

their behavior and the emergent properties (those that are unforeseen and influenced 

by uncertainty). Such models can very quickly become very complicated. Organized 

complexity in the context of systems theory is said to arise from the combination of 

parts that form a system but the behavior of the system is not necessarily controllable 

or predictable from knowledge of the parts alone. Disorganized complexity in contrast 

is a reflection of the random and statistical variability of the parts and the subsystems 

and system they form. It follows that to grow complex system knowledge requires the 

management of aspects of both complication (complexity) and uncertainty. Managing 

uncertainty raises concerns such as those due to the imprecise control of process pa-

rameters, the incomplete knowledge of phenomena, the incomplete models and in-

formation aggregation, and the need to explore alternatives. Managing issues of com-

plication include dealing with the trade-off between accuracy and computational time, 

the levels of interdependencies between parts, and the allocation of resources to ex-

ploring the solution and aspiration spaces. It follows that the challenge for engineers 

is the creation of knowledge about the system and the challenge encompasses captur-

ing tacit knowledge, building the ability to learn from data and cases, and developing 

methods for guided assistance in decision making. 

The authors have adopted a model based approach in pursuing these challenges 

recognizing that models can have different levels of fidelity, they can be incomplete 

and possibly inaccurate (particularly during the early stages of design). 

2.1 The Decision Support Problem 

Used is the Decision Support Problem (DSP) construct that is based on the philosophy 

that design is fundamentally a decision making and model-based process 
[1, 2]

. A tai-

lored computational environment known as DSIDES has been created as an imple-

mentation of the method. The DSP and DSIDES are well documented in 
[3-7]

. 

Reported applications of this approach include the design of ships, damage tolerant 

structural and mechanical systems, design of aircraft, mechanisms, thermal energy 

systems, composite materials and the concurrent design of multi-scale, multi-

functional materials and products. A detailed set of early references to these applica-

tions is presented in 
[8]

. Key applications more recently span specification develop-

ment 
[9, 10]

, robust design 
[11-14]

, product families 
[15-17]

, the integrated realization of 

materials and products 
[18-22]

, and a variety of mechanical systems 
[23-26]

. 

The nature of a decision and model-based approach to designing through model-

ling the physical world is portrayed in Figure 1. Once a model is appropriately formu-

lated, DSIDES, with its operations research tools (traditionally an adaptive sequential 

linear programming algorithm delivering vertex solutions), is used to deduce “model 

conclusions” 
[5]

. Where dilemmas exist this process may be iterative in nature and 

demand significant justification. It thus becomes imperative to be able to describe and 

understand the design and aspiration spaces and to be able to explore these spaces. 
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Key is the concept of two types of decisions (namely, selection and compromise) 

and that any complex design can be represented through mathematically modelling a 

network of compromise and selection decisions 
[4, 6]

. Being able to work with the 

complexity of these decision networks is also a foundational construct as are the axi-

oms of the approach as detailed in References 
[4, 6]

. 

In reflecting on the compromise DSP, parallels with the “demands” and “wishes” 

of Pahl and Bietz 
[27]

 can be drawn.  The demands are met by satisfaction of the DSP 

constraints and bounds and the wishes are represented by the goals.  Collectively, the 

constraints and bounds define the feasible design space and the goals define the aspi-

ration space. The feasible and aspiration spaces together then form the solution space. 

Note that a selection DSP can be formulated as a compromise DSP 
[28]

 where the key 

words “Given”, “Find”, “Satisfy” and “Minimize” are used. 

 

 

Fig. 1. Modelling the Physical World 

2.2 Understanding the Solution Space 

A strategy for identifying a possible solution space and exploring it using tools within 

DSIDES includes: 

 Firstly, discover regions where feasible designs exist based on satisfying the con-

straints and bounds or where they might exist by minimizing constraint violation. 

 Secondly, from the neighborhood of feasible or near feasible regions frame the 

feasible design space extremities using a preemptive (lexicographic minimum) rep-

resentation of the goals in a higher order search. 

 Thirdly, having framed the space and the zones of greatest interest, move between 

the extremes generating deeper understanding and exploring tradeoffs using an Ar-

chimedean (weighted sum) formulation of the goals. 
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Our focus in this paper is on the first two steps. To discover feasible regions, zero, 

first and second order methods are currently available in DSIDES.  

This overall process is conceptually reflected in Figure 2 where over time 

knowledge, confidence and utility increase while converging to a recommended deci-

sion.  The decisions are made through a series of diverging, synthesizing and conver-

gent decision making processes. As will become clearer, various tools may be used to 

support different decisions. 

 

 

Fig. 2. Modelling and Decision Timeline  

 

The most rudimentary approach within DSIDES is a zero order search referred to 

as XPLORE. Based on the algorithm of reference 
[29]

, it is used to test a range of de-

signs within the stated system variable bounds. The best N designs are kept providing 

candidate starting points for higher order searches. A second method utilizing a pat-

tern search algorithm is also available within the INITFS (Initial Feasible Solution) 

module. Used in series, these methods can assist greatly in delivering the Adaptive 

Linear Programming (ALP) algorithm a starting point from which the likelihood of 

achieving greater understanding of the solution space is high. In the case of a multi-

modal solution space a variety of starting points are employed. 

Various methods may be applied to conduct post solution analysis on the data gen-

erated including visualization through the use of various plots. Given that in ALP is a 

linear based simplex solver, the opportunity to explore sensitivity using primal and 

dual information exists. Also provided in DSIDES is information about the monotonic 

characteristics of the model. In concert, all these elements contribute to the effective 

modelling, framing, exploration and dilemma resolution that is necessary when con-

sidering the design of complex systems. 
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3. SCENARIO FOR THE EXAMPLE 

The study at the core of this paper is being developed to support the growing research 

effort within the Systems Realization Laboratory at the University of Oklahoma. Cur-

rent research interests in the laboratory inter alia span complex systems, dilemma 

management, design space modelling and exploration, post solution analysis, and 

sustainability when considering economic, socio-cultural, and environmental issues. 

One domain allowing all these matters to be explored is thermal systems. 

There are many possible applications for small scale “power” plant systems that 

make direct mechanical use of the power produced or that run small generators to 

produce electricity. Examples include provision of power to equipment in farming 

irrigation systems, driving reverse osmosis systems to produce fresh water for remote 

communities and generating electricity for general use in small collectives in both 1
st
 

and 3
rd

 world environments. 

A common approach given an available heat source is to build such a system 

around the Rankine cycle, a mathematical representation of a “steam” operated heat 

engine. A schematic representation of the Rankine cycle is shown in Figure 4 where 

the primary components of the system are a power producing turbine, a pump to pres-

surize the flow to the turbine and two heat exchangers; a condenser and a heater. In 

the context of building a model using a decision-based approach to design, such a 

thermal system affords complexity to be developed and dilemmas to be managed and 

resolved, both hypothetically and practically. Modelling the Rankine cycle represents 

Stage 1 of the model development and will be referred to herein as the foundational 

example model. Future expansion within the laboratory will deal with heat source 

issues (to the left in Figure 3) and power use issues (to the right in Figure 3) and the 

choice of working fluids. The common working fluid in a Rankine cycle is water. 

Uses of other fluids (often organic in chemistry) have given rise to the development 

of “organic Rankine cycles”. Of course geometric specification and design analysis of 

physical elements in the system also represent opportunities for model and design 

space exploration. 

 

 

Fig. 3. Stage 1 Model Schematic Fig. 4. Rankine Cycle 

(Temperature v Entropy) 
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4. THE FOUNDATIONAL EXAMPLE MODEL 

The foundational example model is defined by the cycle’s maximum and minimum 

pressures and maximum temperature (PMAX, PMIN and TMAX). Energy is trans-

ferred to the closed loop Rankine cycle through a heat exchanger. The heat exchanger 

is assumed to be of a counter flow design where the key characteristic is the maxi-

mum temperature of the heating flow (TMAXE). 

From a decision based design approach, the determination of satisficing
1
 values of 

these variables represents a coupled compromise-compromise DSP dealing with the 

Rankine cycle (PMAX, PMIN and TMAX) and the heat exchanger (TMAXE) respec-

tively. Two additional decisions have been built into the template of the current mod-

el, namely, the selection of the fluids for both the heating and Rankine cycle loops. 

Therefore, in concept the current model is a compromise-compromise-selection-

selection problem. Further complexity in the model will be developed in due course to 

reflect aspects of the mechanical design of the system components ( eg., dimensions). 

The ideal Rankine cycle involves 4 processes, as shown graphically in the Tem-

perature (T) versus Entropy (S) plot in Figure 4. There are two adiabatic isentropic 

processes (constant entropy) and two isobaric processes (constant pressure). 

Referring to Figure 4, 

①-② adiabatic pumping of the saturated liquid from PMIN to PMAX  

②-④ isobaric heat addition in heat exchanger to TMAX, 

④-⑤ adiabatic expansion in the turbine from PMAX to PMIN producing 

power with the possibility of wet steam exiting the turbine, and 

⑤-① isobaric heat loss in the condenser. 

The isothermal segments represent moving from saturated liquid to saturated va-

por in the case of ③ in the heater and the reverse in the condenser between ⑤-①. 

The key thermodynamic properties of the working fluid(s) are determined using 

REFPROP 
[30]

. For the purposes of this paper focus has been placed on the compro-

mise-compromise aspects and a number of system variables have been treated as pa-

rameters. One such simplification is the use of water as the working fluid in both 

loops.  

The combined model may be summarized using the compromise key words as: 

 

GIVEN 

Water as the fluid in the Rankine cycle 

Water as the heat transfer medium in the heat exchanger 

The minimum pressure in the Rankine cycle (PMIN – defined as a parameter) 

Ideal Rankine cycle thermodynamics 

Ideal heat transfer in the heat exchanger 

Thermodynamic fluid properties (determined using REFPROP) 

                                                           
1  Satisficing is a decision-making strategy or cognitive heuristic that entails searching 

through the available alternatives until an acceptability threshold is met. This is contrasted 

with optimal decision making, an approach that specifically attempts to find the best alterna-

tive available. Wikipedia. 
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FIND 

x, the system variables  

PMAX Maximum pressure in the Rankine cycle 

TMAX Maximum temperature in the Rankine cycle 

TMAXE Maximum temperature of the heating fluid 

d
-
 and d

+
, the deviation variables 

SATISFY 

The system constraints: 

Temperature delta for maximums in exchanger 

Moisture in turbine less than upper limit 

Rankine cycle mas flow rate less than upper limit 

Temperature at ④ ≥ temperature at ③ 

Quality at ④ is superheated vapor 

TMAXE greater than TMINE by at least TDELE 

TMINE ≥ temperature at ② by at least TDELC 

Ideal Carnot cycle efficiency greater than system efficiencies (sanity check) 

Temperatures within valid ranges for REFPROP fluid database 

The system variable bounds (xj
min

 ≤ xj ≤ xj
max

): 

500 ≤ PMAX ≤ 5000 (kPa) 

350 ≤ TMAX ≤ 850 (K)  

350 ≤ TMAXE ≤ 850 (K) 

The system goals: 

Achieve zero moisture in steam leaving the turbine (ie., steam quality of 1) 

Maximize Rankine cycle efficiency where RCEFF = (Pturbine – Ppump)/Qin 

Maximize temperature exchanger efficiency  

where TEFFEX = (TMAXE-TMINE)/(TMAXE-TEMP2) 

Maximize system efficiency indicator 1 where SYSEF1 = (Pturbine – Ppump)/Qout 

Maximize system efficiency indicator 2 where SYSEF2 = RCEFF*TEFFEX 

Maximize heat transfer effectiveness in exchanger  

where HTEFF = f(heat transfer coefficient, geometry, flow rates etc.) 

MINIMIZE 

The deviation function, Z(d
-
, d

+
) = [f1(d

-
, d

+
), …,fk(d

-
, d

+
)] 

where the deviation function is expressed in a preemptive form. 

 

The six system goals in the example have been placed at six levels of priority in the 

implemented preemptive model. The implication is that the first level goal function 

will be satisfied as far as possible and then while holding it within a tolerance; the 

second level goal function will be addressed. When the second has been so condition-

ally minimized it will be held within its tolerance and then the third goal will be 

worked upon; and so on in an attempt to address all the goals across all levels. 

Achieving satisfaction of the higher priority goals may cause the sacrifice of 

achievement of the lower priority goals. By prioritizing the goals differently, compar-

ison may show competing goals driving the solution process in different directions. 

By grouping more than one goal at the same level, an Archimedean (weighted sum) 

approach can be accommodated. 
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5. VALIDATION OF THE MODEL 

Structural validity as it applies to a computer code infers that the logic and data flows 

between modules are correct. This does not guarantee accuracy. Performance validity 

is associated with the accuracy of the results achieved as measured against reliable 

benchmarks and/or reasoned argument (other published work, known physical charac-

teristics etc.). 

5.1 Structural Validity of the Model 

The compromise DSP is a hybrid multi-objective construct and this approach to 

designing has been validated through use 
[6]

. The primary solver in DSIDES is an 

Adaptive Linear Programming algorithm, and it has also been described and validated 

elsewhere 
[5]

. The current instantiation has also been shown to replicate some standard 

test problems. The REFPROP database is a key thermodynamic property model from 

NIST 
[30]

 and the NIST supplied subroutines and fluid files have been used. The total 

system has been integrated in a FORTRAN environment using G FORTRAN compil-

ers on a PC platform. The functioning of the code has been successfully demonstrated 

to reproduce results consistent with text books and other programs providing thermo-

dynamic properties of fluids.  

Consistency and logical relationship between the constructs were checked by test-

ing several inputs and reviewing the expected outputs, e.g., thermodynamic properties 

of water at different pressures and temperatures. 

5.2 Performance Validity of the Model 

Performance validity was checked through exercising the thermal model, i.e., investi-

gation of the model by parametric study such as net power output. For instance, since 

the power is a function of Rankine flow rate, it is expected that higher flow rates are 

necessary to produce higher power. This was verified and is discussed in Section 6. 

The next step for performance validity of the model was through checking the be-

havior of the goals. This model includes six goals, five of which estimate measures of 

efficiency: the Rankine cycle efficiency, the heat exchanger efficiency, two formula-

tions of system efficiency and the heat exchanger effectiveness. By exploring differ-

ent possibilities in the goal priorities for the example and by examination of the mon-

otonicity of the goals 
[31]

 it was discovered that the prioritization of the efficiency 

goals in a preemptive formulation will drive the system in two directions.  

If prioritization is given to the Rankine cycle efficiency and/or system efficiency 

formulation 1 the solutions are of high temperature and high pressure character. In 

discussing the results this ordering of priority will be referred to as “Order 1”. In con-

trast, low temperature and low pressure solutions are preferred if the heat exchanger 

efficiency, system efficiency formulation 2 and/or heat transfer effectiveness are pri-

oritized (Order 2). This behavior of the model is appropriate and predictable given the 

model goal formulations. 
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6. DISCUSSION OF RESULTS 

Consider that a plant producing a baseline of 25kW is required and that higher powers 

are sought but the maximum steam that can be produced is 0.1 kgs
-1

. What are the 

characteristic values that define the Rankine cycle and the heat exchanger? 

In answering this question, a two-step process using DSIDES is used, firstly with 

the XPLORE grid search module and then with the ALP algorithm. 

As described in Section 4, variable bounds have been defined but do they encom-

pass feasible designs? Using XPLORE, this question is examined. Presented in Figure 

5 is a plot of TMAX versus PMAX showing discrete tested combinations that lead to 

feasible designs for 25, 50 and 70kW cases. Feasible designs exist where the con-

straint violation is zero. The extent of the plot reflects the bounds of each system vari-

able. The contraction in the number of designs and the size of the design space at least 

in the two dimensions shown as power increases is clearly evident. The area covered 

by these can be interpreted as being representative of the feasible design space(s).  

Further use of EXPLORE can and has in this example been made to examine the 

regions where goals are fully satisfied or at least minimized. Being keen to ensure 

longevity of the plant, the operational requirement is that moisture in the steam exit-

ing the turbine is minimized. Therefore, the Level 1 priority goal for all results pre-

sented is that of minimizing moisture. If this were the only goal specified it can be 

shown as in Figure 6 that there are many designs that could achieve less than 5% 

moisture while producing 25 kW or 50 kW. Shown in Figure 7 are those designs with 

zero percent moisture.  

 

Fig. 5. Feasible designs using XPLORE (less than 12% moisture) 

 

It follows that other goals need to be subsequently specified to achieve singular 

(local) convergence. For the 25 kW designs, using the XPLORE data, if some mois-

ture is allowed (up to 12%) higher Rankine cycle efficiencies can be achieved with 

designs depicted in the region shown in top right of Figure 8 (efficiencies better than 

27.5%). However, constraining the designs to have zero moisture caps the best Ran-

kine cycle efficiency found at 25% (PMAX 2136 kPA and TMAX 759 K), signifi-
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cantly to the left of the Figure 8 cluster. This reflects the best “Order 1” XPLORE 

solution. 

 

Fig. 6. Feasible designs with moisture less 

than 5% using XPLORE 

 

Fig. 7. Feasible designs with 0.000% mois-

ture using XPLORE 

 

Considering the second system efficiency goal representation, SYSEF2, if set as 

priority one, values of 16% in the lower left region shown in Figure 8 are possible. If, 

constraining the designs to have zero moisture caps the best SYSEF2 value found is 

12% (PMAX 909 kPA and TMAX 668 K), significantly higher than the Figure 8 

cluster. This reflects the best “Order 2” XPLORE solution. 

To summarize, higher Rankine cycle efficiencies are achieved with high tempera-

tures and high pressures. In contrast, the higher system efficiencies result from low 

temperatures and low pressures. And, to achieve zero moisture in the turbine, the 

requirement is for high temperatures with lower pressures.  Clearly, the right decision 

is not straightforward. 

 

 

Fig. 8. Trade-offs for feasible designs for 25kW using XPLORE (less than 12% moisture) 

350

450

550

650

750

850

500 2500 4500

TM
A

X
 (

K
) 

PMAX (kPa) 

25kW

50kW
350

450

550

650

750

850

500 2500 4500
TM

A
X

 (
K

) 
PMAX (kPa) 

25kW

50kW

350

450

550

650

750

850

500 1500 2500 3500 4500

TM
A

X
 (

K
) 

PMAX (kPa) 

Higher System Efficiency 2 

Higher Rankine 
Cycle Efficiency 

Zero Moisture 

Proceedings of the Poster Workshop at CSD&M 2014 204

Accounting for Uncertainty and Complexity in the Realization of Engineered Systems



 

While the framing value of using the XPLORE DSIDES module has been demon-

strated, what further insights can be developed using the DSIDES ALP algorithm 
[5]

 to 

refine understanding? 

The next set of results presented are for the two groupings of the goals as dis-

cussed in Section 5, one producing high temperature and pressure results (Order 1) 

and the other low temperatures and pressures (Order 2). The goal deviation variable 

values associated with each goal (defined in Section 4) have been named with a lead-

ing “G”, for example GRCEFF referring to the Rankine Cycle Efficiency goal. 

Given an upper limit on the mass flow rate in the Rankine cycle of 0.1 kgs
-1

, a 

parametric study has been undertaken to establish the power output limit for the sys-

tem. Shown by the results tabulated in Table 1 (for both Order 1 and Order 2), are 

solutions for 25, 50 and 75 kW configurations. While not shown in Table 1 to main-

tain clarity, for each of the six arrangements (combinations of power output and goal 

priority order) different starting points were tried yet the solutions for each power 

output were for all intents and purposes the same, suggesting, though not guarantee-

ing, that the global minima (for the formulation) may have been found.  

