
Taming the Complexity of Big Data Multi-Cloud
Applications with Models

Marcos Aurélio Almeida da Silva1, Andrey Sadovykh1, Alessandra Bagnato1,
Etienne Brosse1

1 R&D Department, SOFTEAM, 9 Parc Ariane, Guyancourt, France
marcos.almeida@softeam.fr, andrey.sadovykh@softeam.fr, alessandra.bagnato@softeam.fr,

etienne.brosse@softeam.fr

Abstract. Private and public clouds are getting more and more common. With
them comes the need to analyze data stored by different applications in different
clouds. Different clouds and applications tend to enforce the use of different da-
ta stores, which makes it even harder to aggregate information. The main out-
come is that integrating different data sources requires deep knowledge on how
data is stored on each solution and on the trade-offs involved in moving from
one system to another. This paper is part of the ongoing work on the JUNIPER
FP7 EU project (http://www.juniper-project.org/). In that project we explore the
power of modelling tools to simplify the design of industrial big data applica-
tions. In the present work we present an overview of our approach and its appli-
cation on a simple case study.

1 Introduction

The advent of cloud computing and the multiplication of computing and storage
power available to companies gave rise to the so-called big data cloud applications.
The multiplication of cloud offers also lead to a fragmentation in the capabilities of
different providers [1]. Similarly, the multiplication of data management tools lead to
the fragmentation of the data representation paradigms.

Concerning the fragmentation of cloud providers. On the one hand, some compa-
nies are surely in a position to take advantage of that. On the long run, applications
end up with a set of specialized applications, each of them based on a different stack
of tools. The challenge to these companies is then in aggregating the data stored on
different stores, on different providers and behind different systems to support their
business decisions. This challenge stems from the fact that highly specialized devel-
opers are needed to deal with the different stacks and programming languages. Con-
necting them therefore becomes more expensive and complex the more languages and
systems a company needs to integrate.

In this paper we investigate the strengths of model driven engineering (MDE) in
such scenario. Model driven engineering in fact consists in using high level models to
abstract the complexity in an application. MDE techniques excel particularly in deal-
ing with multiple programming languages and frameworks [2] [3]. This is so because
model transformations can encapsulate the complexity involved in the translation of

high level concepts into concepts in other languages, and therefore reduce the necessi-
ty of highly specialized developers and then the cost of integrating disperse data
stores. Models are also useful when dealing with availability time and consistency
constraints by means of model analysis. This is so because high level models on a
single language are much easier to inspect and analyse (either automatically or manu-
ally) than multi-language code.

The main challenge in applying MDE to big data applications relies in finding the
right abstract modelling language that is rich enough to abstract from the specific
features of the connected platforms, but still low level enough to foster code genera-
tion. In the context of big data application this is even harder because, to the best of
our knowledge, no language exists that includes both the concepts necessary to define
the architecture of a cloud application along with its data streaming and analysis in a
high level. This is therefore the main contribution of this paper.

In this paper we present the approach developed as part of the JUNIPER FP7 EU
project. It consists in identifying a subset of the Unified Modelling Language (UML)
and extending it with data analysis and processing concepts so that it is suitable to
both defining the architecture of a big data cloud application and to generate code for
it. Since the project is in the beginning of its second year, in this paper we present the
initial insights and experiments behind the use of a MDE approach to support the
design of multi-cloud big data applications. In order to avoid exposing sensitive de-
tails of the project use cases, in this paper we apply our approach to a similar applica-
tion based on the same principles.
This paper is structured as follows: Section 2 presents an overview of multi-cloud big
data applications and the requirements of a MDE approach for it, Section 3 presents
the approach we put forward in this paper. Section 4 presents a case study involving a
multi clouds big data application. Section 5 presents the related work and Section 6
finally concludes.This is your introduction.

2 Multi-cloud Big data applications & Model Driven Engineering

Fig. 1. Typical example of multi-cloud big data application.

Fig 1. illustrates a typical multi cloud big data application. It consists in leveraging
the stronger points of different cloud offers to build a complex application. In this
example, we consider a company that wants to leverage the cloud computing Platform
As A Service (PaaS). The cloud application this company wants to build consists of a
classic front end along with a database application and a specific back end for data

crunching. This backend is used to process the data in the application to deliver new
insights.

