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Abstract. Private and public clouds are getting more and more common. With 
them comes the need to analyze data stored by different applications in different 
clouds. Different clouds and applications tend to enforce the use of different da-
ta stores, which makes it even harder to aggregate information. The main out-
come is that integrating different data sources requires deep knowledge on how 
data is stored on each solution and on the trade-offs involved in moving from 
one system to another. This paper is part of the ongoing work on the JUNIPER 
FP7 EU project (http://www.juniper-project.org/). In that project we explore the 
power of modelling tools to simplify the design of industrial big data applica-
tions. In the present work we present an overview of our approach and its appli-
cation on a simple case study.   

1   Introduction 

The advent of cloud computing and the multiplication of computing and storage 
power available to companies gave rise to the so-called big data cloud applications. 
The multiplication of cloud offers also lead to a fragmentation in the capabilities of 
different providers [1]. Similarly, the multiplication of data management tools lead to 
the fragmentation of the data representation paradigms.  

Concerning the fragmentation of cloud providers. On the one hand, some compa-
nies are surely in a position to take advantage of that. On the long run, applications 
end up with a set of specialized applications, each of them based on a different stack 
of tools. The challenge to these companies is then in aggregating the data stored on 
different stores, on different providers and behind different systems to support their 
business decisions. This challenge stems from the fact that highly specialized devel-
opers are needed to deal with the different stacks and programming languages. Con-
necting them therefore becomes more expensive and complex the more languages and 
systems a company needs to integrate. 

In this paper we investigate the strengths of model driven engineering (MDE) in 
such scenario. Model driven engineering in fact consists in using high level models to 
abstract the complexity in an application. MDE techniques excel particularly in deal-
ing with multiple programming languages and frameworks [2] [3]. This is so because 
model transformations can encapsulate the complexity involved in the translation of 



high level concepts into concepts in other languages, and therefore reduce the necessi-
ty of highly specialized developers and then the cost of integrating disperse data 
stores. Models are also useful when dealing with availability time and consistency 
constraints by means of model analysis. This is so because high level models on a 
single language are much easier to inspect and analyse (either automatically or manu-
ally) than multi-language code. 

The main challenge in applying MDE to big data applications relies in finding the 
right abstract modelling language that is rich enough to abstract from the specific 
features of the connected platforms, but still low level enough to foster code genera-
tion. In the context of big data application this is even harder because, to the best of 
our knowledge, no language exists that includes both the concepts necessary to define 
the architecture of a cloud application along with its data streaming and analysis in a 
high level. This is therefore the main contribution of this paper.  

In this paper we present the approach developed as part of the  JUNIPER FP7 EU 
project. It consists in identifying a subset of the Unified Modelling Language (UML) 
and extending it with data analysis and processing concepts so that it is suitable to 
both defining the architecture of a big data cloud application and to generate code for 
it. Since the project is in the beginning of its second year, in this paper we present the 
initial insights and experiments behind the use of a MDE approach to support the 
design of multi-cloud big data applications.  In order to avoid exposing sensitive de-
tails of the project use cases, in this paper we apply our approach to a similar applica-
tion based on the same principles.  
This paper is structured as follows: Section 2 presents an overview of multi-cloud big 
data applications and the requirements of a MDE approach for it, Section 3 presents 
the approach we put forward in this paper. Section 4 presents a case study involving a 
multi clouds big data application. Section 5 presents the related work and Section 6 
finally concludes.This is your introduction. 

2   Multi-cloud Big data applications & Model Driven Engineering 

 
Fig. 1.  Typical example of multi-cloud big data application. 

Fig 1. illustrates a typical multi cloud big data application. It consists in leveraging 
the stronger points of different cloud offers to build a complex application. In this 
example, we consider a company that wants to leverage the cloud computing Platform 
As A Service (PaaS). The cloud application this company wants to build consists of a 
classic front end along with a database application and a specific back end for data 



crunching. This backend is used to process the data in the application to deliver new 
insights. 

The requirements in terms of short and long term data storage caps, response time 
and programming framework for each part of the application are different. That is 
therefore an opportunity for this company in using different PaaSes, in order to op-
timize the costs of providing the application. 