 

Table 1. Parametric Study of Power 

 
 

 

The behavior of the model can be assessed in a number of ways including conver-

gence of the system and deviation variable. For the benchmark 25 kW cases, the con-

vergence history for Order 1 is presented in Figures 9 and 10 and for Order 2 in Fig-

25 kW 50 kW 75 kW 25 kW 50 kW 75 kW

PMAX (kPa) 2000 2000 4250 1250 1250 4250

PMIN (kPa) 100 100 100 100 100 100

TMAX (K) 767 767 767 683 683 767

TMAXE (K) 808 808 808 725 808 808

ELEN (m) 154 154 154 113 154 154

EDIA (mm) 20 20 20 20 20 20

PMAX (kPa) 3415 3415 3417 826 1287 2889

TMAX (K) 840 840 840 613 743 810

TMAXE (K) 850 850 850 623 753 820

ELEN (m) 50 50 50 50 50 50

G1 RCMIT 0.000 0.000 0.000 0.000 0.000 0.000

G2 RCEFF 0.709 0.709 0.709 0.830 0.780 0.723

G3 TEFFEX 0.720 0.430 0.120 0.020 0.010 0.010

G4 SYSEF1 0.709 0.709 0.709 0.830 0.780 0.723

G5 SYSEF2 0.918 0.833 0.745 0.833 0.783 0.727

G6 HTEFF 0.007 0.001 0.000 0.000 0.000 0.000

FLOWR (kgps) 0.027 0.050 0.080 0.050 0.080 0.090

RCEFF 0.291 0.291 0.291 0.170 0.220 0.280

TEFFEX 0.281 0.573 0.876 0.980 0.990 0.990

SYSEF1 0.291 0.291 0.291 0.170 0.219 0.277

SYSEF2 0.081 0.167 0.255 0.167 0.216 0.273

HTEFF 0.990 0.990 1.000 1.000 1.000 1.000

CARNOT 0.556 0.556 0.556 0.392 0.498 0.540
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ures 11 and 12. All curves reach a stable final steady state. In the case of Order 1, zero 

moisture in the turbine was not achieved until iteration 9. This aspect dominated the 

solution process to this point. However, GRCEFF and GSYSE1 which are superim-

posed are seen to be generally decreasing. The reverse is true for Order 2. For Order 

2, zero moisture was achieved from iteration 5 from which point reductions in 

GSYSE2, GEXEFF and GHTEFF are evident. Clearly an indicator of excess capacity 

in considering the baseline 25 kW case is that the flow rate in the turbine is well be-

low the defined bound on this variable of 0.1. In framing and exploring a design mod-

el, the nature of the specified variable bounds needs to be understood. Some are set 

based on true physical constraints and some are arbitrary. 

The parametric study of power has provided the flow rate results depicted in Figure 

13. For Order 1 where Rankine cycle efficiency is favored, the flow rate is lower be-

cause of the improved efficiency. Extrapolating to where both flow rate curves would 

intersect the 0.1 kgs
-1

 upper bound, it would appear that approximately 90 kW would 

be available in the modelled ideal system. A companion plot of the Rankine cycle 

efficiency versus power is given in Figure 14 where a consistently high efficiency is 

achieved for Order 1. The efficiencies produced under Order 2 are forced to increase 

in order to produce the higher power demands. In contrast, the final plot presented, 

Figure 15, is used to highlight that by prioritizing the goals as per Order 2, higher 

values of system efficiency as measured by the second formulation can be achieved. 

This formulation is a product of the efficiencies of the two primary system compo-

nents, exchanger and Rankine cycle. Because of the idealized efficiency of the ex-

changer being higher than that of the Rankine cycle, this term dominates and there-

fore drives the solution to the lower temperatures and pressures that suit the exchang-

er. The monotonically increasing curves of Figure 15 further suggest that higher over-

all efficiencies will come with higher power. 

 

 

 

 

Fig. 9. Order 1 system variable (25kW) 

convergence plotted against iteration,  

 

Fig. 10. Order 1 deviation variable (25kW) 

convergence plotted against iteration, 

(lower values preferred, 

GRCEFF and GSYSE1 superimposed) 
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Fig. 11. Order 2 system variable (25kW) 

convergence plotted against iteration, 

 

 

Fig. 12. Order 2 deviation variable (25kW) 

convergence plotted against iteration, 

(lower values preferred, GRCEFF and 

GSYSE1 superimposed) 

 

 

Fig. 13. Rankine Cycle Mass Flow Rate, FLOWR versus Power Output 

(Order 1 – solid line; Order 2 – dashed line) 

 

 

Fig. 14. Rankine Cycle Efficiency versus 

Power Output  

(Order 1 – solid line; Order 2 – dashed line) 

 

Fig. 15. System Efficiency 2, GSYSE2, 

versus Power Output 

(Order 1 – solid line; Order 2 – dashed line) 
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7. CONCLUDING REMARKS 

Industry is faced with complexity and uncertainty and we in academia are motivated 

to respond to these challenges. Hence this paper is the product of thoughts for explor-

ing the model-based realization of engineered systems. What new knowledge, under-

standing of emergent properties and insights can be gained by exercising the model? 

In summary, perhaps the conflict expressed in Figure 8 best reflects the discovery of 

emergent properties from the system.  Pursuing the questions further leads to a growth 

in understanding exemplified by the findings based on the information presented in 

Figures 13, 14 and 15. 

While the results presented in Section 6 are for a relatively simple case and some 

variation has been dealt with parametrically, the model is structured to deal with sig-

nificantly increased complexity through the integration of more detailed analysis. 

Possibilities include adding features to incorporate real as opposed to ideal character-

istics of the Rankine cycle (e.g., pipe losses, pumping losses). The mechanical design 

and more detailed sizing of components could also be added as could higher order 

heat transfer models that address the time and material dependencies of conduction in 

the heat exchangers. Including design robustness considerations are also desirable. 

In Section 1, it was indicated that the thermodynamically oriented example pre-

sented herein is anticipated to provide the foundation for a significant body of future 

work and doctoral study in the “Systems Realization Laboratory” at the University of 

Oklahoma. Therefore, to conclude, the possible directions to be taken are identified. 

Managing (Organized) Complexity – Future Work 

In this work, the main focus will be on model development to grow complexity and 

the physical realism of the system (e.g., dimensions and materials). This will facilitate 

more detailed and practically-useful design input for small scale “power” plant sys-

tems through simulation. 

Given the existing Stage 1 model, Stage 2 will include expansion focused on heat 

source issues: representation of aspects of the heat exchanger (boiler). While the cur-

rent goals are moisture and efficiency based, the intent is to also model economic 

considerations. The selection decisions for the working fluids will be developed in 

line with options for lower temperatures and pressures applications inherent in an 

organic Rankine cycle. 

For the heat exchanger, the first steps taken will include the thermodynamic mod-

elling to address conduction leading to the specification of the required geometry 

(e.g., length and diameter of inner and outer pipe and material choice). Possibilities 

beyond Stage 2 include similar work with other system components as alluded to in 

Section 3 (“left” and “right” sides and further Rankine cycle refinements). 
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Managing (Disorganized Complexity) Uncertainty – Future Work 

In this work, the focus will be on developing the modelling with respect to managing 

uncertainty. The research plan includes using the expanded thermal model, adding 

robustness considerations to address uncertainty and exploring the solution space 

using an Archimedean formulation, with sensitivity and post solution analysis. 

In this paper the feasible solution space of the example thermal system was ex-

plored using a preemptive representation. As the example system model complexity 

grows, greater conflict in the goals is also anticipated. The next step, as described as 

the third in Section 2.2, is to explore the solution space by moving between the ex-

tremes to generate deeper understanding of the tradeoffs. An Archimedean (weighted 

sum) formulation of the goals can be utilized for this purpose. 

Sensitivity and post solution analysis can be performed on a system by changing 

the bounds, relaxing or adding constraints, finding the limit (bounds) of the parame-

ters and changing the target input data to be documented for the designer. Use of pri-

mal and dual information from a linear model (as generated by the ALP algorithm) 

may also provide new insights in exploring such a complex system. 
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Complexity: Definition and Reduction Techniques 

Some Simple Thoughts on Complex Systems 
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Abstract. Complexity can mean many things to many people.  This paper pre-

sents an empirical, relativistic definition of complexity relating it to the system 

of interest, the behavior which is to be understood, and the capabilities of the 

viewer.  A taxonomy of complexity is described based on this definition.  Com-

plexity and complication are compared and contrasted to provide some context 

for these definitions.  Several methods of reducing or managing complexity are 

presented, namely abstraction, transformation, reduction and homogenization. 

Examples are given for each of these. 

 

Keywords: System complexity, system complication, system complexity man-

agement 

1 The Age of Complexity 

“I think that the next century (21
st
) will be the century of complexity” 

- Stephen Hawking 

 

The 20th century was certainly a time when we witnessed technological advances on 

a number of fronts including agriculture, transportation, communication, computation, 

energy, medicine and the like.  However, the 21st century is one of complexity in 

which the interaction between these technologies, human behavior and the forces of 

nature form new and evolving systems.  

A number of systems trends have been driving the exponential increase in system 

complexity.   The notable reasons for this are an increase in both the scale and scope 

of interconnectivity and the increased participatory role of human agents.  The dra-

matic increase in Software and Networking has had the major impact on interconnec-

tivity.  No longer are interactions limited by physical connectivity as they are in elec-

tro-mechanical systems.  It is not possible to clearly define the impact of changes in 

software as was done in electro-mechanical systems.  Hence, it is not as easy as it 

once was to determine what makes a car stop and go.  Note that the cost of software in 

an automobile is greater than the cost of the steel.  

Networking greatly impacts the quality of interconnectivity among agents of the 

same type.  Notably, both the speed and richness of communication has increased 

with examples such as high-frequency trading and communication in the academic 
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community. These factors also increase the quantity and connectivity between agents 

that previously had no connections.  Socio-technical systems are driven by the human 

element.  In the past, connectivity between humans was largely based on geography 

(according to one estimate the average American in the 1800’s traveled an average of 

50 meters per day [1].   

Today, with the internet we are rapidly increasing the number of people who com-

municate and interact at a distance.  In addition, through search technology we are 

discovering the shortest paths between two points.  The hidden small world is now 

becoming much more visible.  The six degrees of separation are being reduced, made 

accessible and turbocharged. The participation cost has been greatly reduced so that 

more people can participate which is an increase in scale, but is also an increase in 

scope as those who were once bystanders are becoming active participants as with 

Web 2.0. Finally, the impact of human behavior has risen to the degree that affects 

nature on a global scale.  The world has truly become interconnected.  The notion of 

systems with fixed boundaries, with agents playing fixed roles is quickly disappear-

ing.  

Complexity is the challenge, but what is complexity?  How do we define it? 

2 Complexity and Complication: Definitions 

While many use the terms complexity and complication interchangeably, they have 

very different meanings.  The literature follows these three basic categories of defin-

ing complexity.   

Behavioral Definitions: The system is viewed as a black-box and the measures of 

complexity are given based on the outputs of the system.  Behavioral measures in-

clude complexity as entropy in which the Shannon entropy of an output message from 

the system is regarded as a relatively objective measure of complexity [2]. Another 

definition is the effective complexity of the system in which the output of the system 

is divided into two parts: regularities and randomness.  The effective complexity is 

the information content of the regularities whose determination is subjective and con-

text dependent [3,4]. Statistical complexity defines complexity as the minimum 

amount of information from the past outputs of the system necessary to predict the 

future outputs [5]. This approach is problematic with respect to contexts which in-

volve non-linear state changes to the system. 

Structural Definitions: A measure or definition of complexity is given based on 

the structure/ architecture of a system. Many refer to the complexity of a system based 

solely on size.  This is an objective definition that is perhaps the easiest to quantify.  

While complex systems quite often have a large number of components, complexity is 

more about how these components interact and are organized.  For example, there are 

45K protein coding genes in rice and 25K in Homo sapiens, but few would argue that 

rice is the more complex of the two.  Another approach is to look at fractal dimen-

sions [6]. While this definition is insightful, it is limited to certain types of structures.   

There are also hierarchical measures [7]. Simon claims that all complex systems have 

some degree of hierarchy and making building blocks on various levels is an im-
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portant way that nature creates a complex system.  However, the determination of the 

building blocks is arbitrary and context dependent. 

Constructive Definitions: The complexity of the system is determined by the dif-

ficulty in determining its future outputs.  The logical depth approach [8] shows how 

difficult it is to construct an object and regards the difficulty from a computational 

perspective, translating complexity into the number of steps needed to program a 

Turing machine to produce the desired output.  This is a computational approach in 

which everything in the system needs to be digitized. Another approach is using 

thermodynamic depth [9] which is a more general form of logical depth which 

measures the amount of thermodynamic and informational resources necessary to 

construct an object.  This method attempts to mimic the structure of a system by re-

generating the output, but as this approach views the system as a black-box it can 

result in an unnecessarily large depth for the system. 

There are also more general definitions of complexity [10, 11].  While all of these 

approaches have their merit, they do not seem to answer the essential question of what 

we mean when we use the word complexity. 

The word complicated is from the Latin com: together, plicare: to fold.  The adjec-

tive meaning of ‘difficult to unravel’ was first used in 1656 [12]. Interactions in com-

plicated systems are often restricted with respect to interconnection, and can often be 

unfolded into simpler structures.  In this case, decomposition works, while complex 

systems cannot be so easily unwoven.  Complexity is related to the structure of the 

system. 

Complexity is from the Latin com: together, plectere: to weave.  The adjective 

meaning of ‘not easily analyzed’ was first recorded in 1715 [13]. Thus, from its first 

usage, complexity was synonymous with the ease of understanding something. The 

essence of complexity is interdependence. Interdependence implies that reduction by 

decomposition can’t work, because the behavior or each component depends on the 

behaviors of the others. 

Reductionism which alters the structure of a system cannot be used effectively as 

an analytic tool for a system whose behavior is critically dependent on these details. 

The structure often defines the system. 

One can imagine complicated systems which are not complex, and complex sys-

tems which are not complicated.  Figure 1 shows some examples of the possible per-

mutations.  The low complexity, low complication quadrant is populated with rela-

tively simple inanimate objects, generally of a mechanical design.  Systems engineer-

ing has traditionally been most successful in the high complication/low complexity 

quadrant, and system science in the low complication/high complexity quadrant.  

However, due to the need to engineer increasingly complex systems such as Systems 

of Systems and Socio-Technical systems, it is necessary to move systems engineering 

capabilities from the high complication/ low complexity quadrant, up to the high 

complication/ high complexity one.   
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Fig. 1  Complication and Complexity: a) Mandelbrot Set, b) stock market, c) bicycle, d) pro-

cessor chip.  

Kurtz and Snowden [14], in the formulation of the Cynefin Framework, divide the 

decision making space into four domains, as shown in Figure 2.  Roughly speaking, 

the “known” and “knowable” domains translate into the low-complexity, low-

complication quadrant and the low-complexity high-complication quadrants, respec-

tively, while the “complex” and “chaotic” domains are reflected in the high-

complexity half of Figure 1. 

 

 
 

Fig. 2  Cynefin Framework (source: Kurtz & Snowden [14]) 
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One might say that complexity is the degree of difficulty in understanding how a 

system works and thus how it behaves, but this might be too strong of a statement.  

With systems that are constantly evolving, it may not be possible to understand all the 

elements in a system, let alone how they interact, but it might be possible to predict 

how the system behaves.   If we are to embrace complexity, then we need to accept 

the fact that understanding exactly how a system works may not be possible and we 

should focus on trying to understand how a system behaves.  Thus, embracing com-

plexity involves a shift of emphasis from how something works to how it behaves.  

This is major paradigm shift.  

So what are the elements that make the behavior of a system difficult to predict? 

One could ask the same question about something else which seems to be just as 

nebulous, such as ‘beauty’.  This is just as difficult to define and there probably isn’t 

consensus on examples of beauty, let alone a consensus on the properties of an object, 

phenomenon or idea that imbues something with beauty.  Just how do we objectively 

measure beauty?  What are the common traits between things that are beautiful?  Per-

haps the same is true about complexity to some degree. 

This is particularly difficult if one assumes that beauty is an intrinsic property in-

dependent of context and the observer. Rather than try to define beauty in terms of the 

characteristics of the object, perhaps it would make more sense to define it in terms of 

the effect that it has on the system which includes the observer.  Such a definition 

might be, “beauty is something that brings pleasure to the observer.”  With this defini-

tion, it is clear that the beauty is dependent on the observer and context and one could 

imagine the means of perhaps measuring it through an electroencephalogram (EEG) 

or some other such device.   

 

 

 

Fig. 3  Complexity – Relationship between Observer, System and Context. 

Many others have discussed the critical importance of the observer on the system of 

interest.  For example, philosophers such as John R. Searle [15] have divided the 

world into the ontologically objective and subjective; and into the epistemically ob-

jective and subjective.   The Soft Systems Methodology (SSM) proposed by Check-

land is a systematic approach [16] that is the result of continuing action research that 
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is used to analyze real-world problems by treating systems as epistemological rather 

than ontological entities, thus being dependent on human understanding.  This is par-

ticularly important in the case of complex systems in which the analysis lacks a for-

mal problem definition. This view is supported by the constructionistic epistemolo-

gists (first used by Jean Piaget [17]) who maintain that natural science consists of 

mental constructs that are developed with the aim of explaining sensory experience 

(or measurements) of the natural world. Some contributors to this philosophy include: 

dialectic constructivism (Piaget [18]), radical constructivism (Glaserfeld [19]) 

(Watzlawick [20]), (von Foerster [21]), (Bateson [22]), and Projective Constructivist 

Epistemology (Le Moigne [23]). 

 

Taking the same approach that we took with ‘beauty’,  as shown in Figure 3, ‘com-

plexity’ may be defined as a relationship to the observer and context as:  

 

“the degree of difficulty in accurately predicting  

the behavior of a system over time.” 

 

Thus, the degree of complexity is not only related to the system, idea or phenomenon 

of interest, but also is dependent on the context, the behavior in which the observer is 

interested, and the capabilities of the observer.  Thus, there are a number of means by 

which the complexity of the system can be reduced without changing the system it-

self.    

We appear to have these same issues with the definitions of other key terms in sys-

tems including such things as what is a “system” and the “-ilities” such as security, 

availability, flexibility, adaptability, etc.  To avoid confusion, one should remember 

that the notion of ‘systems’ is a model that is employed to make sense of reality and 

the context and observer are all critical to this model building.  Certainly the phrase 

‘system of interest’ makes this point explicit.  

Context is a critical aspect in the analysis of systems and is often neglected when 

discussing complexity.  Context has three distinct faces, as described below, and the 

term is often used to refer to one or a combination of them depending on the situation 

[24].  

Computational Context: When analyzing systems in the space-time domain, the 

initial and boundary conditions are quite important in determining the state of the 

system. Context in this sense can change by moving the boundaries of the system or 

changing the time reference.  

Interpretative Context: As an observer, one can have different interpretations of 

the state of a system, based on the perceptual frame work s/he is using. The state of 

the system (or parts of it) can be interpreted as order/ signal or disorder / noise de-

pending on the view point of the observer. A particular shape of a termite mound 

could be viewed as a magnificent structure, if the observer has seen a castle or some 

similar structure before. Otherwise, the shape can be completely meaningless. 

Paradigmatic context: In some complex systems, especially those with human el-

ements, a notion of context emerges as a result of the combination of the internal 

states of the agents and their interactions. This notion of context includes a set of 
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rules, standards, collective perceptual framework or a value structure. This can be 

thought of as a generalization of what Thomas Kuhn calls “paradigm” [25] specifical-

ly for the scientific community. This is also aligned with the notion of "socially con-

structed phenomena" that we have already talked about. 