The requirements in terms of short and long term data storage caps, response time
and programming framework for each part of the application are different. That is
therefore an opportunity for this company in using different PaaSes, in order to op-
timize the costs of providing the application.

The main challenge in seizing this opportunity is however in dealing with the het-
erogeneity of the cloud providers. In this specific example, the company would need
to deal with the different programming languages and frameworks supported by each
PaaS (e.g. Java JEE in the front end and Java Hadoop for the data crunching
backend). While the application may be cheap to produce and deploy in the short
term, the multiplicity of backend technologies may be a threat to its future mainte-
nance [4].

In this paper we leverage a model driven engineering based approach to seize this
opportunity. A MDE-based approach allows companies to increase the level of ab-
straction of architecture of the application by means of a model. This model can then
be used to simplify the development by reducing the required familiarity of develop-
ers with the PaaSes frameworks and maintenance tasks by simplifying tasks such as
moving data and code to other PaaSes.

There are however two challenges into coming up with a MDE approach for multi
cloud big data applications:

1. What language should we use to model applications?
The challenge here consists in using a language that includes the abstrac-
tion related to cloud applications, big data and the deployment of such
application in multi-clouds.

2. How to make sure this language is low level enough to foster code
generation?
The challenge here lies in supporting as much as platforms as possible so
that one can make sure that the models correspond to the effectively de-
ployed applications.

3 A UML BASED MDE approach for big data cloud applications

3.1 General Approach

As explained in Section 2, the two challenges underlying the use of MDE ap-
proaches for handling the problem of designing multi-cloud applications are: (i)
choosing a modelling language that is high-level enough to abstract from the concepts
in different programming languages, and (ii) low level enough to allow for code gen-
eration. We chose the Unified Modelling Language [5] as modelling language since
its object-oriented roots have been shown to be useful to model a wide range of prob-
lems while still serving as basis for code generation.

It’s main drawback is however in the complexity of its specification, and therefore
the steep learning curve that it represents to developers. Our approach to countering

this drawback consists in selecting a subset of UML suitable to address both chal-
lenges. The subset selected in this paper starts with the subset of the language usually
reused by code generation tools [6] [7] [8] [9] [10].

However, reusing UML is not enough: one still needs to represent multi-cloud and
big data specific concepts. In order to do that, we use the standard extension mecha-
nism of UML called UML profiles. A UML profile allows one to add new concepts to
the language by extending existing ones. On top of the extended language, we imple-
mented code generators, so that the maps such abstract concepts into working code.

On the next section, we present the subset of UML we reuse, and the new concepts
we add to it.

Fig. 2. Simplified overview of the reused UML subset.

3.2 UML for modelling multi-cloud applications & data

Fig 2. shows the subset of UML we reuse to model big data applications. In order
to represent the architecture of the application, we reuse the concepts in UML class
diagrams, i.e. applications are represented as Classes along with their Proper-
ties and Associations. Classes are also used to represent data types in a
cloud provider independent way. Still when it comes to representing big data, one
needs to represent the data flows that need to be implemented by the application.

We reuse the UML activity diagram concepts in order to represent the data flow,
i.e. Activities which are broken down into atomic Actions. Actions have
input and output Pins, which describe its input and output parameters.

The deployment of the application is represented by a set of UML object diagram
concepts, featuring Instances, their relationships (Links) and their base types.

Fig. 3. Big Data flow language. Input and output parameters should be rendered as UML input
and output Pins.

3.3 UML profile for representing complex big data flows

An object diagram is made cloud specific by conforming to a fixed structure. At
the top level, instances represent multiple cloud providers. These instances contain
other instances that represent either resources provided by the cloud provider in order
to deploy parts of the application (most commonly on IaaSes) or parts of the applica-
tion itself (most commonly on PaaSes). This way, object diagrams can represent the
required resources from different clouds, and their interconnection.

It is important to notice that UML concepts are not sufficient to represent to the
full extent the details of the architecture, deployment and behaviour of a cloud appli-
cation. For the sake of brevity, in this paper we only present the concepts necessary to
extend activity diagrams for representing complex big data flows. Extensions of UML
for representing complex cloud application architecture and deployment are part of
our ongoing work on the FP7 EU projects REMICS1 and MODAClouds2.

