
Putting Real Production Software in the Loop,
Methodologies Enabling SW Co-Development Between

OEMs and Tier 1s

David Bailey, Guillaume Francois and Gregory Nice

ETAS GmbH Borsigstrasse 14, 70469, Stuttgart, Germany
David.bailey@etas.com, Guillaume.Francois@etas.com

Abstract. With software gaining importance as the main contributor both to
functionality and differentiation in the automotive market place and its rele-
vance to quality, safety and customer satisfaction, its place in the development
process and the methods available to ensure short development cycles and a
simultaneously high level of quality are coming under strain. Both model-
based and abstracted code – not specific to the final production target, are in use
in the earlier phases but these often do not provide code which is testable in a
meaningful way for the final product. In this paper we will explore methodolo-
gies which allow target independent code to be produced and managed as a
product within the development process – establishing clear linkage between
development code and the final product and accountability and traceability
throughout the process. We will leverage the increasing implementation of Au-
tosar and proliferation of model based sw development techniques in the pro-
cess.

1 Introduction

The past ten years has seen an exponential growth in the amount of software going
into vehicles both to perform and improve core functionality, such as fueling, com-
bustion control, valve actuation and breaking as well as to extend the capability of the
vehicle with advanced driver assistance, connections to roadside, service bay and
ubiquitous wireless infrastructure bringing the Internet in ever-closer connection with
the Automotive control system. At the same time the era of “Mass Customisation”
has bred a generation of consumers who increasingly look, not only to purchase the
latest and best technologies but who also expect to be able to configure products in
the way that suits them and their life-style. This has driven an exponential growth in
product variants and as a consequence software variants that require managing
throughout the product life-cycle. One would think that this would be sufficient to
present challenges to an industry which has adopted electronic control as recently as
the 1980’s but on top of these challenges customers expect ever higher levels of safe-
ty and concern for the environment. This has also lead governments to increasingly

legislate in the areas of safety, emissions and sustainability in developed markets
adding to the cost-burden on Western OEMS to get their products into markets.
Whilst there is no doubt that high and ultra-high end technology is coming to the
market in the shape of Teslas, Bugattis, and other high-end products, there is also a
diametrically opposed trend occurring in parallel for simplicity and functionality both
with the requirement to address the needs of the first-time vehicle purchaser in India
or China and with a new generation of consumers in the West where the vehicle no-
longer represents a status symbol but rather is regarded as a method for getting from
A-B with as little fuss as possible, preferably with access to Facebook and Twitter.

To address all of these demands simultaneously is the reason why the Automotive
industry must embrace a paradigm shift in its thinking, costing and planning for prod-
uct development. The differentiators in the market are increasingly software based as
are the potential risks of damage to brand and future viability for firms if Software is
not managed with the same regard for safety and quality as any other component in
the vehicle. In addition the OEM is increasingly playing the roll of systems integrator
not only on the vehicle level but also at the level of individual ECU. Integrating
software developed, in house, by a tier 1 and by 3rd party specialized suppliers in one
mechatronic system. This fact also drives a demand for a consistency of architecture,
interfaces and lifecycle management to ensure quality and traceability in the entire
process

2 From V-Cycle to Model Based to Agile.

Fig. 1. From the V-Cycle to “Agile”

Considering both the driver for time to market and the requirement to manage, in-
tegrate and test software components to the required quality levels has necessitated
both Tier 1s and OEMs to restructure their development processes in significant ways.
From a high level requirement a feature or function within the system is typically
modelled. Since there is no universal modelling tool – this typically involves a range
of modelling tools in complete system, ranging from specialized environments such
as Ricardo WAVE or GT-Power from Gama Technologies, to Simulink to C-code.
There then follows an iterative development process around the function where the
model function is refined until such time as the functional developer is satisfied that
the desired functionality is reliably performed. At this stage it is not a given that the
Functional model is perfect – rather that it appears perfect in the environment under
which it is tested. Therefore it is essential to manage within this phase; model vari-
ants, configurations, tool versions and data-sets so that the finalized functional model
can be reproducibly brought back into a further iteration step if an issue is found dur-
ing the further development and validation stages.

Here we are already at a level where most OEMs and Tier 1s widely collaborate in the
software development process. Namely sharing IP and functional specification on a
model level. A desired function is developed by an OEM. It is tested in a Model-in-
the-loop-environment with the associated plant, behavioural and environmental mod-
els. The Functional Model is then provided to the Tier 1 for further integration testing
and is either converted into a further, more suitable form for model-based code gener-
ation directly or hand-coded in C before integration within the software build process
for a specific ECU and target processor.

The challenges here for process integrity and traceability are significant.

Firstly the range and variety of models, tools, versions, configurations and associated
data-sets is both broad and numerous.

Secondly the tested function model – which acts as a specification for the Tier 1 omits
information and configuration steps with the rest of the software system and potential-
ly also the mechatronic system that may have an effect on the specified feature “in-
situ” within the overall system. Of these, OS behavior, interaction with other SW
components within the system, for example diagnostic modules, execution order and
quantisation effects are frequently areas where discrepancies between the “perfect”
behaviour in the function is followed by implementations of the series-intent code
which end up behaving differently in the target.