In most of the discussions about the context of a system, people refer to the first 

and sometimes the second form, but rarely the third. The important point is that in 

human-centric complex systems, there is a cyclical causation between the last two 

forms of context. In a way, the paradigmatic form shapes the internal interpretative 

context which itself influences the paradigm of the system. 

3 Factors of Complexity 

Complexity is far too, well complex, to be described with a scalar quantity.  Rather 

there are several dimensions which reflect the overall difficulty in accurately predict-

ing the future behavior of a system. The following are a set of factors that relate to the 

overall system of observer, context and system which is consistent with the definition 

of complexity that we have established.  These factors consists of two major compo-

nents.  The first relates to desired accuracy and scope of the prediction and the second 

relates to the degree of difficulty in obtaining the desired predictive capability.   

Prediction quality can be determined to depend upon the achievable precision, 

timescale and breadth of context.   The following are some of the ranges for each of 

these which are relative to the system of interest. 

The precision of predictive capability ranges from:  

 Exact (approximate) state is deterministic 

 Exact (approximate) states have stochastic probabilities 

 Exact (approximate) states have stochastic ordering 

 Future (current) states are ill-defined 

 Future (current) states are largely unknown 

The timescale of predictive capability ranges from:  

 Beyond the expected life of the system 

 Accepted life of system 

 Significant fraction of life of system 

 Small fraction of life of system 

 Only for small deviations from current state 

The breadth of context for the predictive capability ranges from: 

 All imaginable contexts 

 All likely contexts 

 Some contexts 

 Only current context 
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The desired quality level of prediction can be created by specifying a vector in this 

space. 

Prediction difficulty is determined by three critical factors.  The first factor is the 

degree of difficulty in understanding the relationships that govern the interactions and 

behaviors of the components. The second factor is the degree of difficulty in knowing 

the current state of the system to the level necessary to apply the relationship 

knowledge.  The final factor is the degree of difficulty in knowing or computing the 

behavior of system.  One of the most challenging aspects of this computation is ability 

to discover and predict unforeseen emergent behaviors.  Quite often these emergent 

behaviors are dependent upon relationships that are not well understood and may be 

critically dependent on the system’s initial conditions. The following are some of the 

ranges for each of these which are each relative to the system of interest. 

The difficulty in understanding relationships governing interactions and behaviors:  

 Essential relationships are well understood quantitatively 

 Essential relationships are well understood qualitatively 

 Essential relationships are not well understood  

 It is unknown which are the essential relationships 

The difficulty in acquiring necessary information needed to make a prediction:  

 Essential information is known 

 Essential information may be acquired with significant effort 

 Essential information may not be acquired in that it is not measurable or the act of 

measuring it causes it to substantially change 

 It is unknown what constitutes essential information in the future (currently) 

The difficulty in computing the behavior of the system: 

 Behavior of the system is evident through mental analysis  

 Behavior of the system may be calculated in the desired time on a personal com-

puter 

 Behavior of the system may be calculated in the desired time on a super computer 

(1000x PC)
2
 

 Behavior of the system may be calculated in the desired time on a foreseeable su-

per computer (1Million x PC) 

 Behavior of the system may be calculated on a theoretical quantum computing 

system 

 Behavior of the system may not be calculable 

For example, the relationship of factors is fairly well known in a weather system, 

but the challenge is to understand the current state to the necessary level of accuracy 

and being able to calculate the resultant weather more quickly than the actual phe-

                                                           
2
 A factor of 1000x in computing is approximately equal to 15-20 years into the fu-

ture. 
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nomenon.   Climate change is much more difficult as the relationships between the 

relevant factors are not well understood.   

This approach embraces complexity in that the taxonomy is not based on how the 

system works, but rather how it behaves.  While other taxonomies may be used to 

describe the physical characteristics of the system, this may lead to erroneous conclu-

sions about the systems complexity per our definition.  For example, a simple cellular 

automata system may be composed of few agents, have well defined communication 

and simple rules for behavior, yet result in behaviors that are very difficult to predict.   

The converse is true as well. 

4 Complexity Reduction 

What can be done to reduce complexity, that is, to make system behavior more pre-

dictable?  While some such as A. Berthoz [26] have proposed a set of organizing 

principles based on biological systems for “simplexity”, the means to provide com-

plementary relationships between simplicity and complexity, this paper is intended to 

describe approaches by which to reduce the difficulty in predicting the possible future 

behaviors of systems.  Four possible approaches described in this paper to reduce 

complexity are: reduction, homogenization, abstraction, and transformation, each of 

which is described below. 

4.1 Reduction 

Reduction is the process of removing superfluous elements from the system, either in 

practice or in implementation, and/or limiting the context under which the system is 

allowed to operate and reducing the state space to something which is understood.  

For example, when using a subway system, most riders are interested in how to travel 

from point A to point B, making the necessary connections.  A map, as shown in Fig-

ure 4, provides just this amount of information, by eliminating elements that are not 

relevant to understanding this particular behavior.  It should be noted that reduction-

ism in this case does not eliminate structure, but rather makes the essential structure 

much more visible. 

Reduction in context can be used when a system is moving into a regime in 

which its operation is not valid, such that steps are taken to move it back into a known 

space.  For example, an integrated circuit’s operation is well understood within cer-

tain temperature, voltage and frequency constraints and it is not allowed to operate 

outside this regime where it becomes far less predictable and perhaps chaotic.  Thus, a 

potentially complex system is transformed into one that while being complicated is 

highly predictable. 
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Fig. 4  Paris Metro Map (Source: http://www.ionbee.net/media/parismetromap.jpg) 

4.2 Homogenization 

Homogenization is somewhat related to reduction in that it provides the possibility to 

reduce the types of elements or agents by classifying them into sets that are relatively 

indistinguishable or homogeneous.  This is the technique that allows statistics to be 

applied to situations rather than being forced to understand the behavior of each ele-

ment.  For example, it would be intractable to predict the behavior of more than a few 

molecules of air, yet the aggregate behavior of 10
27

 such molecules, namely pressure, 

volume and temperature, can be predicted with a simple ideal gas model if each mole-

cule is treated as being indistinguishable.  One should remember that if the behavior 

of interest is that of the individual molecules, then the system is highly unpredictable, 

and highly complex.  Hence, the same system can be highly complex or very simple 

depending on the type of behavior of interest and the context of operation. 

    One must be very careful when applying the technique of homogenization not to 

overly simplify the model of the system to the point where it is not useful in predict-

ing the desired behavior.  For example, one part in a billion can make a big difference 

in certain reactions.  In semiconductors doping levels on the order of 1 part per 

100,000 can increase the conductivity of a device by a factor of 10,000 times.  There 

are many systems in which a small amount of inhomogeneity can create starkly dif-

ferent behaviors.  For example, pure water in isolation at 1 atmosphere pressure will 

freeze at -42 degC or even as low as -108degC if cooled sufficiently quickly, while 

water in the presence of dust or other impurities that can serve as crystallization sites 

freezes at the familiar 0 degC. 

4.3 Abstraction 

Abstraction is essentially the ability to decouple elements in a system and transform it 

from a woven to a folded statement in which interactions are restricted.  A good ex-
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ample for this part is language and thought: the more abstraction we enter in our lan-

guage by encapsulating a notion into a word, the more we will be able to deal with the 

complexities of a conceptual problem. In fact, the creation of jargon in a scientific 

field, is a form of abstraction that serves to reduce the complexity of that field.  Mead 

and Conway’s book, Introduction to VLSI Systems, published in 1980 [27] codified 

this layering, as shown in Figure 5, and helped to transform complexity to complica-

tion in VLSI systems. This success has allowed the creation of incredibly complicated 

systems with deterministic behavior which has driven software complexity and net-

working which has driven us to very complex systems. 

  

Fig. 5  Layering within Computing Systems utilizing VLSI Technology 

It is also interesting to note that abstraction reduces the complexity at the existing 

boundary of a system, but it also creates a new level of complexity. In fact, this is one 

of the main mechanisms behind the progress of various fields in human knowledge: 

Efforts to reduce complexity results in creation of new level of abstractions. The re-

sulting abstractions create a new boundary for the system and generate a new form of 

complexity, and the cycle continues. 

4.4 Transformation 

Transformation is a technique in which the problem space is altered such that it be-

comes more tractable and predictable.  An example of this is taking a system that is 

very difficult to understand in the time domain and performing analysis on it in the 

frequency domain.  Moving from systems governed by rules to ones governed by 

principles may be seen as a form of transformation. Sometimes perspective can have 

an enormous impact on one’s ability to understand a system’s behavior.  

One of the important studies in systems science is that of networks.  In this case, 

the system is analyzed with a transformation of its precise structure, to one that is 
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characterized by local and non-local connectivity and diameter (degrees of separa-

tion).  This transformation enables a significant reduction in the number of factors 

that need to be addressed to understand the behavior of the system. Each of the sys-

tems shown in Figure 6 is composed of networks of systems that experienced evolu-

tionary processes and as a result have a similar network structure with respect to con-

nectivity and diameter.  In this case these are composed of ‘scale free’ networks 

whose degree distribution follows a power law, such that a small number of nodes 

have a large number of interconnections, while most have a small number of inter-

connects.   

 

Fig. 6  Network Structures in Evolving Systems 

It is known that these types of systems are rather resilient to random faults or at-

tacks, yet are very susceptible to failure in the “too big to fail” nodes.  These systems 

also involve tipping points which when tipped places the system in a different state 

such that it is usually not easy to return to the prior state.  Thus, much can be under-

stood about the system based on a small amount of information. 

5 Conclusion 

In summary, the following are some of the significant points made in this paper.  

First, system complexity is increasing exponentially due to increases in both the scale 

and scope of interconnectivity and the role of human agents in the system.  Embracing 

complexity requires a paradigm shift from attempting to deterministically understand 

how a system works to how a system stochastically behaves.  While one should not 

give up on understanding the inner-workings of a system, it cannot be assumed that 

complete knowledge of the system will be possible.  

Complexity can defined as: “the degree of difficulty in accurately predicting the 

behavior of a system over time.”  This definition includes the critical framework of 

the system, observer and context.  Thus, the complexity of a system can be simultane-

ously very high or very low depending of the type of behavior that the observer is 

trying to predict.  Complicated systems may have many parts, but the scope and be-
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havior of these interactions are generally well constrained, and their behavior is de-

terministic.  Complex systems, on the other hand, have a much richer set of interac-

tions, and have behaviors that are impossible to accurately predict.  System complexi-

ty can be viewed from a multi-dimensional taxonomy including precision of predic-

tion, time scale of prediction, difficulty in acquiring necessary information, and 

breadth of context. 

Complexity can be reduced through reduction, homogenization, abstraction and 

transformation. A final general note to make, which seems obvious, is that when us-

ing any of these techniques, some information about the system is lost. Whether that 

piece of information is crucial or superfluous depends on the context and that particu-

lar application of the system. It is always essential to have the assumptions behind 

each of these four techniques in mind. Many systems failures are the result of a par-

ticular simplification technique being used successfully in one context and then being 

misapplied in another context in which the missing information is critical.  

The challenge of science as Einstein put it, is to make things “as simple as possi-

ble, but no simpler.” 
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Abstract. Aeronautical engineering never stopped decreasing the number of 
technical crewmembers in commercial aircraft since the 1950s. Today, a new 
challenge has to be taken: single pilot operations (SPO). SPO consist of flying a 
commercial aircraft with only one technical crewmember in the cockpit, assist-
ed by advanced onboard systems and ground operators providing flying support 
services. This next move is motivated by cost reduction, and must satisfy the 
same or better level of safety currently guaranteed with two-crewmen cockpit. 
This is a human-centered design (HCD) problem where decision-makers have 
to take risks. This paper presents an approach to risk taking in systems engi-
neering. This approach is illustrated by the presentation of the difficult problem 
of SPO HCD, and the underlying function allocation problem.  

1   Introduction 

This paper is strongly based on the experience of the author in the analysis, design 
and evaluation of aeronautical systems, mainly cockpit systems, and more specifical-
ly, the shift from three to two crewmen cockpits in commercial aircraft in the begin-
ning of the eighties (Boy, 1983; Boy & Tessier, 1983, 1985). Task analysis and multi-
agent modeling and simulation supported this work. The MESSAGE1 model was 
developed to represent and better understand interactions among various human and 
machine agents, such as aircrew members, aircraft systems and air traffic control 
(ATC). A series of indicators were developed to assess workload in particular. These 
indicators were tested both in simulations and in real flights, and were actually used 
during aircraft certification campaigns. They measured both physical ergonomics and 
cognitive variables. One of the main results of the MESSAGE project was the devel-
opment of a new approach to function analysis that could support investigations in 
multi-agent work environments. When the number of crewmembers changes, there is 
necessarily a new distribution of functions (i.e., roles and jobs) and tasks. In addition, 
teamwork also changes. We then need to redefine the various functions and interac-

                                                             
1 Modèle d’Equipage et Sous-Systèmes Avion for la Gestion des Equipements (Model of aircrew 

and aircraft sub-systems management). 
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tions among agents implementing these functions. This is what the Cognitive Func-
tion Analysis (CFA) enables us to do (Boy, 1998, 2011). An agent’s cognitive func-
tion is defined by its role, context of validity and a set of resources that enable the 
agent to satisfy her/his/its role. CFA enable the generation of cognitive function net-
works superimposed on multi-agent networks, and improves our understanding of 
appropriate function allocation.  

Today, motivated by cost reduction, the shift from two pilot operations to single pi-
lot operations (SPO) requires us to investigate how cognitive functions will be re-
distributed among humans and systems. We put “humans” plural because even if the 
objective is to have a single pilot in the cockpit, there will be other human agents on 
the ground or onboard (e.g., flight planners, flight followers, and flight attendants) 
who could be involved. This function allocation process is typically done using CFA 
to design the first prototypes and prepare human-in-the-loop simulations (HITLS), 
and after HITLS to refine the definitions of the various cognitive functions involved 
and their inter-relations (Boy, 2011). In addition, HITLS enable us to discover emerg-
ing cognitive functions (ECF), which cannot be deliberately defined in the first 
place. ECF can only be discovered at use time. Consequently, this approach imposes a 
new challenge in systems engineering that is to articulate CFAs and HITLS. Risks in 
the choice of configurations (i.e., cognitive functions of the agents involved) and 
scenarios (i.e., tasks and chronologies of events) are mitigated by Subjects Matter 
Experts (SMEs). This approach enables us to eliminate unsatisfactory solutions from 
the very beginning of the life cycle of a product. We are not working on short-term 
predictions but on tests of possible longer-term solutions. The whole challenge is in 
creativity, mandatory for the generation of these possible solutions. Creativity in 
human-systems integration is typically the product of experienced design thinking and 
incremental expertise-based syntheses. 

2   What is Cognitive Function Analysis (CFA)? 

CFA can be used to both analyze current multi-agent interactions, and future pos-
sible scenarios and configurations in two orthogonal spaces: the resource space and 
the context space. The resource space includes logical networks of human and system 
functions. The context space includes relevant situations embedded in progressively 
generic context patterns. For example, when we want to represent a function of re-
sponsibility delegation from a human to a system, we represent the various resources 
that both human and system require to support it, and the various context levels in 
which its resources can be used. There may also be embedded cognitive functions 
(i.e., cognitive functions of cognitive functions). As a whole, this approach enables us 
to study the intrinsic complexity of the generated resulting cognitive function net-
work.  Use of CFA methodology acknowledges the intrinsic complexity involved in 
multi-agent socio-technical systems and offers a path to systematically analyze com-
ponent interactions that give rise to unanticipated emergent behaviors, attributes, and 
properties. We have used this approach to study and incrementally redesign automa-
tion in commercial aircraft cockpits (Boy, 1998; Boy & Ferro, 2003).  
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At the moment, commercial aircraft cockpits include two crewmembers, a pilot 
flying (PF) and a pilot not flying (PNF) – also called pilot monitoring (PM). Typical-
ly, the PF is in charge of the control of the aircraft, and the PNF is in charge of system 
monitoring, communication with the ground, and safety monitoring of flight progress. 
When agent roles and number change within an organization (i.e., when the cognitive 
function network changes), there is a re-distribution of the various authorities. Au-
thority is about control (i.e., being in charge of something) and accountability (i.e., 
you need to report to someone else). CFA enables us to study authority re-distribution 
by making explicit the various roles, contexts and resources, and the links among 
them. When we moved from three to two crewmembers in cockpits, we needed to 
study the re-distribution of cognitive functions between the two crewmembers and the 
new systems (highly automated) that were executing tasks that the previous third 
crewmember was executing in the past. The main problem was to identify the emerg-
ing cognitive functions induced by the new human-system-integration (Boy & 
Narkevicius, 2013). Pilots were moving from classical control tasks to systems man-
agement tasks. For that matter they had to create and learn new cognitive functions to 
accomplish the overall flying task. 

The major advantage of two crewmen cockpits is redundancy (i.e., it is better to 
have two pairs of eyes and two brains, than only one of each). Safety deals with sta-
bility, resilience and therefore cognitive redundancy. This is something that will need 
to be challenged and tested in the SPO framework. In particular, a comparison of the 
current two crewmen cockpit operations with SPO should also be conducted. When 
we shifted from three to two crewmen cockpits, we first developed a time line analy-
sis (TLA), which consists in developing scenarios of events as well as interactions 
among the various agents involved (e.g., captain, first officer, ATC, aircraft). Since 
then we made lots of progress in usability engineering and TLA could be combined 
with cognitive function analyses. We also ran simulations that enabled to play these 
scenarios and observe activities of the various agents. 

As a general standpoint, commercial airline pilots are typically involved as sub-
ject matter experts (SMEs). The various variables and processes that we typically 
study are the followings: pilot’s goals, workload (or task-load during the TLA), hu-
man errors (i.e., possible error commissions and recovery processes), situation aware-
ness, decision-making process, and action taking. Scenario data are chronologically 
displayed on a classical spreadsheet, which can be upgraded as needed when the anal-
ysis progresses. An example of such an approach is provided in (Boy & Ferro, 2003). 
Once this first task-based CFA is done, we play the same scenarios (or updated sce-
narios – we always learn new things during a CFA, then we can exploit the findings to 
upgrade original scenarios) on cockpit simulators with SMEs. The main goal of this 
research phase is to discover emerging cognitive functions; this is the main advantage 
of using HITLS. In classical function allocation methods (Fitts, 1951), we do not see 
emerging cognitive functions because they are used a priori and not incrementally 
using HITL simulation results. When we deal with change management, these emerg-
ing cognitive functions are tremendously important to discover as early as possible to 
avoid potential catastrophic surprises later on (Boy, 2013).   
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3   Stating the SPO problem: Evolution or Revolution? 

The number of aircrew in cockpits was reduced over the years during the last 60 
years or so going from 5 until the 1950s when the Radio Navigator was removed (the 
radio navigator was dedicated to voice communication equipment), to 4 until the 
1970s when the Navigator was removed (when inertial navigation systems were in-
troduced), to 3 until the 1980s when the Flight Engineer was removed (new monitor-
ing equipment for engines and aircraft systems were introduced), to 2 until now. Two-
aircrew cockpits have been the standard for three decades. This progressive elimina-
tion of technical crewmembers in commercial aircraft cockpits results from the re-
placement of human functions by systems functions. These functions are both cogni-
tive and physical. The reason we only talk about cognitive functions is because elec-
tronics and software progressively dominated the development of systems. Today, it 
is clear that many onboard systems have their own cognitive functions in terms of 
role, context of validity and resources used (Boy, 1998). 