The UML activity diagram concepts are however not sufficient to represent all big
data flow concepts. That is why we extended them. Some of the added concepts are
represented in Fig. 3. These stereotypes were based on the concepts behind the
PigLatin language [11], which abstracts the data processing works on top of the Ha-

1 http://www.remics.eu/
2 http://www.modaclouds.eu/

Stereotype Input(s) Output

filter, split, limit Filtering expression. Split data streams, or filtered data stream, or limited subset of the data
stream.

generate A set of streams and generation
expression.

A data stream obtained by application of the generation expression to
the input streams..

group A data stream and a grouping criteria. A data stream formed by groups obtained by application of the
grouping criteria.

union A set of data streams. A single data stream containing both inputs.

cross A set of data streams. The cross product of the input streams.

inner-join, outer-
join

A set of data streams and joining
expressions.

A joined data stream.

sample The size and type of sample to generate. A randomly generated data stream.

order, distinct A data stream. An ordered data stream or a data stream containing only distinct
elements.

load, store A data stream. Loads or saves the data stream to a persistency medium.

doop framework. They extend the UML basic concept of Action providing a big
data flow processing specific semantic to them.

Fig. 4. Code generation approach.

As we discussed in Section 2, when it comes to supporting multi-cloud big da-
ta applications, being able to support code generation is as important as supporting
modelling of such systems. Fig. 4 overviews our code generation approach aiming to
achieve this objective.

The code generation approach consists in providing cloud generators upfront,
along with the definition of the language. In our present case, we experimented with
code generation for Java EE cloud applications and Hadoop PigLatin map reduce data
flows. As illustrated in Fig. 4, we use the same UML model, along with the provided
transformations to generate both target languages.

4 Case Study

In this section we put the models and transformations we defined in the previous
section into action. Notice however that this is a proof of concept that illustrates the
work that is being performed on the FP7 EU project JUNIPER case studies. To avoid
publishing sensitive information, we base the present case study in a cloud application
that can be found in the literature. It consists in the MiC application (Meeting in the
Cloud) [12]. The modelling and code generation tools presented here were imple-
mented using the Modelio modelling tool3.

The MiC application is a social network which allows users to maintain user pro-
files in which they register they topics of interests. The MiC application then groups

3 Modelio, the open source modelling environment. Website: http://www.modelio.org

users by similarity, allowing users to interact with their “best contacts”, based on
ratings provided by each user in their profiles.

The use case we will analyse here is the one of a company that intends to provide
different levels of service for different categories of users. Some users have paying
accounts while other have free accounts. The company providing the MiC service
wants then to support updates to the similarity computing service to paying users as
fast as possible. In order to do that, it will use a IaaS cloud provider to compute the
similarity so that the resources of the provider may adapt to the number of user re-
quests and therefore absorb any increase in demand. For free account users, the com-
pany will resort to a low cost PaaS. This will lead to minimum cost and management
costs.

The challenge is that the selected clouds support different platforms: on the IaaS
the company may use any technology, while on the low cost PaaS, it needs to use the
Hadoop crunching platform as a limitation of the PaaS.
This section intends to show how a MDE approach can help the company in design-
ing the application so that it can be deployed on both clouds. This section is divided
into two sections, in the first one, we show the UML models that describe the MiC
applications and the second the code generation techniques we developed from these
models.

4.1 UML Models

Fig. 7 and Fig. 6 display part of the UML models that describe the MiC applica-
tion. Fig. 7 is divided into three parts:

• The data model is centred on the UserProfile class that represents a
profile on the system, and stores the UserRatings provided by the
user and the UserSimilarity which group profiles by similar rat-
ings.

• The architecture model shows that there are basically two components
in the application: the CRUD which is responsible for displaying the
CRUD user interface and the SimilarityCimputer to update simi-
larity of the users.

• Finally, the deployment model states that part of the application is de-
ployed on iaas1 and part of it on paas1. The PaaS is used to compute
the similarity of part of the user base.