This fact has driven both the drive for common ECU SW architectures such as Genivi
and more importantly for control systems, AUTOSAR and a range of tooling that
enables pre-Autosar architecture to be tested in a common environment that can be
shared between both OEM and Tier 1 that takes account as many of the areas for
potential divergence in functional behavior between the target and the pure model-
level environment.

3 The Virtual and Rapid Prototyping Environments

Fig. 2. A Virtual and Rapid Prototyping Environment

The requirements that therefore arise out of 1) The desire to develop in an agile way
to improve quality and time to market and 2) The requirement to share and validate
implementations of the functional specification in a meaningful way, lead to the re-
quirement and productive use of Virtual and Rapid Prototyping environments at both
Tier 1 & OEM. For these a number of essential features apply.

• Functional, behavioural, plant and environmental models need to be integrat-

ed in a common environment.

• This environment needs to provide features which allow the testing of
changes to configurations in the OS configuration and other sw modules
within the system in a manner which is as close as possible to the behav-
ior which will be seen in the final target.

• A seamless transition between the prototype code and a real control system is

also highly desirable to enable a functional test within a Real-Time active
control system and potentially a base target ECU where the ECU code it-
self is not complete or not yet modified for the intended use case. In this
case the environment should also support compiling to code for compu-
ting modules which process the function in parallel to the existing code

running on the ECU by means of software hooks and bypasses which al-
low a first – low effort integration of the new sw function into the control
systems without going through a complete ECU software build.

Virtual Prototyping Rapid Prototyping

Non real-time: Runs as fast as
possible or with time scale. No
connection to the real world. No I/O
No communication buses

Meets hard real-time conditions

Stimuli or plant model required Interacts with the real world.
Comprehensive support for
peripherals, analog and digital I/O
& communication buses

Used for early validation and pre-
calibration on the Windows® PC on
the developer’s desk

Validation and calibration
on the test bench or on the road

Fig. 3 Virtual vs Rapid Prototyping

4. Typical Process Steps in SW Sharing Projects between a Tier 1
and an OEM

Fig. 4 Typical Process Steps in a Project employing software sharing between an
OEM & Tier 1

Step 1 in the process usually involves the Tier 1. In most cases the Tier 1 will have
existing tooling and methodologies for allowing their Platform software and Applica-
tion software to run on a PC. In this particular case the Tier 1 uses the same OSEK
OS or Autosar OS and RTE and compiles it for the PC target. If the aim is to test
primarily on a functional level then software modules or groups of software modules
(Functional Components or “FC”s) are compiled as .dlls capable of being integrated
within the virtual prototyping environment via an Autosar RTE or an “RTE like” run-
time environment that also supports legacy APIs and API calls. This is usually the
role of the Tier 1 or the party which has the most responsibility in the project for SW
development and integration. Again the ECU artifacts and the PC runnables need to
be mapped and managed to ensure, traceability, repeatability and accountability. Fre-
quently software components need to be stubbed to provide and interface to models or
other stimuli instead of an interface to genuine HW.

Step 2. Is to prepare the plant. This involves deciding and selecting the required

models and stimuli required within the environment to be able to test the SuT with the
required test coverage and depth. The required data-sets, parameterization, models
and other stimuli also need to be managed with the same regard as the software com-
ponents mentioned above. This task is usually carried out by the party responsible for

the validation environment, frequently a 3rd party with a close working relationship
with both Tier 1 and OEM. However both Tier 1 and OEM can frequently assume
this role entirely or partly according to where the domain knowledge for the systems
being modelled in the environment lie.

Step 3. Is to integrate the environment. This entails combining the simulation and

the system under test within the test environment – mapping models and other stimuli
to software component interfaces and integrating other tooling required for the test
procedure – for example, calibration tooling, version and configuration management
tooling, bus-analysis tooling and test automation tooling. This usually lies within the
competency of the party responsible for the environment, in most cases a 3rd party.

Step 4 Is to define and provide the required test strategies and methodologies.

These are usually provided by a 3rd party with input as required from both tier 1 and
OEM

Step 5. The operational use of the SIL system is usually and OEM activity –

nevertheless as with other test activities it can frequently be completely outsourced to
a 3rd Party with the OEM or Tier 1 customer providing simply a list of requirements
to be tested and the Pass/fail criteria. The system itself may also be employed at dif-
ferent departments within one OEM with various aims and work-splits. For example
for pre-calibration or use within the OEMs own functional development process
where the SIL environment provides a high-fidelity replication of the system as it will
operate in the final series target.