Current technology indicates that we can move to single pilot operations (SPO). 
Two institutions support this new shift: NASA in the US and ACROSS2 in Europe. It 
is clear that the main goal of moving from two-crewmen cockpit operations to single 
pilot operations (SPO) is the reduction of costs. We now need to investigate how 
safety would be impacted by this shift. It is true that SPO is already well experienced 
in general aviation (GA); in this case, we know its advantages and drawbacks. In 
particular, ATC is already familiar with interaction with single pilots. In addition, 
military fighters are operated with only one pilot in the cockpit. 

We foresee two main approaches to SPO. The former is an evolutionary approach 
that continues the move from 5 to 4 to 3 to 2 to 1 where automation is incrementally 
added as the aircrew number is reduced. The main issue is pilot incapacitation. We 
always certify an aircraft entirely safe for (n-1) capacitated flying pilot(s). When n=1, 
there is a discontinuity, and the piloted aircraft becomes a drone. We then need to 
define ground support and/or flight attendant support. The latter is a revolutionary 
approach that breaks automation continuity and goes to the design of a fully automatic 
flying machine (commonly called a drone or a flying robot). The problem becomes 
defining human operator’s role. Consequently, human-robot interaction activity needs 
to be entirely defined from the start within a multi-agent environment, and not only 
when the pilot is incapacitated, having a single agent approach in mind. 

In both approaches, function allocation is a major mandatory endeavor. In the 
evolutionary aircrew-reduction approach, it is purposeful to compare the differences 
and commonalities between general aviation (GA) single-pilot resource management 
(SRM) and commercial aviation SPO SRM (to be defined). The FAA has identified 6 
tenets of SRM in GA3: task management; risk management; automation management; 
aeronautical decision-making; control flight into terrain awareness; and situation 
awareness. Another important question is the definition of the role (job) of the single 
pilot in SPO and related operations support (i.e., procedures, automation, and problem 
solving skills). It is also crucial to find out risks involved in SPO as early as possible 

                                                             
2 ACROS: Advanced Cockpit for Reduction Of Stress Consortium. 

3 FAA Order 8900.2, General Aviation Airman Designee Handbook 
http://fsims.faa.gov/wdocs/orders/8900_2.htm 
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before delivery. This is why fast-time simulations and human-in-the-loop simulations 
are planned and carried out from the beginning of the design process. Finally, it is 
important to identify and design a new cockpit configuration for SPO integrated into a 
global infrastructure covering the entire air traffic management (ATM).  

In the revolutionary approach, instead of looking for what we loose when we re-
move the first officer (a negative approach where “overload” is studied and cumula-
tive assistance is searched), it is urgent to understand what function allocation should 
be developed between the SPO aircrew and systems that will need to be developed (a 
positive approach where situation awareness, decision making and human-machine 
cooperation are studied and developed from the start).  What will be the role of an 
aircrew flying a drone? There is a major difference between controlling and managing 
a transport drone from the ground and inside it. The latter is likely to be more socially 
accepted by passengers. Therefore, the primary question is the definition the role/job 
of this new type of aircrew; use of socio-cognitive models and complexity analyses 
will be necessary. In addition, we need to find out emerging human factors issues 
such as situation awareness, decision-making (who is in charge and when), fatigue, 
and incapacitation. This should be studied in nominal and off-nominal situations. 
The major distinction between RPAS (Remotely Piloted Aircraft Systems4) and SPO 
of drones is crucial. When the person responsible for safety, success and wealth of a 
mission (a flight) is himself/herself directly involved (life-critical embodiment instead 
of remote control), he/she will have totally different relationships with the machine 
being controlled and managed. This approach does not remove the need for ground 
assistance. There will be decision to make whether or not we want to make pilot’s 
manual reversion possible, and/or have RPAS as an emergency/recovery possibility. 
In any case, board and ground personnel, organizations and technology roles should 
be defined in concert (i.e., consider complex and non-linear systems and design/test 
global solutions) and not in isolation as it is done today (i.e., simplify problems, line-
arize and find local solutions). Tests will be performed using various human factors 
metrics and methods including workload, skills, knowledge and performance assess-
ments. Other metrics can be used such as simplicity, observability, controllability, 
redundancy, (socio-)cognitive stability, and cognitive support.   

4   Cognitive Function Analysis of Single Pilot Operations 

Using CFA to define SPO leads to the identification of cognitive functions for the 
various agents including the pilot (or another qualifier in the SPO context), ground 
operators and systems. Each of these agents has a set of cognitive functions providing 
him, her or it with some degree of authority. Authority can be viewed as control (i.e., 
the agent is in charge of doing something and control the situation) and accountability 
(i.e., the agent is accountable to someone else). Control can be either handled directly 
or delegated to other agents who have authority to execute well-defined tasks. In this 
latter case, these other agents (should) have appropriate and effective cognitive func-

                                                             
4 http://ec.europa.eu/enterprise/sectors/aerospace/uas/index_en.htm 
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tions and are accountable to the agent delegating. CFA enables to rationalize the allo-
cation of cognitive functions among agents. 

Technical crews (or pilots) have the role and authority of bringing a set of passen-
gers from a location A to another location B. They have the primary responsibility for 
safety, efficiency and comfort of the passengers. In SPO, cognitive functions of cur-
rent PF and PNF are distributed among technical crews, ground operators and new 
systems. In particular, technical crew cognitive functions have a set of resources dis-
tributed among ground operators and aircraft/ground systems. Ground operators have 
different cognitive functions that can be named dispatching, ATC coordination, crew 
scheduling, maintenance triggering, customer service, and weather forecast. All these 
cognitive functions can be supported by systems when they are well-understood and 
mature. Dispatching and piloting are currently associated to develop a flight plan, find 
out what fuel quantity pilots should take, meet weight and balance requirements, 
ensure compliance with the minimum equipment list (MEL), de-conflict with other 
aircraft, help in case of equipment failure and, more generally, guide the flight from 
gate to gate. 

Normal piloting cognitive functions consist in reading checklists, cross-checking 
life-critical information, trouble-shooting and recovering from failures, fuel monitor-
ing, and so on. Abnormal and emergency cognitive functions are triggered by specific 
conditions such as engine failure, cabin depressurization, fuel imbalance and so on.  
Current air traffic controllers have specific dispatch cognitive functions. Their job 
will change with SPO and will need piloting cognitive functions in the case of mal-
functions in the airspace, including pilot incapacitation and its duality, total system 
failure. Consequently, they will need tools such as in aircraft cockpits. The whole 
ATC workstation will evolve toward an ATM/piloting workstation for SPO. In addi-
tion, they will not have to control only one aircraft but, in some cases, several. 

A first cognitive function analysis shows that there are functions that can be allo-
cated to systems such as checklists-based verifications and crosschecking of life-
critical information. As always, allocating functions to systems requires maturity 
verification. Whenever technology maturity is not guaranteed, people should be in 
charge and have capabilities guarantying good situation awareness. In any case, tests 
are mandatory. In the above-defined revolutionary approach to SPO, we typically 
think about lower levels of control being entirely automated (i.e., trajectory control 
and management); human agents only act on set-points for example. We need to be 
careful however that the SPO pilot will be aware of the crucial internal and external 
states of his/her aircraft environment. He/she will also need to be knowledgeable and 
skilled in aviation to perceive and understand what is going on during the flight as 
well as act on the right controls if necessary. Full automation does not remove domain 
knowledge and skills in life-critical systems. 

Symmetrically, some aircraft systems (or artificial agents) should be able to moni-
tor pilot’s activity and health. This induces the definition, implementation and test of 
new kinds of system cognitive functions based on physiological and psychological 
variables. Obviously, this will require sensors that could be physiologically invasive 
(e.g., electro-encephalograms) or non-invasive (e.g., cameras). In any case, pilots will 
have to accept to be monitored. Pilot’s activity and health monitoring can be done by 
aircraft systems and also by ground operators. 
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Other processes and technology that need to be human-centered designed and devel-
oped are related to collaborative work. In this new multi-agent world, agents have to 
collaborate and be supported for this collaboration. Computer-supported cooperative 
work (CSCW) technology and techniques need to be developed to this end. When an 
agent fails for example, whether a human or a system, recovery means and strategies 
should be in place to continue the flight safely. It is also important, in this increasing-
ly automated multi-agent world, to keep enough flexibility. HITLS could be used to 
find out the effectivity of possible solutions.   

 

5   Conclusion 

This paper showed a major distinction between a classical evolutionary approach 
and a revolutionary approach for SPO. A first high-level cognitive function analysis 
(CFA) was carried out showing the contribution of experience and creativity leading 
to innovation. 

Studying function allocation among people and systems from the beginning ena-
bles the development of socio-cognitive models, which further support human-in-the-
loop simulations, and incrementally design systems, organizational setups and job 
descriptions in order to innovate in a human-centered way (e.g., define SPO). The 
TOP (Technology, Organization and People) model should always support the HCD 
process leading to technological, organizational and jobs/functions solutions. 
This first high-level CFA needs to be further developed as SPO TOP solutions are 
incrementally developed. We need to discover human and technological weaknesses, 
and design appropriate redundancy in the form of technology, onboard personnel 
support and ground support. Studying multi-agent collaborative work (humans and 
systems), it is important to improve our understanding of authority and context shar-
ing (distributed cognition), improve mutual feedback (cross-checking, cross-
communication, intent recognition), as well as responsibility and accountability. We 
found that the Orchestra model (Boy, 2013) was a good framework to handle this kind 
of innovation in the aeronautical domain.   
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Abstract: At date, there is no standardized definition of what a smart city is, 
in spite many apply to propose a definition that fit with their offer, subsuming 
the whole of the city in one of its functions (smart grid, smart mobility…). 
Considering the smart cities as an ecosystem, that is to say a city that has 
systemic autopoeitic properties that are more than the sum of its parts, we 
develop an approach of modeling the smartness of the city. To understand how 
the city may behave as a sustainable ecosystem, we need a framework to design 
the interactions of the city subsystems. First we define a smart city as an 
ecosystem that is more than the sum of its parts, where sustainability is 
maintained through the interactions of urban functions. Second, we present a 
methodology to sustain the development over time of this ecosystem: Urban 
Lifecycle Management. Third, we define the tasks to be carried out by an 
integrator of the functions that constitute the smart city, we assume public 
administration has to play this role. Fourth, we present what should be a smart 
government for the smart city and the new capabilities to be developed. 

1   Introduction 

At date, there is no standardized definition of what a smart city is, in spite many apply 
to propose a definition that fit with their offer, subsuming the whole of the city in one 
of its functions (smart grid, smart mobility…). First we define a smart city as an 
ecosystem that is more than the sum of its parts, where sustainability is maintained 
through the interactions of urban functions. Second, we present a methodology to 
sustain the development over time of this ecosystem: Urban Lifecycle Management. 
Third, we define the tasks to be carried out by an integrator of the functions that 
constitute the smart city, we assume public administration has to play this role. 
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Fourth, we present what should be a smart government for the smart city and the new 
capabilities to be developed. 
This paper is based on case studies carried out within the cluster Advancity (France) 
for the urban ecosystem issue, and other case studies on the intention to design new 
business models based on the concept of extended enterprise and extended 
administration. It relies on the state of the art in complex system architecture as 
developed in information system and system engineering in complex products such as 
aircrafts, to envisage how these competencies may be adapted to public services in 
their collaborative work with private firms. 

2  What is an urban ecosystem? 

A smart city is more than the sum of “smarties” (smart grids, smart buildings, smart 
computing…) but there is not, at the present time, a precise and operational definition 
of what a smart city is (Lizaroiu & Roscia, 2012). Several pretenders exist on what a 
smart city could be (Songdo in Korea, Masdar in Abu Dhabi,…) but they are not 
cities to live in, they are demonstrators, propelled by big companies (e.g. Cisco in 
Songdo) who apply a particular technology to the conception of a city.  
In the literature, the smart city is recently defined as an ecosystem, that is to say a 
system where the whole is more than the sum of the parts and has autopoeitic 
properties (Neirotti et a., 2013).  
For the systems architect this approach implies:  

· Defining a perimeter that comprehends all the components that have a critical 
impact on city life: the city needs to be fed, imports products that may have 
been manufactured on a basis that does not fit with sustainable development 
requirements (pollution, children work or underpaid workers, carbon 
emissions…). These costs and environmental impact must be charged to the 
city balance.  

· Considering the system as a living system where the behavior of inhabitants 
determines the sustainability of the ecosystemic properties of the city. The 
underlying assumptions are material systems in addition to immaterial ones – 
as history, culture, anthropology and social capital – play their role. A recent 
trend in the literature on development economics, which is contrary to the fad 
of mainstream economics that consider all territories alike, put the emphasis on 
the “smart territory” as an unstructured cluster of tradition, culture, and 
informal institutions able to shape an innovative milieu (Aydalot, 1986).  

If the city is an ecosystem, according to the laws of general system theory (Ashby, 
1962) it may be represented as shown in figure 1:  

A) It has a finality made of strategic vision borne by stakeholders (public and 
economic actors), people living in the city and sustaining this finality through 
theirs activities, and preserves its identity by interactions with its environment.  
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B) This system may be broken down in tree structures of subsystems: the 
functions. These functions belong to hard and soft domains. Hard domains 
include energy, water, waste, transport, environment, buildings, and healthcare 
infrastructures. Soft domains include education, welfare, social capital, public 
administration, work, civic activity and economy. What makes the city 
intelligent is the richness of connections between branches. We speak of a tree 
structure here in the sense of Herbert Simon’s architecture of complex systems 
(1969) where the designer will connect the subsystems to make the system 
emerge according to the aim it pursues. In his seminal paper “a city is not a 
tree” (1965) Christopher Alexander, an architect initially trained as 
mathematician and Professor at Berkeley, criticized the conception of the 
urban planning movement in America, considering it as a “fight against 
complexity”, with no connections between branches. Modern cities conceived 
for cars, compared to ancient cities, offer a very poor web of connections. 
Alexander formalized his idea of the city conceived as a rich overlapping of 
building blocks in his 1977 book A pattern language. This insight of 
considering the whole as a combination of modular and reusable building 
blocks lingered on the margins of architecture but has had an enormous 
influence in the development of object oriented architecture in software 
design.  

C) These functions are operated using tools and artifacts of which end-users 
are people, specialized workers and ordinary citizens. The critical point is that 
people must not fit the tools but, on the contrary, tools and artifacts will fit to 
people only if the right societal and institutional conditions are met. 

Modeling the ecosystem implies answering three questions (Krob, 2009): 

- The first question is WHY the city: what is the raison d’être and what are the 
goals of the city regarding WHO are the stakeholders and which activities will 
support it? Beginning with this question may avoid the drift towards a techno 
pushed approach relying on technological determinism, one may find in 
Songdo or Masdar.  

- The question why is then deployed in questions WHAT: What are the 
function the smart city must perform to reach these goals? These functions are 
designed in processes grouped in subsystems aligned with the goal of the main 
system.  

- The third set of questions concern HOW these functions will be processed by 
technical organs operated by the people who are the city executives and 
employees, and the city dwellers as end users.  

The issue is not to define an ideal type of smart city since all the “fitting conditions” 
that make the city smart will be different according to the context, but to define 
modeling rules to conceive and sustain the ecosystem. 
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Figure 1.0: architecting the ecosystem 

3  The global framework: Urban Lifecycle Management© 

Since the advent of the “death of distance” with the revolution of transportation by the 
middle of the XIX° century, the appearance of networks of infrastructure technologies 
and the spread of the telegraph that transformed the government of the city, critical 
obstacles to the growth of cities were removed. Today digital technologies amplify 
this move, providing new tools such as smart phones that became a digital Swiss 
knife that allows inhabitants to be active actors in the city life, communicating and 
coordinating with each other, using and feeding databases. Doing this, digital 
technologies may produce the best and the worst. The point is each city contains the 
DNA of its own destruction. Smart cities digital infrastructure amplifies the 
possibilities of manifestation of discontent, worsening the gap between have and 
have-nots. Smart cities incur the risk to become the digital analogue of the Panopticon 
Jeremy Bentham’s prison design (Townsend, 2013). 
We assume that the rules of complex system modeling and system architecture may 
apply to the city as well as they apply to products through PLM (Product Lifecycle 
Management) in that case according to a framework we call Urban Lifecycle 
Management© (ULM). The difference is a city never dies and must permanently 
renew its economic and social fabric as well as its infrastructure. An unsmart city will 
continuously expand according to the laws identified by G. West and L. Bettencourt 
(2007) that reveal an increasing return in infrastructure investment that allow the city 
to sprawl indefinitely. The complexity will grow out of control, resulting in a city 
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being the sum of heterogeneous boroughs with strong social and economic 
heterogeneity and spatial dystrophy.  
We define ULM first and foremost as a tool to design an ecosystem which will be 
coherent with the political, social and economic goal people assign to the city 
according to the principle of sustainable development: stability, waste recycling, low 
energy consumption, and controlled scalability, but in a way that allows to foresee its 
evolution and to monitor the transition in different ages of the city.  
ULM has to counterweight the appeal of technological determinism: in the past, 
technologies have always dwarfed their intended design and produced a lot of 
unintended results. ULM has to monitor the life of the smart city alongside its 
evolution, as represented in figure 2.0  

- A city can’t be thought out of its historical and cultural context that is 
represented by the territory of which the city is the expression. The smart city 
embarks a strategic vision that is based on a strategic analysis of the context 
and material and immaterial assets of the territory (GREMI, 1986). The 
smartness of a city profoundly relies on what has been coined as “social 
intelligence” by prof. Stevan Dedijer in the years 1970s as the capability to 
build consensus where each social actor relies on others to create new 
knowledge. Intelligence doesn’t operate in a vacuum but is socially and 
culturally rooted (1984). 

 

Figure 3.0: Urban Lifecycle Management© 

- To be livable, the city may not be a prototype city: the system architect must 
focus on the task of integration that needs to be reliable to proceed from off-
the-shelf components that already have an industrial life and may be 
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considered stable and reliable, in the same way the classical architect does not 
invent the brick in the same time as he designs the house. This will imply 
coordination between innovation cycles as we will see further. 

- The process carried out on the principles represented in figure 1 leads to a 
first release of the city 1.0 in case of a new city. Just as well in a new or old 
city, we need to understand how the city lives and the unavoidable 
discrepancies between intended design and real result, an observatory must be 
implemented that will collect data produced by the city. Corrections are made 
according to classical principles of quality process management.  

- Alongside the lifecycle, exogenous innovation will occur that will need to be 
endogenized by the model. For example, Songdo in his initial design relied on 
RFID devices to track city dwellers. Today, smart phones have become the 
Swiss knife of the city dwellers, rendering the use of RFID devices obsolete. 
Innovation is ubiquitous in all subsystems of the city. Innovation in smart cars 
interacts with the architecture of transportation (hard subsystem) as well as in 
human behavior (soft subsystem). Coordination will be needed through 
common frameworks such as projects management office extended to the 
global smart city’s complexity. 

- Innovation challenges the equilibrium of the smart city. Not all innovations 
are compulsorily good for the city: Civic and political life have to evaluate the 
consequences of an innovation and to frame it so that it fits with the common 
good and the sustainability of the city. 

- All along its lifecycle, the city may lose its smartness with two undesirable 
consequences: the city may continue to sprawl on a non-sustainable basis 
leading to today clogged cities. In case of a disruption in its core activity, the 
city may collapsed as it happened in the past when things become too complex 
to be monitored, as studied for past civilizations by archeologist Joseph Tainter 
(1990). Reducing the size of the city is then the only solution to reduce the 
complexity. A similar thing appears today in Detroit, a city that has lost its 
goals and population, leading to the decision of reducing the size of the city as 
the only means of avoiding bankruptcy. A similar pattern exists with the 
Russian monocities. 