Fig. 6 models part of the behaviour of the SimilarityComputer component. It
consists in loading user profiles and ratings from the data base, joining them, compu-
ting the means of the ratings and then grouping profiles by similarity.

4.2 Code Generation

Fig. 8 displays the generated code for the model described in the previous subsec-
tion. On the right side we see the code generated for the Hadoop cloud and on the left
side we see the code generated for the Java EE Cloud. Thanks to the MDE approach,
developers can be sure to find the same behaviour on both clouds. Data types and

structures are translated accordingly and the code generation makes sure that the data
flow of both implementations is similar.

In case a new cloud platform is added on the future, developers will need to spend
less time re-implementing the same data flow and data structures on the new cloud.

Fig. 8. Generated Code.

5 Related Work

In this section we are going to study similar works in the literature that are used to
model applications, either related to the high level architecture of the application, its
deployment or data. We are also going to analyse their support concerning the genera-
tion of running code from the models, and therefore of being suitable to a MDE ap-
proach for big data multi-cloud applications.

5.1 Architecture modelling languages

Languages such as SoaML [13]and SoaMF [14] are used to define the high level
architecture of cloud applications. SoaML defines a MOF metamodel and a UML
profile while SOMF defines a completely new language for defining service related
concepts. It reuses and extends the UML concepts of components and ports to define
respectively the services and their interfaces. SOMF also includes a sublanguage
called Cloud Computing Modelling Notation (CCMN), whose concepts include
IaaS, PaaS and SaaS clouds, and clouds of clouds; and service orchestration
based.

The main weak point of these languages is that they are not intended to support
code generation neither the data types manipulated by the application, they are limited
therefore on high level concepts.

5.2 Cloud deployment languages

Some languages focus on providing “DevOps” tools such as Chef [15], Puppet [16]
and CloudML [17]. They intend to automate the deployment of applications and ser-
vices, as well as the management of cloud capabilities. With visibility and control
on both IaaS and PaaS levels, developers can exploit the peculiarities of cloud
solutions at each level of the cloud stack. The main weak point of such languages is
that they target DevOps, not developers, and therefore do not include the architecture
and data types of the application, and their impact to its execution.

Another group of languages uses the existing UML deployment diagrams to model
the physical distribution of data. As an example we have the work of S. Lujan-Mora
and J. Trujillo [18]. They define a UML profile that they can use to specify the de-
ployment of Data Warehouses, which can be considered a former kind of private
clouds, and could be extended to potentially represent multi-cloud big data deploy-
ment. Similarly, data integration tools such as Pentaho [19] and Yahoo! Pipes [20]
offer visual editors that allow one to describe the partitioning of data in different data
stores.

In both categories of work, the data structures are considered but not the architec-
ture of the application, neither the code generation is envisioned.

5.3 Data Modelling

Many tools and approaches exist to help data modellers and application developers
to describe data models. Object oriented models can be produced with the help of
languages like UML [5] or Entity Relationship models [21], and relational models can
be produced with the help of the numerous UML Profiles for relational modelling
[22] [23] [24] [25] [26]. Purely object oriented databases are however rarely used in
practice when it comes to storing data. Translations between both paradigms were
created with the purpose of facilitating the use of relational data stores by object ori-
ented applications [22] [27] [28]. This comes with the drawback of the inherent loss
of information in the translation process. As in the other cases, these languages do not
support modelling the application platform neither its deployment on the cloud.

6 Conclusion

On the one hand the multiplication of cloud providers represents an opportunity to
companies willing to reduce the costs of maintenance of cloud applications by choos-
ing the set of providers that best adapts to the uses of the application. On the other
hand, multiple cloud providers come with extra technical requirements on program-
ming languages, data structures and framework support. Integrating data and applica-
tions from different clouds then becomes more and more expensive and complex as
the number of cloud providers increases.

In this paper we presented the first steps in dealing with this problem by means of a
MDE approach. The core of the approach consists in defining a language, based on a

UML subset, extended with big data analysis specific concepts that can be used to
generate multi-cloud enabled code to aggregate data in different sources. This ap-
proach is going to be fully implemented in the foregoing year of the JUNIPER FP7
EU project and will be applied on two industrial case studies.