The main challenge in seizing this opportunity is however in dealing with the het-
erogeneity of the cloud providers. In this specific example, the company would need 
to deal with the different programming languages and frameworks supported by each 
PaaS (e.g. Java JEE in the front end and Java Hadoop for the data crunching 
backend). While the application may be cheap to produce and deploy in the short 
term, the multiplicity of backend technologies may be a threat to its future mainte-
nance [4].  

In this paper we leverage a model driven engineering based approach to seize this 
opportunity. A MDE-based approach allows companies to increase the level of ab-
straction of architecture of the application by means of a model. This model can then 
be used to simplify the development by reducing the required familiarity of develop-
ers with the PaaSes frameworks and maintenance tasks by simplifying tasks such as 
moving data and code to other PaaSes. 

There are however two challenges into coming up with a MDE approach for multi 
cloud big data applications: 

1. What language should we use to model applications?  
The challenge here consists in using a language that includes the abstrac-
tion related to cloud applications, big data and the deployment of such 
application in multi-clouds.  

2. How to make sure this language is low level enough to foster code 
generation? 
The challenge here lies in supporting as much as platforms as possible so 
that one can make sure that the models correspond to the effectively de-
ployed applications. 

3   A UML BASED MDE approach for big data cloud applications 

3.1   General Approach 

As explained in Section 2, the two challenges underlying the use of MDE ap-
proaches for handling the problem of designing multi-cloud applications are: (i) 
choosing a modelling language that is high-level enough to abstract from the concepts 
in different programming languages, and (ii) low level enough to allow for code gen-
eration. We chose the Unified Modelling Language [5] as modelling language since 
its object-oriented roots have been shown to be useful to model a wide range of prob-
lems while still serving as basis for code generation. 

It’s main drawback is however in the complexity of its specification, and therefore 
the steep learning curve that it represents to developers. Our approach to countering 



this drawback consists in selecting a subset of UML suitable to address both chal-
lenges. The subset selected in this paper starts with the subset of the language usually 
reused by code generation tools [6] [7] [8] [9] [10].  

However, reusing UML is not enough: one still needs to represent multi-cloud and 
big data specific concepts. In order to do that, we use the standard extension mecha-
nism of UML called UML profiles. A UML profile allows one to add new concepts to 
the language by extending existing ones. On top of the extended language, we imple-
mented code generators, so that the maps such abstract concepts into working code.  

On the next section, we present the subset of UML we reuse, and the new concepts 
we add to it.  

 
Fig. 2.  Simplified overview of the reused UML subset. 

3.2   UML for modelling multi-cloud applications & data 

Fig 2. shows the subset of UML we reuse to model big data applications. In order 
to represent the architecture of the application, we reuse the concepts in UML class 
diagrams, i.e. applications are represented as Classes along with their Proper-
ties and Associations. Classes are also used to represent data types in a 
cloud provider independent way. Still when it comes to representing big data, one 
needs to represent the data flows that need to be implemented by the application.  

We reuse the UML activity diagram concepts in order to represent the data flow, 
i.e. Activities which are broken down into atomic Actions. Actions have 
input and output Pins, which describe its input and output parameters. 

The deployment of the application is represented by a set of UML object diagram 
concepts, featuring Instances, their relationships (Links) and their base types.   



Fig. 3.  Big Data flow language. Input and output parameters should be rendered as UML input 
and output Pins. 

3.3   UML profile for representing complex big data flows 

An object diagram is made cloud specific by conforming to a fixed structure. At 
the top level, instances represent multiple cloud providers. These instances contain 
other instances that represent either resources provided by the cloud provider in order 
to deploy parts of the application (most commonly on IaaSes) or parts of the applica-
tion itself (most commonly on PaaSes). This way, object diagrams can represent the 
required resources from different clouds, and their interconnection. 

It is important to notice that UML concepts are not sufficient to represent to the 
full extent the details of the architecture, deployment and behaviour of a cloud appli-
cation. For the sake of brevity, in this paper we only present the concepts necessary to 
extend activity diagrams for representing complex big data flows. Extensions of UML 
for representing complex cloud application architecture and deployment are part of 
our ongoing work on the FP7 EU projects REMICS1 and MODAClouds2.  