4  The rationale for extended public administration in the process 
of integration in ULM  

No two cities are alike however smart they are, but the principles of system 
architecture ULM are based on the assumption that common rules of modeling may 
be defined. One of the key rules is to understand the interactions between economic 
development and human capital: economic development is critical to draw financial 
resources for investment in new transportations, infrastructures and education. Cities 
with a greater economic development appear more attractive to people who wish to 
increase their standard of life and who are more fitted to increase the smart cities 
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human capital. The more a smart city has a high level of human capital, the more she 
has end users able to develop, test and use new tools that improve the quality of urban 
life (Neirotti & a. 2014). It is all the more true in the digital era were the end-user is 
not only a consumer but also a prod-user – according to the definition by sociologist 
Axel Burns – who is involved in a continuing process of producing never finished 
artifacts. On the other hand, the city has to take care to not create a digital divide. 
The modeling rules consist of three main principles:  

1. Strategic analysis: As represented in figure 1.0 the first task is to define the 
issues with the stakeholders. The functions needed to reach these issues are 
then defined, and deployed in organs and specific competencies and resources, 
as represented in figure 3.0  

2. Inventorying the building blocks: There is no absolute definition of what 
is a smart city is and in spite we may define general rule of modeling, the 
definition of the smartness of a city will always be specific to the context, e.g. 
geographical and climate constraints (a city exposed to tropical floods or 
earthquake will embark functions that a city in a temperate country won’t 
need), economic activity (specialization, search for synergies, position on the 
commercial routes and worldwide supply chains). The selection of these 
functions is essential to build a resilient city, e. g. with the climate change new 
phenomenon occur such as flood, marine submersion, extreme frost the city 
was not prepared for.  

Nevertheless, common functions will exist in every city and their organization 
may proceed from off-the-shelf patterns. 

 

Figure 3.0: The building blocks 
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3. Integrating the ecosystem: In complex systems dynamics, the behavior 
of a system as a whole is an emergence, that is to say that the property of the 
system can’t be attributed to one function in particular but is the result of 
interactions between these functions. The “good life” is the basic question of 
political philosophy since Aristotle. It is an ethical issue that will result from 
political and strategic debates among the stakeholders. Jane Jacobs (1995) has 
criticized the utilitarian approach that prevailed in America in the city planning 
movement. The ancestor of the urban planning movement, Ebenezer Howard, 
thought of the smart city as an ideal city conceived from scratch as a mix of 
country and city. His insight was to conceive the city as an interaction between 
a city with jobs and opportunity but with pollution, and the countryside with 
fresh air and cheap land but with fewer opportunities, each one acting as 
magnets attracting and repelling people. He invented a third magnet, the 
Garden city, which combined the most attractive elements of both city and 
countryside (Howard, 1902). Garden city was the Songdo of its day 
(Townsend 2013) that galvanized architects, engineers and social planners in 
search of a rational and comprehensive approach of building city. Howard’s 
approach was excoriated by Jane Jacobs in his Death and Life of Great 
American Cities (1961) for not giving room to real life: “He conceived of good 
planning as a series of static acts; in each case the plan must anticipate all the 
needed… He was uninterested in the aspects of the city that could not be 
abstracted to serve his utopia”. In fact, the city garden dream, not relying on a 
global systemic architecture, has degenerated in the banal reality of suburban 
sprawl. 

The same risk exists today with digital technologies, which could revive the 
ideal city dream, under the impulse of the big players such as Cisco, IBM, 
Siemens, GE who have interest in a top-down and deterministic approach that 
reduce smart cities to the adoption of their “intelligent” technology. To avoid 
this bias system architecture must be on the top of the agenda of extended 
public administration. This activity may be summed up in four points: 

a) Soft and hard subsystems: Today’s prototypes of would be smart cities are 
techno pushed and put 
emphasis on the possibilities of 
technology to make the city 
smart but mainly forget the 
inhabitants. City dwellers have 
the main role to play since it is 
their behavior and their use 
(and more and more the 
production) of information and 
technology that make the day to 
day decisions that render the 
ecosystem smart or no. Figure 
4.0 represent both parts of the 
ecosystem the soft or human 
subsystem and the hard one, 
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the group of technical subsystems. Integration of these subsystems obeys 
different laws: human subsystems are dissipative ones, difficult to model, not 
obeying physical laws with important entropy. Reducing their uncertainty 
relies on the sociology of uses, social consensus based on accepted formal and 
informal institutions, and a close association of inhabitants to the design of the 
system, which is a common feature of complex system design. Physical 
subsystems are conservative ones that can be modeled through the laws of 
physics with a possibility to reduce entropy, but keeping in mind that the 
decider in last resort is the city dweller who will use it.  

 
• Figure 4: The smart city as an emergence 
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may refer here to the model defined by Thünen at the beginning of the XIX° 
century representing the city with a succession of concentric rings going from 
the highest increasing return activities at the center city to decreasing return 
activities at the periphery (Schwarz, 2010). The first represents the exchanges 
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between the ecosystem and the rest of the country. This represents logistic 
costs that may have a negative impact on pollution and carbon emission that 
may be reincorporated in the balance of the city to measure it smartness. The 
third is the external environment with witch the city exchanges, that is, in a age 
of a globalized world, the rest of the world: the larger this perimeter, the more 
the system is subject to external factors of instability and the less the 
ecosystem is coherent as a Thünen zone1. 

c. Combining top down and bottom-up integration: Each industry has today 
its model for the integration of its activities. Smart grids, water suppliers, 
transport operators, IT providers … have model for systemic integration of 
their subsystem and to evaluate its impact on the global functioning of the city. 
On the other hand, we know that the urban ecosystem being more than the sum 
of the subsystems we need another approach that starts from the top, that is 
from the strategic goals of the city deployed in functions as represented in 
figure 1.0. Where will be the meeting point of these two approaches? 
Proceeding bottom-up will raise problems of system interoperability, data 
syntax and semantics, while the top-down approach is more relevant to define 
strategic issues but will have to integrate all the existing businesses and 
functions. A possibility is that storing data in common data warehouses and 
completing it with the exploitation of big data will provide common 
references. In any case, the answer will proceed from applied research projects 
in building cities.  

d. Defining new business models and competencies: Conceiving ecosystems 
needs the enterprises to cooperate to share a common strategic view so as to 
form a conception ecosystem based on the principle of “coopetition” 
(cooperation and competition). Each enterprise must define its performance 
indicators according to the performance of the whole and not only to that of its 
parts. The same concern is for public management: with the silo organization 
of public administration, no one is in charge of a global view of the city. This 
calls for new business models of enterprises extended not only to the partners 
of one enterprise but to the global value chain of the ecosystem. The same 
applies to public administration in its very organization to develop the 
competencies needed to deal with complex system design as well as its 
strategic thinking. The French public administration still consider its industrial 
strategy in terms of “filières” (channels) that are the vertical integration of 
similar activities (such as aerospace, automotive…), as it was relevant in the 
paradigm of mass production, while the locus of disruptive innovation is in the 
overlaps of different industries.  

The French government was baffled when GE announced his intention to take 
over Alsthom. Would the French administration have understood the strategic 
issues at stake with smart cities as ecosystem and not only with the hard 
subsystems (water, sanitation, transportation…) where France has traditionally 

                                                             
1 We may give as an example the city of Quimper at the heart of the granitic massif of 
Brittany (France) who choses to import its granite from China. 
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strong positions, she would have valued differently the smart grid activity of 
Alsthom and its interest for competitors who aim to preempt the smart city 
market which value is estimated, for the sole so-called smart infrastructures, at 
100 billion USD for the coming decade (Townsend 2013)2. 

Another strategic issue is the battle for norms: a smart city is not, at the present 
time, defined with norms, metrics and metrology. Defining the norms (in terms 
of ISO standards) will allow lock-in the conception of smart cities by shaping 
all the tenders.  

5  Smart government, the keystone of smart cities 

Far as back as 1613, the Napolitano Antonio Serra, in a memoir presented at the vice-
king of Naples, analyzed the city as the place where activities with the biggest 
increasing returns take place, with a strong correlation between economics and 
politics (Reinert S., 2011). The frescoes of the Siena town hall by Ambroggio 
Lorenzetti depict “the good government” as a dynamic equilibrium between intense 
economic activities and an active political life that gives the people of citizens the 
power to rule the city according to the principles of the common good. Contemporary 
evolutionary economics correlates the evolution of institutions with that of economic 
activity (Reinert E. 2012).  
The growing complexity of cities and the predominance of top-down urban planning 
have made us forgetful of these lessons from the past. In their analysis of present 
smart cities initiative, Neirotti & a. (2013) notice that there is no practice that 
encompasses all the domains, hard and soft, of the cities. On the contrary, the most 
covered domains are hard ones: transportation and mobility, natural resources and 
energy. Government is the domain in which the cities report the lowest number of 
initiatives. More, there is an inverse correlation between investment in hard and soft 
domains, and smart government is still the poor relative in smart cities initiatives and 
cities that have invested in hard domains are not necessarily more livable cities. In 
fact, two models emerge form Neirotti & a. survey: one focused on technology (with 
a strong impetus of technology vendors) and one focused on soft aspects, the hard 
model being dominant. The problem is there are no vendors for soft domains apart the 
citizens themselves whereas systemic integration relies on soft domains, mainly 
taking in account the context and valuing social capital.  
Smart cities conceived as ecosystems should provide policy makers with some 
practical guidelines to integrate soft and hard domains. Three areas for smart 
government appear: 

                                                             
2 The total market of smart cities is estimated as much as $350 trillion needed to build, 

maintain, and operate the world's cities over the next forty years (WWF report “Reinventing the 

Cities”, 2012) 
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Economic development: In the past, smart cities have been built without central 
planning (except in the case of Roman cities which reflected the imperial objective of 
the Roman Empire) but with a clear, although not explicitly formulated, founding 
purpose: defense, commerce, religion, power, geography…  The pattern of the city 
emerged out of the interactions of key stakeholders: The lord, the barons, the 
merchants, the shopkeepers, the craftsmen, the bankers and the people. The design of 
ancient cities made them intelligent since they were ecosystem that sustained and 
reinvented themselves along time… till the point their capacity to self-reinvent came 
to an end when the core of their strategic activity reached a tipping point (e.g Italian 
cities after the Renaissance, Russian monocities from the USSR era, Detroit today). 
The design of these cities obeyed to the real interactions underlying economic life 
(roads, markets, fairs, harbors, work, industry…) and civic activities (agora, city hall, 
structure of power). Their global ecosystem may be referred to as the ideal type 
conceptualized by J.H Thünen at the beginning of the XIX° century, that is to say a 
center where the core of the city is with the strongest interactions and the returns are 
the highest, surrounded by concentric zones going of decreasing returns activities 
(Schwarz, 2010). 
The task of government is to search for the activities that produce the highest 
increasing returns, no thanks to high technology but to synergies between activities 
(Reinert, 2012), that will constitute the center of the Thünen zones. The Russian 
monocities built on a unique industry (coal, oil, cars, aerospace….) linger as long as 
this industry has a leading role but have very poor capabilities to reinvent itself due to 
the lack of synergies between different economic activities.  
A vibrant political life: With cities emerged political philosophy. The most 
perspicacious analyst of what makes a city great was undoubtedly Machiavelli who 
put emphasis on the necessity of the common good : “it is the common good and not 
private gain that makes cities great » he wrote in his Discourse on Livy. Machiavelli 
conceived the common good in the Thomas Aquinas’ tradition as a whole superior to 
the sum of its parts. Its systemic equilibrium is permanently challenged by the 
corruptive forces of fortuna that must be offset by the virtù of the Prince and the 
dynamism of the vivere politico (Rochet, 2010). Emphasis has been put on the 
topicality of Machiavelli to understand the systemic character of public management 
(Rochet, 2009). The vitality of the system is sustained with permanent interactions 
within thanks to a vibrant political life that provide a space for controversies. 
Machiavelli praised the Roman republic for his institution of the tribunate that 
managed the confrontation between the many of the citizens and the few of the ruling 
class that allowed the Republic to upgrade his institutions according the principles of 
the common weal advocated by Cicero. The conservative French politician and 
historian François Guizot attributed the success of the European civilization to the 
permanence of the classes struggle as a means to build political compromises as a 
guarantee of sustainability, under the conditions that no class wins. In contemporary 
complex societies, Elinor and Vincent Oström have developed the concept of 
polycentric governance that is organizing governance on one hand on a vertical axis 
from upper to lower levels of complexities, and on the other hand on an horizontal 
axis which consists of overlappings between organizations (Östrom, 2010). Elinor and 
Vincent Ostrom have criticized the excess of rationality that defines strict boundaries 
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within missions and attributions of public organizations, since the reality doesn’t 
know these boundaries and the adaptive character of public systems may be found in 
their overlaps. 
Supporting open innovation: In the contemporary smart cities, information 
technologies give more power than before to citizens to use and produce information, 
and also applications. The experience of cities opening their database to the public to 
trigger the development of apps has proved the payoff of bottom-up approaches: in 
Washington DC, a contest “apps for democracy” challenged the local developers to 
create software exploiting public resources. For a cost of 50 000 US$ the pay-off was 
blazingly fast with forty seven apps developed in thirty days, representing an 
estimated 2 million worth of services, about 4000% return on the city investment 
(Townsend 2013). 
But one should not conclude that bottom-up approaches are the killing solution: 
theses apps are V 1.0 developed by techies on the basis of a fascination for 
technologies while the city needs V 7.0 tested and reliable and based on the real needs 
and problem solving of citizens as end-users not familiar with technology. We 
rediscover here one of the law of innovation emphasized by Von Hippel (1986): the 
key role of lead users in the innovation process which is furthermore not a specific 
aspect of innovation in the digital era but a permanent, although forgotten, feature of 
the innovation process in the industrial era as reminds us François Caron, a leading 
academic in history of innovation (Caron, 2012). 
In the same manner national innovation systems exist (Freeman, 1995) and provide a 
framework that gives incentives to cooperation between industry, research and 
investors to steer their activities toward risk taking innovations, extended public 
administration could structure an urban innovation system that would structure the 
innovation process in a way that would guarantee that innovation, research and 
development of so-called smart apps are focused on the real needs of the city 
dwellers. 

6 Conclusion: Extended administration  
   as art of systemic integration 

In the absence of a definition of how intelligent may be cities to be sustainable, 
today’s initiatives are techno-pushed since tangible goods of the hard domains of 
smart cities drive the market. Digital economy seems to be the keystone of smart 
cities, but we have shown that the keystone in last resort is the end-users of 
technologies: the citizens. This requires a combination between soft and hard domains 
that can be achieved through complex systems architecture (Godfrey, 2012), a new 
discipline, methodology and competency in public management that we coin as urban 
lifecycle management©.  
Although according to system theory self-regulating systems exist – but once their 
genetic codes have been written - as they exist in nature and in small-scale human 
system such as those studied by Elinor Östrom for the management of the commons 
(Östrom, 1991), large complex systems such as smart cities need to be framed by a 
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central architect before reaching its resilient and sustainable stage. The newborn 
concept of extended administration finds here its application in its intention to 
encompass and to design the global value chain of public administration and its 
interaction with – and between - all the stakeholders. This implies a sea change in the 
competencies and business model of public administration. This new field would be 
carried out through research in action projects building cities as ecosystem tending 
toward resilience where humans are first to decide for the ends. 
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Abstract. Cyber-physical systems are being deployed in a wide variety
of applications, creating a highly-capable infrastructure of networked
“smart” systems that utilize coordinated computational and physical
resources to perform complicated tasks either autonomously or in co-
operation with humans. The design and testing of these systems using
current methods, while time-consuming and costly, is not necessarily
sufficient to guarantee appropriate and trustworthy behavior, especially
under unanticipated operational conditions. Biological systems offer pos-
sible examples of strategies for autonomous self-improvement, of which
we explore one: active experimentation. The combined use of active ex-
perimentation driven by internal processes in the system itself and com-
putational reflection (examining and modifying behavior and structure
during operation) is proposed as an approach for developing trustworthy
and adaptable complex systems. Examples are provided of implementa-
tion of these approaches in our CARS testbed. The potential for apply-
ing these approaches to improve the performance and trustworthyness of
mission-critical systems of systems is explored.

1 Introduction

Complex systems of systems (SoS), especially those that include cyber-physical
systems (CPS), are now being deployed in critical infrastructure applications
such as the electrical grid, health care, manufacturing, transportation, commerce,
law enforcement and defense. We bet our lives, or at least our livelihoods, that
these systems will function as anticipated. Yet, as they become increasingly com-
plex and interconnected (networked), developing the systems engineering meth-
ods to ensure that these SoS will be trustworthy has become its own technical
challenge.

For example, space systems (which term includes not only the satellites, but
also the ground control and dissemination systems and the launch systems that
put them up there) are simply the most complex engineered systems that humans
build that work (and they do work almost always and often far beyond their pro-
jected design life). They typically involve hundreds of organizations, thousands
of people, tens of thousands of components, millions of pages of documentation,
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and they are expected to last sometimes for decades. (The development process
does usually last for decades even when the satellites are not expected to). It has
been clear for some time that these systems exceed our ability to understand
them, and that they only work by dint of what we have heard called “heroic
engineering”, but even that approach is now regularly exceeded by current and
planned systems.

Successfully planning and implementing the integration of such complex con-
structs would, in principle, require detailed knowledge of hundreds of thousands
(or more) of components, how they are connected into subsystems, and all of
the possible interactions between components, subsystems, and the environment.
From a practical perspective, it is exactly the lack of this detailed knowledge that
leads us to characterize a system as complex. [22] Various approaches based on
formal compositional methods [10, 11, 21, 24, 25] or brokering of mutual require-
ments (service-oriented architectures) [2, 23] have had some success, but these
approaches do not adequately address the central problem: precise descriptions
of all of the components to be integrated, and especially all of their possible in-
teractions, are not fully known, and therefore not available for use in the design
and integration processes. Existing approaches do not enable the discovery of
the new knowledge that is needed to guarantee appropriate functioning of the
integrated SoS.

Systems of systems are built from systems that themselves have been de-
veloped and tested, often for a different application. The integration challenge,
then, concerns most importantly the necessity of reconciling the multiple and
sometimes conflicting operation and control strategies of these systems with re-
spect to a new SoS purpose or goal. [6] Conflicts in which a component system
continues to operate in accordance with its own best interests given the previous
application may no longer allow the full SoS to operate as needed, but these
conflicts are difficult to discover without testing the full operating SoS. There-
fore, the testing required for verification and validation of the operation of the
full SoS is potentially damaging to the SoS itself, and also risks interruption of
the services it supplies. This paper proposes a strategy by which active experi-
mentation coupled with computational reflection can refine or even discover the
knowledge needed to ensure appropriate functioning of the overall SoS.

2 Systems Engineering Challenges

Complex systems of systems challenge established systems engineering practices
in several ways.

– Managing the complexity is a fundamental technical challenge in itself, in-
dependent of the particular system or application.

– Updates and upgrades mean that the SoS evolves during its operational life.
– The capability and value of a system / component / device leads us to re-

purpose it for applications that were never envisioned by its original designers
rather than developing a completely new device.
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– Instances of the system are often unique, although there may be other, sim-
ilar instances (i.e. Amtrak’s reservation system, a segment of the electrical
power grid, a space system including all ground and launch resources).