Acknowledgements

The research reported in this article is partially supported by the European Com-
mission grant no. FP7-ICT-2011-8- 318763 (JUNIPER).

References

1. R. Prodan and S. Ostermann, "A survey and taxonomy of infrastructure as
a service and web hosting cloud providers," in 10th IEEE/ACM International
Conference on Grid Computing, 2009.

2. P. Baker, S. Loh and F. Weil, "Model-Driven Engineering in a Large
Industrial Context: Motorola Case Study," in Model Driven Engineering
Languages and Systems, Springer Berlin Heidelberg, 2005, pp. 476-491.

3. F. Fleurey, E. Breton, B. Baudry, A. Nicolas and J.-M. Jézéquel, "Model-
Driven Engineering for Software Migration in a Large Industrial Context,"
in Model Driven Engineering Languages and Systems, Springer Berlin
Heidelberg, 2007, pp. 482-497.

4. T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld and M.
Jazayeri, "Challenges in software evolution," in Eighth International
Workshop on Principles of Software Evolution, 2005.

5. OMG, "UML: OMG Unified Modeling Language (OMG UML)
Superstructure, Version 2.4.1," 2001.

6. "ArgoUML Code Generation Window," [Online]. Available:
http://argouml.tigris.org/tours/classgen.html. [Accessed 14 January 2014].

7. [Online]. Available: http://www.nomagic.com/products/magicdraw.html.
8. "IBM," [Online]. Available: https://www-

304.ibm.com/support/docview.wss?uid=swg21259513. [Accessed 14
January 2014].

9. "Modelio," [Online]. Available: http://www.modeliosoft.com/en/modelio-
store/modules/generators/java-designer-open-source.html.

10. "Uml to Java Generator 2.0.2," [Online]. Available:
http://marketplace.eclipse.org/content/uml-java-generator#.UtPwpfRDvfk.
[Accessed 14 January 2014].

11. "Pig Latin Reference Manual," [Online]. Available:
http://pig.apache.org/docs/r0.7.0/piglatin_ref1.html. [Accessed 14 January
2014].

12. G. F., L. D., S. Y. M., A. D. and D. N. E., "An Approach for the
Development of Portable Applications on PaaS Clouds," in Proceedings of
the 3rd International Conference on Cloud Computing and Service Science
(CLOSER 2013), 2013.

13. OMG, "Service oriented architecture Modeling Language (SoaML),"
2009..

14. B. Michael, "Introduction to Service-Oriented Modeling," in Service-
Oriented Modeling: Service Analysis, Wiley & Sons.

15. "Chef," [Online]. Available: http://www.opscode.com/chef/.
16. [Online]. Available: https://puppetlabs.com/.
17. [Online]. Available: http://cloudml.org/.
18. J. T. Sergio Luján-Mora, "Physical Modeling of Data Warehouses Using

UML Component and Deployment Diagrams: Design and Implementation
Issues," Database Management, pp. 12-42, 2006.

19. [Online]. Available: http://www.pentaho.com/.
20. [Online]. Available: http://pipes.yahoo.com/pipes/.
21. C. Batini, S. Ceri and S. B. Navathe, Conceptual Database Design, an

Entity-Relationship Approach, Benjamin and Cummings Publ. Co., 1992.
22. [Online]. Available: http://argouml-db.tigris.org/.
23. Rational, "The UML and Data Modeling," [Online]. Available:

http://bit.ly/15hxqgj.
24. [Online]. Available:

http://www.modeliosoft.com/en/modules/sqldesigner.html.
25. D. Gorni, "UML Data Modeling Profile," 2002. [Online]. Available:

http://bit.ly/VYJVGw.
26. D. Silingas and S. Kaukenas, "Applying UML for Relational Data," 2004.

[Online]. Available: http://bit.ly/VkrNtw.
27. "Relational Persistence for Java and .NET," [Online]. Available:

http://hibernate.org.
28. Oracle, "Java™ Persistence 2.0, JSR 317".
29. S. Gilbert and N. Lynch, "Brewer’s conjecture and the feasibility of

consistent, available, partition-tolerant web services," SIGACT News, pp. 51-
59, 2002.