The UML activity diagram concepts are however not sufficient to represent all big 
data flow concepts. That is why we extended them. Some of the added concepts are 
represented in Fig. 3. These stereotypes were based on the concepts behind the 
PigLatin language [11], which abstracts the data processing works on top of the Ha-

                                                             
1  http://www.remics.eu/ 
2  http://www.modaclouds.eu/ 

Stereotype Input(s) Output 

filter,  split, limit Filtering expression. Split data streams, or  filtered data stream, or limited subset of the data 
stream. 

generate A set of streams and generation 
expression. 

A data stream obtained by application of the generation expression to 
the input streams..  

group A data stream and a grouping criteria. A data stream formed by groups obtained by application of the 
grouping criteria. 

union A set of data streams. A single data stream containing both inputs. 

cross A set of data streams. The cross product of the input streams. 

inner-join,  outer-
join 

A set of data streams and joining 
expressions. 

A joined data stream. 

sample The size and type of sample to generate. A randomly generated data stream. 

order, distinct A data stream. An ordered data stream or a data stream containing only distinct 
elements. 

load, store A data stream. Loads or saves the data stream to a persistency medium. 



doop framework. They extend the UML basic concept of Action providing a big 
data flow processing specific semantic to them. 

 

 
Fig. 4.  Code generation approach. 

As we discussed in Section 2, when it comes to supporting multi-cloud big da-
ta applications, being able to support code generation is as important as supporting 
modelling of such systems. Fig. 4 overviews our code generation approach aiming to 
achieve this objective. 

The code generation approach consists in providing cloud generators upfront, 
along with the definition of the language. In our present case, we experimented with 
code generation for Java EE cloud applications and Hadoop PigLatin map reduce data 
flows. As illustrated in Fig. 4, we use the same UML model, along with the provided 
transformations to generate both target languages.  

4   Case Study 

In this section we put the models and transformations we defined in the previous 
section into action. Notice however that this is a proof of concept that illustrates the 
work that is being performed on the FP7 EU project JUNIPER case studies. To avoid 
publishing sensitive information, we base the present case study in a cloud application 
that can be found in the literature. It consists in the  MiC application (Meeting in the 
Cloud) [12]. The modelling and code generation tools presented here were imple-
mented using the Modelio modelling tool3. 

The MiC application is a social network which allows users to maintain user pro-
files in which they register they topics of interests. The MiC application then groups 

                                                             
3 Modelio, the open source modelling environment. Website: http://www.modelio.org 



users by similarity, allowing users to interact with their “best contacts”, based on 
ratings provided by each user in their profiles.  

The use case we will analyse here is the one of a company that intends to provide 
different levels of service for different categories of users. Some users have paying 
accounts while other have free accounts. The company providing the MiC service 
wants then to support updates to the similarity computing service to paying users as 
fast as possible. In order to do that, it will use a IaaS cloud provider to compute  the 
similarity so that the resources of the provider may adapt to the number of user re-
quests and therefore absorb any increase in demand. For free account users, the com-
pany will resort to a low cost PaaS. This will lead to  minimum cost and management 
costs.  

The challenge is that the selected clouds support different platforms: on the IaaS 
the company may use any technology, while on the low cost PaaS, it needs to use the 
Hadoop crunching platform as a limitation of the PaaS. 
This section intends to show how a MDE approach can help the company in design-
ing the application so that it can be deployed on both clouds. This section  is divided 
into two sections, in the first one, we show the UML models that describe the MiC 
applications and the second the code generation techniques we developed from these 
models. 

4.1   UML Models 

Fig. 7 and Fig. 6 display part of the UML models that describe the MiC applica-
tion. Fig. 7 is divided into three parts:  

• The data model is centred on the UserProfile class that represents a 
profile on the system, and stores the UserRatings provided by the 
user and the UserSimilarity which group profiles by similar rat-
ings. 

• The architecture model shows that there are basically two components 
in the application: the CRUD which is responsible for displaying the 
CRUD user interface and the SimilarityCimputer to update simi-
larity of the users. 

• Finally, the deployment model states that part of the application is de-
ployed on iaas1 and part of it on paas1. The PaaS is used to compute 
the similarity of part of the user base. 

Fig. 6 models part of the behaviour of the SimilarityComputer component. It 
consists in loading user profiles and ratings from the data base, joining them, compu-
ting the means of the ratings and then grouping profiles by similarity. 