– Ubiquitous wired- and wireless communications networks mean that the
boundaries of the SoS and its possible states are probably not completely
definable.

– Self-x capabilities mean that the system is never fully designed.

Component, subsystem, and system design and test currently utilize a va-
riety of models at differing levels of detail, together with a set of “goodness”
measures linked to a priori requirements, as inputs to computational processes
(often optimization) that evaluate candidate strategies. However, as complexity
increases, “emergent” behaviors become increasingly likely. Such self-organized,
coherent actions that were not planned or anticipated by the designers often
occur through interactions that are not present in the models of components,
processes and interactions used in design, integration and test. CPS SoS design
and testing is further complicated by the re-purposing of legacy hardware and
software which may not have been designed in accordance with current pro-
cedures, standards and interfaces, thus requiring specialized adaptations. New
approaches are needed for design, verification and validation of complex cyber-
physical SoS to better ensure their trustworthiness. The most desirable of these
approaches will also address the spiraling cost of implementing and testing these
complex SoS.

3 Biologically Inspired Control Strategies

Biological systems provide a rich source of inspiration for engineering complex
SoS both because, in spite of their obvious complexity, they achieve remarkable
robustness, and also because of the extreme degree of interconnection of their
various components and subsystems. [5, 9] A central lesson that we have taken
from biology is that both robustness and controllability can result when each
component or process interacts strongly with many other components and pro-
cesses in a monitored and regulated system. (A recent example comes from work
on the immune response of the mammalian gut microbiome, [1,20] but there are
many others.)

Control in biological systems occurs through the combined operation of many
processes and actions, with desired behaviors being achieved by small changes
in relative strengths. A web of overlapping monitoring and regulatory processes
that maintain appropriate conditions at all levels of complexity is critical to
the success of this paradigm. For example, the actions and processes used to
achieve the top-level goal of walking over rough terrain are achieved by many
instances of humans in spite of significant differences in their structure, strength
and ability. That is, biological systems rely not on uniformity of structure, but on
the ability to adjust similar structures and generic patterns of actions based on
a high degree of monitoring of local conditions in order to accomplish a behavior
that is adequate for the current context and goal.
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Controlling a SoS with a complex web of balanced interactions is strikingly
different from the traditional block-diagram approach to engineering design that
focuses on building a few strong and well-understood interactions between com-
ponents while striving to nullify all other interactions. We suggest that the as-
sumption that small interactions can be neglected, together with implementation
of this assumption throughout the modeling process, is one important reason
that emergent behaviors are often not predicted by simulations. In contrast, the
biological style does not deprecate interactions, but instead achieves a “balance
of forces” form of control based on extensive overlapping webs of monitoring and
regulation at all levels of the hierarchy of complexity. We propose that imple-
menting this style in strategic portions of engineered systems could mitigate the
challenges posed by unmodeled interactions.

The biological design approach leads to a “permissive” style in which, while
actions, states, conditions, and processes may vary from one instance to another,
overall performance goals are achieved by adjustments in their relative intensi-
ties. This permissive style is in clear contrast to the restrictive control approach
of traditional engineered systems, in which adjustments of a few inputs achieve
all of the desired actions or processes through clearly defined pathways. However,
there is promising similarity between the dense web of interactions in biological
systems and the challenge of managing the many unknown or unmodeled inter-
actions in a complex SoS, again suggesting that a more biological approach to
design, operation, and integration may be useful provided that the appropriate
information about actual interactions can be discovered.

The admirable robustness of biological systems is due in part to their ability
to learn to accomplish the same goal using a variety of strategies, although not
necessarily equally efficiently. For example, if you break your right arm you are
still able to accomplish most of the tasks of daily life by substituting your left
arm or accommodating to the reduced motion allowed by a cast. This broad
ability to find a way to accomplish a goal in spite of changes in capability or
configuration is exactly the type of robustness and reliability that we would
like to have in engineered SoS, and to understand and utilize during design
and integration. New ways of acting can take place through the recruitment of
existing structures and processes in new combinations to address a new context,
purpose or goal. [3] Thus, a large space of possible responses can result from
small departures from previous conditions. Since this style of operation differs
significantly from the usual engineering approach with narrowly defined and
targeted control pathways, new tools and methods are required in order to exploit
it effectively.

4 Active Experimentation and Computational Reflection

The success of the biological control-through-balance style rests on experience
with the available processes, structures and patterns, as well as of their limits of
capability and their applicability to situations similar to the present one, either
through evolutionary selection or from the experience of a specific individual.
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This knowledge is not necessarily innate in a biological system, just as there is
important knowledge lacking in models of SoS.

Biological systems use excess resources to actively experiment. By doing so,
they discover and refine models of their capabilities, limitations, and possible
interactions with their surroundings that include consideration of both inter-
nal state (hungry, cold, tired, etc.) and external conditions. Significantly, such
experimentation also enables the grouping of collections of useful resources, pro-
cesses and capabilities into generic pre-patterned templates with simplified con-
trol mechanisms. Such templates can be easily shaped to fit a specific current
context. [7, 8]

The biological analogy suggests that, if it were possible for a complex SoS or
some of its components and subsystems to engage in active experimentation, the
existence of conflicts between the existing operation and control strategies of a
repurposed subsystem and the overall SoS purpose or goal could be identified and
modeled before such a conflict gives rise to failure or to disruption of the service
provided by the overall SoS. In addition, efficient strategies for accomplishing
common purposes and goals could be discovered and collected into templates
for accomplishing similar operations. Such templates could then be reviewed for
correctness either by the system itself using further active experimentation, or
supplied to designers, integrators and operators for evaluation.

Our existing systems have not been built with the capabilities required in
order to engage in active experimentation. Thus, an important research chal-
lenge is to implement such processes while preventing the resulting experiments
from damaging some part of the SoS or compromising the service it provides.
Implementation is particularly challenging when, as with space systems or the
electrical grid, there is only one operating instance of the entire SoS.

In following sections we discuss several possible approaches for introducing
active experimentation into engineered complex cyber-physical SoS. However,
first we list the additional capabilities required of such implementations. They
are:

– instrumentation at all levels of the hierarchy of complexity to measure what
happens.

– models that relate what is measured to properties or symbols that are local
but have meaning that can be communicated to other parts of the SoS.

– models that relate what is measured locally to higher-level purposes, goals
and constraints.

– the capability to retain the information produced by these measurements
and models.

– a hypothesis-generating engine that can propose possible actions (experi-
ments).

– a predictive capability to project and analyze the potential consequences of
a proposed future action.

– the ability to engage in a proposed action.

Taken together, these resources and capabilities would create an engineered SoS
able to reason about itself (its resources, capabilities, and limitations) in the
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context of its current environment, purposes and goals, and also to both propose
and implement a course of action based on that reasoning rather than on pre-
programmed control strategies. [13, 15]

These capabilities required for achieving active experimentation, taken to-
gether, constitute computational reflection. [18, 19] That is, the SoS is able to
retain meta-information, reason about itself, and implement modifications to its
behavior. Computational reflection is more nuanced than feedback control, but
certainly less than consciousness. Importantly, we do not conceive that com-
putational reflection will be implemented as one top-level control strategy, but
will rather be distributed throughout the hierarchy of complexity of the SoS in
keeping with the lessons learned from biological systems.

5 Approaches to Implementation in Mission-Critical SoS

The crucial question is, of course, how to implement this biologically-inspired
approach of active experimentation coupled with computational reflection to
improve and extend existing SoS, as well as to design, develop, integrate and
test new ones. We suggest two complementary strategies, both of which leverage
the capabilities we have listed above. One approach, which we are following
in our own work, is to build testbeds [7, 12, 17] to refine our understanding of
the methodologies and tools required to incorporate active experimentation and
computational reflection in a cyber-physical SoS.

The other, and more advanced, strategy is to implement portions of the re-
quired capabilities locally in an already-operating system and monitor the pro-
posed courses of action for compatibility with known “concepts of operations”
(CONOPS), which are the different styles of use intended for the system. Since
the cases of most interest are also SoS providing important services that can-
not be interrupted, we suggest that, after testing at the subsystem level, such
modifications could be implemented during planned maintenance, update, or
upgrade periods for the affected portion of the SoS. We note that all critical
systems have methods for implementing such planned modifications. Addition
of reflective capabilities and active experimentation could be implemented one
step at a time, starting with reflection, but trapping the proposed modifications
instead of implementing them. Multiple periods of testing and review could be
accomplished during successive maintenance periods, carrying out all of the nec-
essary processes for implementation except executing the proposed actions. This
strategy allows a period during which the proposed actions can be compared
with known CONOPS for consistency throughout the entire SoS, providing a
basis for verification and validation of the expected operation of the entire SoS
once the new capabilities are allowed to affect operation.

In a SoS that supplies a mission-critical service, we do not have the ability to
isolate the whole system (with new incoming systems or capabilities and legacy
systems) from its ongoing requirements within its true operational context. And
yet, it is arguably even more critical that SoS, which are dynamic, which have
many unknowns, which have constantly new combinations of legacy systems /
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components and new systems / components, have some “safe” places within
which to actively try out component configurations and to reason about and
record / learn the impacts of such configurations in matching their requirements
and operational constraints.

Most SoS are modular and utilize redundancy to achieve robustness so that
sections can go down without bringing the rest of the system down, and also can
be routinely taken offline for necessary check-out, maintenance, and upgrades.
To leverage redundancy and maintenance periods for evaluation of the effective-
ness of new capabilities such as reflection and active experimentation, one would
have to devise a simulation that would mimic the current operational settings.
Combining emulation / simulation and protected operation are currently done
for checking out space vehicles and their subsystems and components, as well as
other similarly expensive systems that require testing within very realistic oper-
ational conditions. These operational simulations could be used to test the new
combinations of components, capabilities and system integrations by a human
system engineer using a set of pre-designed tests. Certainly this would have great
advantages over the current practices in developing and testing SoS, changing it
from a certification process into one of continual verification and validation.

We now discuss our testbed, how it enables us to implement both active
experimentation and computational reflection, and how we can apply what we
learn to the cases of complex SoS.

6 The CARS Test Bed

CARS (Computational Architectures for Reflective Systems) is a testbed that we
have been developing as an ongoing student project at California State Polytech-
nic University, Pomona. [7,8,17] This testbed is based on a set of design decisions
that enable us to confront many of the challenges of implementing real SoS. It
is composed of a group of robotic agents built from low-cost commercial off the
shelf (COTS) hardware. Specifically, we use inexpensive toy radio-controlled cars
and trucks. These vehicles are decidedly not ideal for the tasks we assign them,
and they are also quite different one from another. Both of these circumstances
mean that the self-modeling aspects of our reflective architectures are critical
to successful system function. By adding our own sensors, computation, com-
munication, and control, these toy vehicles become useful agents, although they
have capabilities that are deliberately limited compared to the relatively com-
plex tasks we require of them, a situation often replicated in real-world systems
containing legacy hardware.

A series of benchmark tasks are utilized for evaluation of CARS that span a
broad range of sometimes conflicting strategies: independent or multi-agent, co-
operative or competitive, asynchronous or synchronous. Specifically, we use the
“games” follow-the-leader, tag, soccer practice (bump a ball into a designated
goal), and push-the-box (move a large, heavy object that cannot be moved by any
individual agent to a designated goal). We use Wrappings to implement compu-
tational reflection and self-modeling. Wrappings grew out of work on conceptual
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design environments for space systems, and has been in continuous development
since its inception in 1989. [4, 13–15]

Some of the important characteristics of CARS are

– The cost of each robotic motion platform (< $50) means that, unlike most
deployed systems, the investment in any part of the system is relatively small.
(A new agent can be prepared in less than a day from COTS hardware and
the electronics of a damaged agent.)

– The robotic components are relatively crude, requiring more modeling and
self-refinement of generic models than better hardware.

– The performance of the SoS for any task can be evaluated from recorded
video of the “field of play.”

– The tasks and the appropriate performance measures are easy to express in
everyday language.

– Use of Wrappings frees experimenters from many of the detailed program-
ming tasks normally associated with adding or modifying a process, model,
or sensor interface.

What Wrappings provides here is the ability for the system to have multiple
alternative resources for any given problem, and to select them according to
their operational context at the time of use. Because the process that make
those selections are also resources, and are also selected just like any other,
these systems have a very strong kind of computational reflection [15, 16]. The
Wrappings approach also allows active experimentation in two ways. First, the
system can create or otherwise collect new resources and try them out in a
context that indicates simulation and evaluation, thus not needing to activate
them in the “real” operational system until they are deemed to be ready. Second,
the system can adjust the context conditions under which certain resources are
selected and adapted, so that resources may be used in different ways.

We now speculate on the applicability of both the CARS testbed and the
incremental approach as strategies for eventually implementing active experi-
mentation and computational reflection in mission-critical SoS.

7 Prospects

In the CARS testbed, we have the luxury of allowing the system and its agents in
the true operational environment to practice, make mistakes, learn its character-
istics (e.g., turning ratio, speed on different surfaces etc.), and even damage an
agent without dire consequences to itself or to the rest of the testbed, somewhat
as children learn their capabilities and the constraints of their various environ-
ments through play. However, in addition to pre-defined test sets, we speculate
that in fact the style of self-modeling, learning, and subsequent recording of new
rules and constraints that we have advocated for the CARS testbed could be-
come very useful for offline testing and progressive integration of parts of a SoS.
In our approach, each component and subsystem of the CARS is constantly de-
veloping better and better rules and constraints on its behavior and its allowable
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operational envelope. The result is that because the “experimentation” is being
developed in parallel from the point of view of many different types of compo-
nents playing their diverse roles, the system is very likely to discover much more
about potential problems than a test set developed by even a knowledgeable and
experienced system engineering team.

This kind of exploratory behavior is an extension of exploring the system’s
external environment to exploring the space of potential behaviors. Since this
space is enormous, some very powerful directive constraint mechanisms will be
needed to keep the system within some reasonable expectations, and some very
powerful verification and validation methods will be needed to assure us that
the system will accede to any safety- and mission- critical constraints we may
choose to impose.

Eventually, we can envision a situation in which the components themselves
when faced with a novel component interface or configuration or operational
setting can request a time out, a voluntary removal of themselves to maintenance
/ self-examination / hypothesis generation and testing mode in a simulation.
Imagine that in addition to the meta-knowledge normally provided to a SoS
broker, each component / system has strong self-models at multiple time and
space resolutions that are being continually refined with interaction with other
components and environments. Initially, as a new configuration of components
is brought together with the top level descriptions provided to the broker in
the Wrappings, there will now be a deeper process of negotiation among the
components as their self-models now compare constraints, expectatins, rules for
best practice, and other behavior modification and constraint conditions. If a
component is now faced with either an unknown situation (a new condition for
which it has no rules or constraints) or a partially violated constraint (whose
priority might not be that high), it can request that the system allow it to
temporarily go into maintenance mode.

Of course, to be able to entertain this type of negotiation will take more
information in the self-model about that component’s expected CONOPS, in
addition to its expected environment. The system will either have some type of
holding action it can take or it might request the broker to provide it a new
component and go on. Meanwhile the offline component now starts a set of
experiments in the safe simulation, with current operational setting values and
conditions and with either the other relevant software components (clones) and /
or emulated hardware components. If its experiments go well enough (measured
by seriousness of system use), then that component can go out of maintenance
mode and back online. At that point, it tracks and records all the real results of
its interactions in this new use or configuration for future rules and constraints.
If the results of the experimentation are equivocal, then human intervention may
be requested for further experiments.

To summarize then, we want to develop methods that allow and even en-
courage processes that continually improve the performance of a system through
better use of its existing resources, the correct incorporation of new component
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resources, and the most appropriate integration among resources given the cur-
rent operational context and CONOPS.

8 Conclusion

A study of biological systems suggests possible strategies for creating robust
adaptive responses of a complex SoS to changing or even unanticipated condi-
tions. In this paper, we focused on one such strategy: active experimentation.
We have shown that successful active experimentation requires several special-
ized capabilities that, taken together, amount to computational reflection. We
then proposed various strategies for implementing active experimentation and
computational reflection in mission-critical systems of systems.

We have suggested that having testbeds like CARS allows components, sub-
systems, and systems to build ever-improving self-models based on active ex-
perimentation. The active experimentation coupled with the reflective reasoning
processes allows these components / systems to develop and refine rules and
constraints with specific details about different operating conditions and other
components or systems.

We have then speculated that some of these approaches could be applied
to mission-critical SoS by taking advantage of the offline maintenance mode
allowed for most SoS components / subsystems. This second best case is to have
during maintenance, some way of setting up a safe operational environment (set
of simulations and emulations) for the offline components to actively experiment
performing new behaviors, joining in novel configurations of components, or
experiencing new operational settings. This experimentation would help refine
the current self-models to take into account these new conditions.

The last case is to develop a new style of negotiation where components
are outfitted not only with their own constraints and behavioral rules, but also
CONOPS that helps explicitly define the expectations for how this component
is expected to be used under different circumstances. This negotiation would be
going on in parallel across layers of systems and components, allowing many lines
and types of detailed interactions to be analyzed by the self-modeling processes.
In this last most speculative case, based on this negotiation, individual compo-
nents would request being put into study mode (offline maintenance mode and
into operational simulation mode) in order to follow up on any conflicts with
current constraints or lack of information on requested behaviors.

We are hoping this paper will stimulate a community wide discussion into
many different ways one could create safe places for self-modeling and experi-
mentation resulting in better system integration, system validation, and system
performance.
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Abstract. We present a design framework for small-satellite systems
that ensures that (1) each satellite has a consistent theory to infer new
information from information it perceives and (2) the theory for the en-
tire system is consistent so that a satellite can infer new information
from information communicated to it. This research contributes to our
Reliable and Formal Design (RFD) process, which strives for designs
that are ”correct by construction” by introducing formal methods early.
Our framework uses Barwise’s channel theory, founded on category the-
ory, and allied work in situation semantics and situation theory. Each
satellite has a ”classification”, which consists of tokens (e.g., observed
situations) and types (e.g., situation features) and a binary relation clas-
sifying tokens with types. The core of a system of classifications is a
category-theoretic construct that amalgamates the several classifications.
We show how to derive the theory associated with a classification and
the theory of the system core, and we show how to check whether a given
requirement is derivable from or consistent with a theory.

1 Introduction

This research represents our ongoing effort to develop a model-based systems
engineering methodology for small satellite systems that is reliable, formal and
results in a ”correct-by-construction” design. We present a knowledge-based de-
sign framework for ensuring that (1) each satellite has a consistent theory it can
use to infer new information from information it perceives and (2) the theory
for the entire system is consistent so that a satellite can infer new information
from information communicated to it, and it can assess purported information
from fellow satellites. The theories mentioned can be updated as insight is gained
about the sensing satellites and the part of the world observed.

This research contributes to our development of a Reliable and Formal Design
(RFD) process [1] [2], which strives for designs that are correct by construction
by introducing formal methods early in the design process so that redesign may
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be minimized. In previous work, we defined the structure for checking consistency
and traceability of requirements in a formal manner [2]. In this paper, we expand
on our definition of consistency in terms of category theory and information
flow as it relates to designing systems of heterogeneous satellites that share
information about the situations they observe.