5 Bringing Autosar and Agile Together

So far we have only considered the possibilities widely in use today based on the
predominant sw architectures in series production at OEMs. Today and especially in
the realms of Powertrain, ADAS, Chassis and Drivetrain are predominantly based on
a software architecture proprietary to the Tier 1 or to the OEM. Whilst many Tier 1s
offer an “Autosar Sandbox” for their OEM customers which allow easy integration
with their legacy software – the vast majority of the code in these areas is legacy.
However the move to Autosar is happening and happening rapidly even in these areas
and at the very minimum a very good interface is required between the legacy archi-
tecture and Autosar in order to allow both migration of functions between architec-
tures and reliable operation in the series target where a mixed architecture is em-
ployed. As far as the SIL environment is concerned this step towards Autosar offers a
range of new possibilities that were only achievable before with a level of effort pro-
hibitory to implementation in the past.

Fig. 5 Agile in Automotive is enabled by Autosar

The first major benefit brought by the shift to Autosar is that most Automotive Silicon
today is delivered with a HW abstraction layer that supports the Autosar standard (ie
an Autosar MCAL). As this has been so for a number of years a large amount of the
code, Autosar or not, is already using a target independent API for communication
with the microprocessor. This has significantly reduced the amount of stubbing re-
quired to enable code to be portable to the PC and also increased the portability of
projects between processor platforms.

The RTE is non-target specific anyway, so any software in the system using the

RTE for communication can be compiled 1 to 1 either for a real target or for the PC.
Assuming there is a port of the OS for the PC available which allows for the same
degree of configuration as on the target and an API or other communication mecha-
nism by which other (non Autosar) Software components and elements within the
environment (models, stimuli, test tools) then it is already significantly less, if not low
effort to provide a build chain which is capable of taking the ECU artifacts intended
for the series target and compiling these 1 to 1 for a PC based virtual validations plat-
form. This, to the extent that it is not only possible off-the-shelf with full Autosar
architectures but also extremely cost effective even with significant legacy content
due to the fact that the system can be run and tested and developed against at very
high fidelity, in Real Time or faster than real time. This has the corollary that many
of the test activties that previously required real ECU HW, real engines and real vehi-
cles to carry out can now be contemplated on the desktop. Thus offering a truly huge
potential to cut time, effort and corresponding costs from the entire development
process.

Fig. 6 The same SW can be compiled for any target at any stage of development

Aside from the obvious benefits of being able to front-load the development

process, a number of other advantages emerge, some esoteric and some banal but all
bringing a degree of much needed rationalisation to the exponentially growing
demands within the industry. On the banal side – testing and development resources
are spread throughout the world – fortunately or unfortunately there is no truly global
market established so customs officials, especially in some of the lower-wage
economies where development and testing is typically carried out, still have an
interest to arrest, inspect and delay development and prototype ECUs and
components. On average delivery time between a development centre is Germany
and India ranges from 1-3 months. On the more esoteric side, once the control system
is available on the PC steps to integrate this with Android, Genivi or other OS in a
multicore envirnoment to address connected vehicle development becomes much
more simple. Most crucially writing, testing and proving that code is safe has become
key, since the systems we drive our children around in are controlled by the software
that we produce.

If we consider some of the issues arising our of Philip Koopman and Michael

Barrs analysis of Toyota’s software presented in the case “Bookout & Schwarz v
Toyota”, most of the issues raised concern fundamental flaws in design and
architecture that can only be address at the deeply embedded level. Therefore there is
an increasing demand that the virtual validation methods we use are as close to reality
as possible. In todays model-based world, which is largely regarded as state of the art

there is increasing testing on that level but without the ability to dive down into the
behaviour at the lower levels and here there are plenty of banana-skins lurking.

Fig. 7 APIs offering access to all levels of the sw architecture from external test
tooling and simulation enviroments

6 Conclusion

The number, complexity and scope of embedded control systems in the vehicle is
increasing exponentially. These systems now perform the key functions of the vehi-
cle so software has to perform on all levels – primarily of course with regard to safety,
but also with respect to fulfilling customer requirements with regard to features, dif-
ferentiation and reliability. To put this in context a 737 Airliner contains 6,5 Million
lines of code. The latest S-class from Daimler contains over 20 million. In terms of
driving or flying hours the average platform racks up 1000x more flying hours than
the entire fleet of Boeing 737s has flown since 1968. Whilst it must be conceded that
not all of these systems are safety critical – the importance of introducing rapid itera-
tion cycles and traceability throughout the development process cannot be underesti-
mated. This can only be achieved with a paradigm shift in the industry with regard to
the way software is regarded, developed and managed – with the same importance or
more than any other part of the vehicle. If the automotive industry does not step up to
the challenge then increasingly it is looking as if others will do so in its stead.

References

1. http://www.safetyresearch.net/blog/articles/toyota-unintended-acceleration-and-big-bowl-
%E2%80%9Cspaghetti%E2%80%9D-code

2. http://www.safetyresearch.net/Library/BarrSlides_FINAL_SCRUBBED.pdf

3. Pavey & Winsborrow, “Demonstrating Equivalence of Source Code and PROM Contents”,

Computer Journal Vol 36, No 7, 1993

4. Charette, “This car runs on code”, IEEE Spectrum, Feb 2009