4.2  Code Generation 

Fig. 8 displays the generated code for the model described in the previous subsec-
tion. On the right side we see the code generated for the Hadoop cloud and on the left 
side we see the code generated for the Java EE Cloud. Thanks to the MDE approach, 
developers can be sure to find the same behaviour on both clouds. Data types and 



structures are translated accordingly and the code generation makes sure that the data 
flow of both implementations is similar.  

In case a new cloud platform is added on the future, developers will need to spend 
less time re-implementing the same data flow and data structures on the new cloud. 

 

 



 
 
Fig. 8.  Generated Code. 

5   Related Work 

In this section we are going to study similar works in the literature that are used to 
model applications, either related to the high level architecture of the application, its 
deployment or data. We are also going to analyse their support concerning the genera-
tion of running code from the models, and therefore of being suitable to a MDE ap-
proach for big data multi-cloud applications. 

5.1  Architecture modelling languages 

Languages such as SoaML [13]and SoaMF [14] are used to define the high level 
architecture of cloud applications. SoaML defines a MOF metamodel and a UML 
profile while SOMF defines a completely new language for defining service related 
concepts. It reuses and extends the UML concepts of components and ports to define 
respectively the services and their interfaces. SOMF  also  includes  a  sublanguage  
called Cloud  Computing  Modelling Notation  (CCMN),  whose  concepts include  
IaaS, PaaS  and  SaaS  clouds,  and  clouds  of  clouds;  and  service orchestration 
based.  

The main weak point of these languages is that they are not intended to support 
code generation neither the data types manipulated by the application, they are limited 
therefore on high level concepts. 



5.2  Cloud deployment languages 

Some languages focus on providing “DevOps” tools such as Chef [15], Puppet [16] 
and CloudML [17]. They intend to automate the deployment of applications and ser-
vices, as well as the management of cloud capabilities. With  visibility  and  control  
on  both  IaaS  and  PaaS  levels,  developers  can  exploit  the  peculiarities  of  cloud 
solutions at each level of the cloud stack. The main weak point of such languages is 
that they target DevOps, not developers, and therefore do not include the architecture 
and data types of the application, and their impact to its execution. 

Another group of languages uses the existing UML deployment diagrams to model 
the physical distribution of data. As an example we have the work of S. Lujan-Mora 
and J. Trujillo [18]. They define a UML profile that they can use to specify the de-
ployment of Data Warehouses, which can be considered a former kind of private 
clouds, and could be extended to potentially represent multi-cloud big data deploy-
ment. Similarly, data integration tools such as Pentaho [19] and Yahoo! Pipes [20] 
offer visual editors that allow one to describe the partitioning of data in different data 
stores. 

In both categories of work, the data structures are considered but not the architec-
ture of the application, neither the code generation is envisioned. 

5.3  Data Modelling 

Many tools and approaches exist to help data modellers and application developers 
to describe data models. Object oriented models can be produced with the help of 
languages like UML [5] or Entity Relationship models [21], and relational models can 
be produced with the help of the numerous UML Profiles for relational modelling 
[22] [23] [24] [25] [26]. Purely object oriented databases are however rarely used in 
practice when it comes to storing data. Translations between both paradigms were 
created with the purpose of facilitating the use of relational data stores by object ori-
ented applications [22] [27] [28]. This comes with the drawback of the inherent loss 
of information in the translation process. As in the other cases, these languages do not 
support modelling the application platform neither its deployment on the cloud. 

6   Conclusion 

On the one hand the multiplication of cloud providers represents an opportunity to 
companies willing to reduce the costs of maintenance of cloud applications by choos-
ing the set of providers that best adapts to the uses of the application. On the other 
hand, multiple cloud providers come with extra technical requirements on program-
ming languages, data structures and framework support. Integrating data and applica-
tions from different clouds then becomes more and more expensive and complex as 
the number of cloud providers increases. 

In this paper we presented the first steps in dealing with this problem by means of a 
MDE approach. The core of the approach consists in defining a language, based on a 



UML subset, extended with big data analysis specific concepts that can be used to 
generate multi-cloud enabled code to aggregate data in different sources. This ap-
proach is going to be fully implemented in the foregoing year of the JUNIPER FP7 
EU project and will be applied on two industrial case studies. 
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