Consider a particular small satellite S. A type (for S) is a feature of interest
that S may observe in a monitored situation. We assume that we can identify a
set of types that characterize S’s sensory capabilities and, further, that we can
form a table indicating the combinations of types that may occur together in an
observed situation. In Section IV.A, we present an algorithm to derive a theory
(for S) from this classification table. The algorithm can detect inconsistency.
We may have to update S’s classification table: we may find a new combination
of types that may occur together (and so add a row to the table), or we may
find that a previously postulated combination is in fact spurious (and so delete
a row from the table). We may even find it necessary to introduce a new type
for S. Whenever S’s classification table is updated, we can run our algorithm
and update S’s theory (and check for consistency). S’s theory allows it to infer
additional information about a situation from information about that situation
that it has perceived or received via communication with other satellites. S’s
theory also allows it to detect when purported information about a given situa-
tion from another satellite is incoherent from its (that is, S’s) point of view or
is inconsistent with the information S has about the situation in question.

We are concerned with a system of small satellites, so we consider the amal-
gamation of the classification tables of the several satellites in a given system as
well as the theory inherent in this amalgamation. The amalgamation combines
the content of the classification tables for the individual satellites and adds re-
lations among types from several satellites. We describe this amalgamation in
Section IV.C in terms of category theory. We can think of the system (with its
classification table and theory) as the ”whole” and the individual satellites as
”parts”. Again, in deriving the theory, we can determine whether it is consistent,
and we can update the theory of the whole when the classification table for a
part or a cross-part type dependency changes.

We describe, in an abstract manner, the algorithms and procedures that
are used at a system-wide level in order to manipulate information and general
knowledge for the satellite system. We do not suggest that the final implemen-
tation of the system of satellites will use these procedures. Rather, they are to
be taken in the spirit of executable specifications. Later stages of the design
process will refine the specifications into concrete designs that can be directly
implemented.

The higher-level view taken here is based in the first instance on category
theory, which captures abstract algebraic structures and their interactions in a
coherent way (as categories) and also captures the relations between the cat-
egories. We make use of Barwise and Seligman’s channel theory [3], which is
an application of category theory to the ”flow of information”. Information is
addressed here, not in terms of the amount of information as per the discipline
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initiated by Shannon, but in the sense of the information content of an event or
message. Flow here is not to be interpreted in a physical sense, but in the sense
that X being α carries the information that Y is β.

Barwise and Seligman developed channel theory to explain the notion of a
constraint, which was central in Barwise’s account of ”X being α carries the in-
formation that Y is β” in situation semantics. Barwise and Perry [4] developed
situation semantics as a general theory of naturalized meaning and information.
Devlin [5] provided a systematic presentation of situation semantics and the situ-
ation theory behind it. We exploit situation semantics and situation theory along
with channel theory to give a rigorous and general account of the information
satellites in a system of satellites have and share.

A situation is an ongoing happening in the world, while an infon is the basic
item of information. An infon involves an n-place relation R, n objects appropri-
ate for the corresponding argument places of R, a spatiotemporal location, and
a polarity of 1 (indicating that the objects are thus related at the indicated place
and time) or 0 (indicating otherwise). Alternatively, one may think of a situation
as a partial function from tuples, with all the above components except polarity,
to the codomain {0, 1}. A situation, unlike a possible world in the semantics of
modal logics, targets only part of the world. A real situation is a part of reality
(and considered a single entity) that supports an indefinite number of infons,
while an abstract situation is a fixed set of infons.

Information flow is made possible by uniformities across relations between
situations, that is, (as in channel theory) constraints (including natural laws
and linguistic rules) that link various types of situations. Situation semantics
addresses speech acts (utterances) and the ”situatedness” of language use. It
presents a theory of meaning that is relational in that language use relates situa-
tions: a linguistic unit (such as a declarative sentence) is uttered in an ”utterance
situation” whose descriptive content is some ”described situation”.

We retain the terminology of situation semantics for communication among
small satellites since viewing satellite communication at a high level, in terms
of utterance situations, allows us to abstract away unnecessary detail that adds
nothing to the analysis. It also allows us to exploit notions relating to conversa-
tion that are not applicable at a lower level. A satellite broadcasting information
delineates a spatiotemporal region in which there occurs an utterance situation
(which also includes the satellites that are its physical neighbors given that an
appropriate channel exists). We are interested in the information, its flow, con-
ventions for taking turns, assumptions about content, and many other things
at the level of speech and conversation. We are not interested in the physical
aspects of communication and so eschew terms such as ”broadcast”.

The information of interest here concerns only the observed situations. The
types relate only to observed situations, never to the satellites themselves. We
do not address the issue of control actions taking by the satellites nor are we
concerned with how information is extracted from signal. Real situations, with
real objects and happenings, are observed although different satellites observe
the same real situation from different perspectives and with different modalities.
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We generally prefer ”observe” for the verb relating to the source of information
unless the emphasis is on the medium, in which case we tend to use ”perceive”.

We view the critical aspects of a small satellite as an intelligent knowledge
based system (IKBS). An IKBS as proposed here has a syntactic aspect and a
semantic aspect. The semantic aspect relates to the specific kind of information
that the satellite can process and is represented by a finite number of ”classifi-
cations.” For generality, we allow for several classifications associated with the
same satellite since it is common for a single satellite to have several sensing
modalities or to use several fusion techniques. Each classification A (in the sense
of channel theory) consists of a set typ(A) of types and a set tok(A) of tokens;
a token a ∈ tok(A) may be classified of type α ∈ typ(A) in classification A,
written a �A α and called a simple proposition. So a classification A is a triple,
(tok(A), typ(A),�A). For a small satellite system, tokens are real situations (as
observed by the satellites). All the classifications with which a given satellite is
endowed are amalgamated into a core classification (as explained in Section IV)
for that satellite, which we shall refer to as the classification of the IKBS.

The syntactic aspect of the IKBS of a satellite is a set of implication rules,
which are the constraints mentioned above. Each rule is a sequent, of the form
Γ ` ∆, where Γ and ∆ are sets of types. Suppose the classification in question
here is A. This sequent is satisfied by a token (real situation) a as long as, if
a �A α for all α ∈ Γ , then a �A β for some β ∈ ∆. A sequent is a constraint (for
A) if it is satisfied by all tokens in tok(A). The deductive closure of the set of
constraints is the IKBS’s (or satellite’s) theory (discussed above). The deductive
closure of the set of rules is the IKBS’s (or satellite’s) theory (discussed above).
Such a rule, if appropriately enabled, allows the satellite to infer new infons from
its IKBS given other infons in the observed situation or the described situation
associated with an utterance situation (where the utterance is by a neighboring
satellite).

The next section describes our Reliable and Formal Design (RFD) process
and how the techniques reported in this paper fit into this framework. Section
III presents enough category theory and channel theory so that the reader may
understand the rest of this paper. Section IV is the technical heart of this paper
and presents techniques for amalgamating classifications, deriving a theory from
a classification, and checking whether a requirement (encoded as a sequent) is
derivable from a theory or may be consistently added to it. Section V considers
how the satellites in a system maintain and communicate information on real
situations. We assume that an IKBS may use its theory or the theory for the
entire system to infer new information. Special attention is given to communi-
cation since an IKBS may fail to interpret an utterance or the content of what
is uttered may be inconsistent with the information the IKBS has. Section VI
concludes.
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2 Reliable and Formal Design Process

The RFD (Reliable and Formal Design) process [2] follows a risk-tolerant
philosophy that notionally will lead to a correct design with minimal-to-no re-
design through the use of an agile and formal design process based on models.
By integrating formal methods into the proposed design process at the appro-
priate levels, many design failures and integration challenges can be eliminated.
Formal methods will provide automatic means for verification by translating re-
quirements into a higher order logic language for which tools such as PVS [6] can
perform consistency and traceability checks and proofs throughout the design
process.

This RFD systems engineering process takes into account the fact that the
design team is small and multi-disciplinary as well as the fact that system is
complex and heterogeneous and is affected by its operational environment. Ad-
ditionally, design of a complex system involves multiple disciplines that must
interact symbiotically. This also implies that at the first step in the process each
of the disciplines must have a global view of the system. As they proceed to-
wards refinement, the design process becomes a local or discipline-specific activ-
ity, though always with a global perspective. The integration of formal methods
into the design process of a complex system can reduce the need for a significant
amount of revision during the system integration phase because of the ”correct
by construction” nature of the process. This leads to testing virtually at each
level of refinement. Therefor, the theme of this design process from a systems
engineering point of view is: Think globally, design locally, and test virtually.

At each level of abstraction, Ai, the state of the RFD process can be repre-
sented by requirements, models, and simulations:Ai = (Lin,Lil,Mi,Sip,Sib),where
the information flow between these components is indicated with arrows as fol-
lows:

Lin ⇐⇒ Lil ⇐⇒ Mi =⇒ Sip (1)

⇓
Sib

Here

– Lin is the set of requirements written in natural language form
– Lil is the set of requirements written as a set of logical functions
– Mi is the system of interconnected models
– Sip is the set of simulations based on the parameters of Mi.

– Sib is the set of simulations based on the logical description in Lil.

The central result of this paper is the technique presented in Section IV.A
for developing a theory for a satellite/IKBS from the classification table for it.
As this addresses individual satellites, it is in the realm of local design, albeit
at a very abstract level. The classification system used by an IKBS may be an
amalgamation of several classifications. We form the classification for the entire
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satellite system by a similar amalgamation (see Section IV.C) given the classifi-
cations of the component IKBS; the theory for the system is derived from this
classification table. This is a return to a global perspective since the individual
satellites with their sensing and communication capabilities were originally se-
lected or built as required by the global mission. Theories for individual satellites
and for the entire system are tested for consistency, which is virtual testing from
the point of view of the system being developed.

The aspect in this knowledge-level design process emphasized in this paper
is endowing each IKBS present within the distributed system with a theory in
the form of a set of constraints. One determines for each IKBS the core classi-
fication with which it should be endowed and the classifications into which this
core should be decomposed as ”parts”. Henceforth, we call the core classification
for the IKBS simply the ”IKBS classification”. One then determines the types
for each of the ”part” classifications and the IKBS classification. These are the
features of the IKBS’s environment that it can sense or be informed about. One
then produces a classification table for each ”part” and for the core. The columns
in the classification table are labeled with the classification’s types, and we have
a row for each abstract situation that (to our knowledge) may arise for that
classification. A row has an ’1’ under a type if the abstract situation represented
by that row supports that type; otherwise, it has a ’0’ under the type. Once the
classification table for the IKBS classification is fixed, one can determine the
IKBS’s initial theory (a set of constraints) as described in Section IV.A. Deter-
mining the classifications for an IKBS can be done in a top-down fashion by first
determining its core (or IKBS) classification and then determining the relative
parts in a way that is sensitive to its physical attributes. Alternatively, this can
be done in a bottom-up fashion, by mixing and matching basic classifications in
an engineering repertoire and forming the IKBS classification once the parts are
given.

Given a system of small satellites, we consider the amalgamation (the core)
of the IKBS classifications. As with forming an IKBS classification, forming the
core for the entire system is (in category-theory terms) a sum operation. Section
IV.C shows how the classification table for the system core is constructed from
the classification tables for the individual IKBSs. Again, we can form the initial
theory of the system using the techniques described in Section IV.A. Combin-
ing theories raises the threat of inconsistency, and we check for inconsistency
syntactically by determining whether, from the combined theory, we can derive
some formula and its negation or, equivalently, we can derive the empty sequent
〈∅, ∅〉. Consistency can also be defined semantically: see Section IV.B.

Designing a small satellite system is not just a matter of selecting the right
kinds of satellites, developing their theories, and combining their reports at the
knowledge level. One must also determine the overall situation, extended in both
space and time, that the system will perceive. And one must formulate policies for
how this overall situation will be divided into overlapping component situations
allocated as regions of responsibility to the different satellites; these are policies
for allocating sequences of overlapping situations to the various satellites. How
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regions of responsibility should overlap depends both on what is monitored and
the capabilities and theories with which the satellites are endowed. Significant
overlap is expected when two satellites have complementary sensing modes or
perspectives on a target.

How a satellite is actually deployed may give rise to additional constraints
to be incorporated into its theory. And how several satellites are designed to
collaborate may affect how the system core is formed and thus the theory for
the system whole.

Once the satellite system is deployed, constraints will be added to the IKBSs,
and their theories as well as the theory of the system as a whole will evolve.
That is, new abstract situations will become apparent and could be added to
the appropriate classification tables. One can check that the resulting theory
remains consistent. One of the strengths of our approach is that, at any point
in the lifetime of the systems, new requirements can be checked for consistency
against current theories and, when consistent, used to augment those theories.
At any time, the various theories must meet their requirements that have been
collected over time. One way a theory can violate a requirement is by failing to
include it. The solution in that case is to add the requirement to the theory and
test for consistency. Another way a theory can violate a requirement is to be
inconsistent with it, in which case the theory must be adjusted.

3 Category Theory and Channel Theory Overview

This section provides background for formal addressing the aggregation and
flow of information in a small satellite system. The topics discussed here in-
clude category theory, channel theory, and the application of these theories to
computational systems.

3.1 Category Theory

A category C consists of a class of objects and a class of morphisms (or
arrows or maps) between the objects. Each morphism f has a unique source
object a and target object b; we writef : a → b. The composition of f : a → b
and g : b→ c is written as g ◦ f and is required to be associative: if in addition
h : c→ d, then h ◦ (g ◦ f) = (h ◦ g) ◦ f . It is also required that, for every object
x, there exists a morphism 1x : x→ x (the identity morphism for x) such that,
for every morphism f : a→ b, we have 1b ◦ f = f = f ◦ 1a. It follows from these
properties that there is exactly one identity morphism for every object.

A functor from one category to another is a structure-preserving mapping,
preserving the identity and composition of morphisms. More exactly, if C and D
are categories, then a functor F from C to D is a mapping that associates with
each object x ∈ C an object F (x) ∈ D and, with each morphism f : x→ y ∈ C, a
morphism F (f) : F (x)→ F (y) ∈ D. In addition, it requires that F (idx) = idFx
for every object x ∈ C, and F (g ◦ f) = F (g) ◦ F (f) for all morphisms f : x→ y
and g : y → z. In category theory, a commutative diagram is a diagram of objects
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(as vertices) and morphisms (arrows between objects) such that all directed
paths in the diagram with the same start and end points lead to the same result
by composition.

The classic presentation of category theory is in [6]. Two reasonably com-
prehensive and rigorous texts that are accessible to most readers with classical
engineering mathematical backgrounds are [7] and [8]. A light introduction is
provided by [9], while [10] and [11] are category-theory texts addressed specif-
ically to computer scientists; [12] addresses category theory in the context of
software engineering.

3.2 Channel Theory and the Flow of Information

Barwise and Seligman [3] presented a framework for the “flow of informa-
tion” in (generally implicit) category-theoretic terms. They address the question,
“How is it that information about any component of a system carries information
about other components of the system?” For classifications A and C, an info-
morphism f from A to C is a pair of functions (f∧, f∨), f∧ : typ(A) → typ(C),
and f∨ : tok(C) → tok(A) , satisfying, for all tokens c ∈ tok(C) and all types
α ∈ typ(A), f∨(c) |=A α iff c |=C f∧(α). In category theoretic terms, an in-
formorphism is a kind of Galois connection. A contravariant Galois connection
between (tok(A), typ(A), |=A) and (tok(B), typ(B), |=B) will be a pair (ϕ,ψ) of
mappings ϕ : tok(A) −→ typ(B), ψ : tok(B) −→ typ(A) satisfying a |=A ψ(b)
if and only if b |=B ϕ(a). An infomorphism between (tok(A), typ(A), |=A) and
(tok(B), typ(B), |=B) however is a covariant Galois connection. It is a contravari-
ant Galois connection between (tok(A), typ(A), |=A) and (typ(B), tok(B), |=−1B )
where |=−1B ⊆ typ(B)× tok(B) with (β, b) ∈|=−1B if and only if (b, β) ∈|=B.

Components of the system may be distant from one another in time and
space, and the system can be made up of heterogeneous components. The system
is ”distributed” in this sense and not necessarily in the classical sense used in
computer science. For example, the students, classrooms, scheduling system,
and attendance records together form a distributed system related to students’
attendance at a certain university.

An information channel is a family of infomorphisms with a common codomain,
called the core. Essentially, a channel consists of a set A1, ...,An of classifications
that represent the parts of the distributed system, a classification C (the core)
that represents the system as a whole, and a set of infomorphisms f1, ..., fn from
each of the parts onto C. Tokens in C are the connections of the system: a given
token c in C connects the tokens it is related to by means of f1, ..., fn. Parts
A1, ...,An carry information about each other as long as they all are parts of
C. Intuitively, an information channel is a part to whole Ai-to-C informational
relationship. Categorically, the core is a cocone in the category of classifications
(objects are classifications and morphisms are informorphisms).

A distributed system D is a collection of elements that carry information
about each other. Formally, D consists of an indexed class cla(D) of classifi-
cations together with a class of infomorphisms, inf(D), whose domains and
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codomains are all in cla(D). An information channel C covers distributed sys-
tem D if and only if cla(D) are the classifications of the channel and, for every
infomorphism f ∈ inf(D), there are infomorphisms from both the domain and
codomain of f to the core of C such that these three infomorphisms are commu-
tative in there interrelation. Basically, all classifications in D are “informational
parts” of the core whose channel covers D.

Turning to regularities in a classification’s types, let A be a classification and
Γ and ∆ be subsets of types in A. Recall (from Section I) that a token a of A
satisfies the sequent Γ ` ∆ provided that, if a is a token of every type in Γ , then
it is of some type in ∆. If every token of A satisfies Γ ` ∆, then Γ is said to entail
∆ and Γ ` ∆ is called a constraint supported by A. The set of all constraints
supported by A is called the complete theory of A, denoted by Th(A). These
constraints are systematic regularities, and it is by virtue of regularities among
connections that information about certain component of a distributed system
can be carried by other components into diverse parts of the system. Barwise and
Seligman’s summary statement of their analysis of information flow, restricted
to the simple case of a system with two components, is as follows. “Suppose that
the token a is of type α. Then a’s being of type α carries the information that
b is of type β, relative to channel C, if a and b are connected in C and if the
translation β′ of β entails the translation α′ of α in the theory Th(C), where C
is the core of C” ( [3], p.35).

3.3 Category Theory and Channel Theory for Computational
Systems

Channel theory and category theory in general have had a significant im-
pact in computer science, especially those aspects related to complex systems.
Schorlemmer and Kalfoglou and their colleagues have applied channel theory in
addressing semantic interoperability of federated databases [13] as well as the
similar problem of ontology alignment [14] . Kent’s Information Flow Framework
(IFF) [15] also uses channel theory; IFF is being developed by the IEEE Standard
Upper Ontology working group as a meta-level foundation for the development
of upper ontologies. Spivak [16] presents a simple database definition language
based on categories and functors and shows how to translate instances from one
database schema to the other in canonical ways; Spivak and Kent [17] have also
defined a category-theoretic model, OLOG, for knowledge representation. Fi-
nally, Diskin and Maibaum [18] support the claim that category theory provides
a toolbox of design patterns and structural principles of real practical value for
model driven software engineering. These research programs are generally at the
knowledge level and as such fit well with the work reported here.

Goguen and Burstall’s theory of institutions [19] is a categorical abstract
model theory that formalizes the intuitive notion of a logical system, including
syntax, semantics, and the satisfaction relation between them, which relates a
semantic model to syntactically well-formed formulas that can be interpreted as
true given the model. The meaning of the satisfaction condition of institutions is
that truth is invariant under change of notation. Goguen has used institutions as
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a basis for unifying and generalizing several approaches to information, including
channel theory, Formal Concept Analysis, and Sowa’s lattice of theories (ordered
by inclusion on sets of derivable formulas) used for knowledge representation
[20]. The work reported here gains impact by fitting into the general framework
provided by the theory of institutions.

4 Amalgamating Classifications, Deriving Theories, and
Checking Consistency

Figure 1 depicts the aspect of the RFD process presented here. On the left-
hand side of the top, we have a specification in a natural language, Ln, from
which classification tables in the logical language Ll are encoded. From these
tables, one generates a set of sequents (or constraints) using the algorithm pre-
sented in this section. The deductive closure of this set is the IKBS theory. Note
that a theory is inconsistent if and only if one can derive the empty sequent, ∅ ` ∅
from it. On the right-hand side of Figure 1, we have a requirement expressed in
natural language Ln. This is encoded as a sequent in Ll. One then tests whether
the sequent is entailed by the theory, is inconsistent with the theory (i.e., the
theory with the sequent added is inconsistent), or neither. If it is entailed by the
theory, we have increased confidence in both the theory and the requirement. If
the requirement is inconsistent with the theory, then both the requirement and
the theory could be suspect. If the requirement survives scrutiny, one redesigns
the theory. Redesign in this approach focuses on the encoding and the correct-
ness of the original Ln statements. If the sequent that encodes the requirement
is not entailed by nor inconsistent with the theory, then one adds the sequent to
the set of sequents whose deductive closure forms the theory.

Fig. 1. RFD process as presented here.
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If A = (tok(A), typ(A), |=A) is a classification, we define

α′ = {a ∈ tok(A)|a |=A α} (2)

Γ∩ = Γ ′ = {x ∈ tok(A)|∀α ∈ Γ, x |=A α} =
⋂

α∈Γ
α′ (3)

Γ∪ = {x ∈ tok(A)|∃α ∈ Γ, x |=A α} =
⋃

α∈Γ
α′ (4)

It is straightforward that a token x satisfies the sequent 〈Γ,∆〉 if x ∈ Γ∩ ⇒ x ∈
∆∪. Thus,〈Γ,∆〉 is a constraint of A if and only if Γ∩ ⊆ ∆∪. An implication
Γ → ∆ between types in A is a is sequent 〈Γ,∆〉 where ∆ is non-empty. A subset
T ⊆ typ(A) respects an implication Γ → ∆ if Γ * T or ∆ ⊆ T . An implication
Γ → ∆ holds in A if and only if every subset of typ(A) respects Γ → ∆ and
so,if and only if Γ∩ ⊆ ∆∩

The Duquenne–Guigues [21] theorem provides a way to form a canonical basis
of implications from sets of types that are pseudo-closed with respect to a closure
operator of a classification A. A set Γ of types is pseudo-closed with respect to
a closure operator of a classification A if Γ 6= (Γ ′)′ and (∆′)′ ⊂ Γ for every
pseudo-closed ∆ ⊂ Γ . Note that in mathematics, a closure operator on a set S is
a function cl : P (S) −→ P (S) from the power set of S to itself which satisfies the
following conditions for all sets X,Y ⊆ S, X ⊆ cl(X), X ⊆ Y ⇒ cl(X) ⊆ cl(Y )
and cl(cl(X)) = cl(X) As a base case for this definition, all minimal non-closed
sets are pseudo-closed.

Algorithm 1 computes a basis of the theory of a given classification. The the-
ory is the deductive closure of its basis. We use the Duquenne–Guigues theorem
to compute part of the set of the constraints, namely, those that are implications.
Note that in Algorithm 1 a sequent
Gama ` ∆ where ∆ = ∅ is handled separately.

Algorithm 1 Constraint extraction procedure

1: Input: Classification A
2: Th(A) = ∅
3: For Γ ⊆ typ(A)
4: Compute Γ∪

5: If Γ∪ = tok(A) then Γ ` ∅ ∈ Th(A)
6: If Γ ` ∆ is in a Duquenne–Guigues basis of A then Γ ` ∆ ∈ Th(A)
7: End for
8: Output Th(A)
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4.1 Logic of a classification

The formulas in the logic of a classification are sequents on the set of types.
One can define a pseudo-negation and a pseudo-disjointion on the sequents.

A derivation or proof within this theory is as usual a sequence of sequents,
where each of the sequents in the sequence is either a premise (element of the
theory) or is deduced from previous sequents appearing in the sequence using
one of Amstrong’s rules [22], [23], described below:

Reflexivity If Γ ⊆ ∆ then Γ ` ∆
Γ ⊆ ∆
Γ ` ∆

Augmentation If Γ ` ∆, then Γ ∩ Γ ′ ` ∆ ∪ Γ ′
Γ ` ∆

Γ ∩ Γ ′ ` ∆ ∪ Γ ′

Transitivity If 〈Γ,Σ〉 and 〈Σ,∆〉 then Γ ` ∆
Γ ` Σ,Σ ` ∆

Γ ` ∆

4.2 Consistency within a Classification Context

Consider the example classification given in Table below. We implemented
Algorithm 1 in Python 2.7.5 and applied it to this classification, giving the basis
of a theory as shown below.

�A α β γ σ
a1 1 1 1 0
a2 0 1 1 1
a3 0 0 1 1

Th(A)
{α, σ} ` ∅ r1
{α, γ} ` {β} r2
∅ ` {γ} r3

Assume that a requirement of this system is expressed by the constraint
{α, γ} ` {β, σ}. We prove that this constraint is derivable from Th(A).

1. {α, γ} ` β ........................r2, premise
2. β ` {β, σ}〉 ........................ Reflexivity
3. {α, γ} ` {β, σ}〉 .................1, 2, Transitivity

The proof is not always as short and easy as this. Generally, one would use an
automatic or semi-automatic theorem prover such as PVS [24]. The derivability
can also be shown semantically. Semantically, a sequent is valid in a classification
A if each token of A satisfies the sequent. For a sequent Γ ` ∆, this is equivalent
to the inclusion Γ∩ ⊆ ∆∪. For example, for the sequent {α, γ} ` {β, σ}, we have
{α, γ}∩ = {a1} ⊆ {a1, a2, a3} = {β, σ}∪. In classical deductive logic, a consistent
theory is one that does not contain a contradiction. The lack of contradiction
can be defined in either semantic or syntactic terms. Here a model is taken to be
a classification. The semantic definition states that a theory is consistent if and
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only if it has a model, i.e., there exists an interpretation under which all formulas
in the theory are true. This is the same sense used in traditional Aristotelian
logic, although, in contemporary mathematical logic, the term “satisfiable” is
used instead of “true”. The syntactic definition states that a theory is consistent
if and only if there is no formula p such that both p and its negation are provable
from the axioms of the theory under the associated deductive system.

4.3 Sum of Classifications (Channel Core)

We introduced the notion of the core of an information channel in Section
II.B, and we have viewed it as the whole that provides the amalgamation of the
classifications of the parts. The core is formed as the category-theoretic sum of
the classifications of the parts. Here we illustrate the sum of three classifications
A1, A2, and A3, which is the core of the information channel containing the
classifications. The sum A1 +A2 +A3 is the classification defined as follows:

1. The set tok(A1 +A2 +A3) of tokens is the Cartesian product of tok(A1),
tok(A2) and tok(A3). Thus, the tokens of A1 + A2 + A3 are triples (a1, a2, a3)
of tokens, a1 ∈ tok(A1), a2 ∈ tok(A2) and a3 ∈ tok(A3).
2. The set typ(A1 +A2 +A3) of types is the disjoint union of typ(A1), typ(A2)
and typ(A3). For concreteness, the types of A1 +A2 +A3 are pairs 〈i, α〉, where
i = 1 and α ∈ typ(A1) or i = 2 and α ∈ typ(A2) or i = 3 and α ∈ typ(A3).
3. The classification relation �A1+A2+A3

of A1 +A2 +A3 is defined by
(a1, a2, a3) �A1+A2+A3

〈i, α〉 if and only if ai �Ai
α,∀i ∈ {1, 2, 3}.

To make this example concrete, suppose that classifications A1, A2 and A3

are given by the classification tables in following Table . Note that each abstract
situation (row) is labeled. Then the first six rows classification table for A1 +

A2 +A3 are shown below.

�A1 α β δ γ
a1 1 0 1 0
a2 0 1 1 0
a3 0 1 0 0

�A2 α β ρ
a4 1 0 0
a5 1 1 1
a6 0 1 0

�A3
α ρ σ τ

a7 0 1 0 1
a8 0 1 1 0

�A1+A2+A3
〈1, α〉 〈1, β〉 〈1, δ〉 〈1, γ〉 〈2, α〉 〈2, β〉 〈2, ρ〉 〈3, α〉 〈3, ρ〉 〈3, σ〉 〈1, τ〉

(a1, a4, a7) 1 0 1 0 1 0 0 0 1 0 1
(a1, a4, a8) 1 0 1 0 1 0 0 0 1 1 0
(a1, a5, a7) 1 0 1 0 1 1 1 0 1 0 1
(a1, a5, a8) 1 0 1 0 1 1 1 0 1 1 0
(a1, a6, a7) 1 0 1 0 0 1 0 0 1 0 1
(a1, a6, a8) 1 0 1 0 0 1 0 0 1 1 0
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4.4 Small Satellite Example

As an example, consider a system of three small satellites, S1, S2, and S3,
whose goal is to image the auroral ovals that exist around both magnetic poles of
Earth and thereby study the impact of the solar wind on the magnetosphere. S1

measures the intensity of the auroral brightness; if this is over a given threshold,
then S1 measures the magnetic disturbance density and sends a message to S2

and S3 to begin imaging. S2 and S3 do the same thing from different perspectives,
viz., take an image of the auroral oval to determine its extent.

For types for S1, we distinguish auroral brightness below the threshold (LAB,
”Low Auroral Brightness”) and at or above the threshold (HAB, ”High Auro-
ral Brightness”). We arbitrarily partition the magnetic density measurement, a
continuous magnitude, into a small number (viz., three) of ranges for simplicity,
giving types LMD (”Low Magnetic Density”), MMD (”Medium”), and HMD
(”high”). For S2, we arbitrarily partition the auroral extent, a continuous mag-
nitude, into three ranges: LAE2 (”Low Auroral Extent”), MAE2 (”Medium”),
and HAE2 (”High”). We recognize the same types for S3 but use subscript ”3”
in place of ”2”: LAE3, MAE3, and HAE3.

The classification table for S1 is shown below. Some of the constraints derived
from this table are the following, where (1) indicates that, if the auroral bright-
ness is high, then there is a magnetic density measurement of high, medium, or
low, and (2) indicates that the auroral brightness is (unconditionally) high or
low.

1. HAB ` LMD,MMD,HMD
2. ∅ ` {HAB,LAB}

The classification table for S2 is shown below. The obvious constraints here
are that there must be a measured auroral extent, low, medium, or high (∅ `
{LAE2,MAE2, HAE2}), and it cannot be, for example, low and medium at the
same time ({LAE2,MAE2} ` ∅). The classification table for S3 is identical to
that for S2 but for the subscripts.

SAT1 HAB LAB LMD MMD HMD
1a 0 1 0 0 0
1b 1 0 1 0 0
1c 1 0 0 1 0
1d 1 0 0 0 1

SAT2 LAE2 MAE2 HAE2

2a 1 0 0
2b 0 1 0
2c 0 0 1

The classification table for the core will be analogous to the core classification
produced in the previous example but will induce some constraints that cross
system parts. At this point, it is convenient to enlarge our system to include a
classification for the ”part” that is observed by the satellites, namely, the magne-
tosphere and solar wind as well as the auroral oval produced by their interaction.
The real situations classified with the types we have picked out so far certainly
include these aspects of the environment and various types that characterize
them. We consider here only four types that relate to this environmental part.
Let AL indicate that the magnetosphere and solar wind are aligned (within some
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level of tolerance), and let NAL indicate that they are not aligned. Let COND
indicate that this part is in a state where ionospheric conductivity could be ex-
ceptional, and let NCOND indicate the denial of this. If we were to construct
a classification table relating these types to types for the other three ”parts”
of the system (i.e., the satellite classifications), we could use our techniques to
derive the following (and many more) constraints.

1. COND ` AL
2. {MMD,HAE2, HAE3} ` AL
3. {HMD,HAE2,MAE3} ` COND

Constraint (1) indicates that, if the situation is such that ionospheric conduc-
tivity could be exceptional, then the magnetosphere and solar wind are aligned.
Constraint (2) indicates that, if the magnetic density is medium and the auroral
extent is high from the perspective of both S2 and S3, then the magnetosphere
and solar wind are aligned. And (3) indicates that, if the magnetic density is
high and the auroral extent is high from the perspective of S2 but medium from
the perspective of S3, then ionospheric conductivity could be exceptional.

5 Maintaining and Communicating Information on Real
Situations

Consider now the situation table with the information an IKBS has on various
real situations. We contrast the situation table with the classification table of a
satellite, which is where design starts. The classification table has a column for
each type relevant to the satellites sensing capability and the behavior of the
monitored region. The rows indicate the combinations of types (columns) that
may occur together in an observed situation. That is, the rows specify all the
realizable abstract situations by indicating the types realized in them.

In contrast, the situation table has a row for each real situation observed. Like
a classification table, a situation table has a column for each observable type, but
the situation table needs information on more types. An IKBS has information
on a situation not only by observation but also by virtue of utterance situations
and by inferring information from information it already has. The descriptive
content of an utterance may involve types observable by any satellite in the
system, so the situation table must have columns for all these types. The IKBS
has its own theory for inferring new information, but, since the IKBS is part of a
distributed system, the theory of the whole, or core, is relevant as well for filling
out entries in the situation table. Since the ”whole” or core does not correspond
to a physical entity over and above the ”parts” (satellites), inferencing done with
the theory of the core must be delegated to these parts. The easiest approach
is to assume that all IKBSs have, besides their own theories, the theory of the
core.

The general picture, then, has an IKBS, on observing a real situation, make
an entry for it in its situation table, indicating what types were observed. When
the descriptive content of an utterance relates to this situation, its table entry
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may be filled by checking further types. It is also possible that observation may
fill in an entry over an extended period. As information on the situation becomes
available, various sequents of the local or core theory may allow further infor-
mation to be inferred and recorded in the entry for the situation. A variation of
this picture has the IKBS first finding out about the real situation in question
via another’s utterance. Note that issues we avoid in this paper include how
real situations are denoted, how they are related as parts and wholes, and to
what extent something true in a part is also true of the whole. These issues are
addressed in the standard literature cited, and the part-whole relation has been
extensively studied in terms of lattice structures [25].

The conditions for filling in an entry of the situation table because of a
relevant utterance needs to be addressed in more detail since the IKBS may fail
to interpret an utterance or the content of what is uttered may be inconsistent
with the information the IKBS has. The descriptive content of what may be
considered a normal utterance is what we call an utterance proposition, of the
form a : ∆, where a is a token and ∆ is a set of types and type placeholders. For
each type, we assume there is a corresponding placeholder ?α. If α ∈ ∆, then
part of what the utterance asserts is a �A α, while if neither α ∈ ∆ nor ?α ∈ ∆,
part of what it asserts is a a 2A α; we cannot have both α ∈ ∆ and ?α ∈ ∆. If
?α ∈ ∆, then the utterance says nothing about a being of type α. If the content
of an utterance is consistent with an IKBS’s theory (as discussed in Section
IV.B), then it is included in the IKBS’s situation table unless it is inconsistent
with an entry already in that table. The situation table also includes results of
observations, and it contains at most one entry for a given real situation (i.e.,
token). (As an IKBS’s classification table constitutes in large part its semantic
memory, its situation table constitutes its episodic memory.) We say that an
utterance proposition a : ∆ is in the situation table if the situation table has an
entry for situation a and that entry records types and type placeholders as per
∆. If the situation table includes the utterance proposition a : ∆1 and the IKBS
perceives an utterance whose descriptive content is a : ∆2 with the same token a,
then the utterance proposition for a in the situation table can be updated with
the information a : ∆2 as long as, for all types α of the IKBS classification, α is
not in one of ∆1 or ∆2 but not the other. Violation of this condition indicates
that the two utterance propositions are inconsistent. It may be the case, though,
that α is in one but ?α is in the other, or α is not in one but ?α is in the other.
Then the situation table entry for a, a : ∆1, is updated by replacing any ?α ∈ ∆1

with α if α ∈ ∆2 and by removing any ?α ∈ ∆1 if α /∈ ∆2. If an IKBS succeeds
in incorporating an utterance proposition into its situation table, we say that it
has interpreted that utterance proposition.

In addition to the utterances just addressed, whose descriptive contents are
utterance propositions, we allow utterances whose contents are partial utterance
propositions; we call such utterances p-utterances and their descriptive content
p-propositions. A p-proposition is again of the form a : ∆, but now, for any type
α, if α /∈ ∆, then a 2A α is not being asserted; rather, the p-proposition has
nothing to say about a being of type α. A p-utterance presents an occasion for
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an IKBS to infer (using its theory) additional types for tokens, as illustrated by
the paradigmatic case of inferring fire from smoke. A p-utterance could be used
as a query, when one IKBS utters a p-utterance, and another utters a (normal)
utterance in reply, providing missing types if they in fact are uniquely deter-
mined by the theory. A p-proposition a : ∆1 is inconsistent with an utterance
proposition a : ∆2 in the situation table if there is at least one type α such that
α ∈ ∆1 but α /∈ ∆2. If the p-proposition is not inconsistent with any utterance
proposition in the IKBS’s situation table, then we say that the IKBS interprets
that p-proposition; this is the case whether or not it is able to uniquely determine
additional types for the token.

There are several ways an IKBS may fail to interpret the descriptive content
of an utterance proposition or a p-proposition and hence fail to interpret the
utterance or p-utterance itself. We say that an IKBS is acquainted with a token
a if there is an utterance proposition a : ∆ in its situation table, and we say
that it is acquainted with a type α if α is among the types labeling the columns
of its situation table. If an IKBS is unacquainted with a type, it is normally
because that type is new and not yet incorporated into the IKBS’s computational
structures. An IKBS cannot interpret an utterance proposition or p-proposition
a : ∆ if there is a type α ∈ ∆ with which it is not acquainted, and it cannot
interpret a p-proposition a : ∆ if it is not acquainted with token a. Failure of
interpretation due to lack of acquaintance amounts to a failure to understand.
The other way interpretation can fail arises from inconsistency with content of
the situation table, as described above.

6 Conclusion

As part of our engineering methodology for small satellite systems that is
reliable, formal and results in a ”correct-by-construction” design, we presented
in this paper a knowledge-based design framework for ensuring that (1) each
satellite has a consistent theory it can use to infer new information from in-
formation it perceives and (2) the theory for the entire system is consistent so
that a satellite can infer new information from information communicated to
it, and it can assess purported information from fellow satellites. The point of
departure for our framework, from the previous RFD process, is Barwise’s chan-
nel theory, founded on category theory, and allied work on situation semantics
and situation theory. Each small satellite is viewed as an intelligent knowledge
base system (IKBS) consisting of classifications in the sense of channel theory.
A classification consists of tokens (e.g., observed situations) and types (e.g., fea-
tures of a situation, such as a certain kind of event) as well as a binary relation
that classifies tokens with types. Each IKBS has a semantic part, namely, the
classifications with which it is endowed, and a syntactic part, which is a logic or
theory of classification that allows each satellite to infer new information from
observed and communicated situations. Communication (as per situation seman-
tics) is viewed in terms of utterances; the descriptive content of an utterance is
an assertion that a given token is of a given set of types. The core of a system of
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classifications, as explained in this paper, is a category-theoretic construct that
amalgamates the several classifications; the core and the individual classifica-
tions essentially form the ”whole” and the ”parts” of what is termed a channel.
We show how to derive the theory for an IKBS and for the system core, and we
show how to check whether a given requirement is derivable from or consistent
with a theory.
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