
Correct by Prognosis: Methodology for a
Contract-based Refinement of Evolution Models ?

Christoph Etzien and Tayfun Gezgin

OFFIS, Escherweg 2,
26121 Oldenburg, Germany,

{christoph.etzien,tayfun.gezgin}@offis.de

Abstract. The scope of this paper is collaborative, distributed safety
critical systems which build up a larger scale system of systems (SoS).
Systems in this context are independently designed and can operate au-
tonomously following both global SoS goals and individual goals. A major
aspect of SoSs is the evolution over time, i.e. the change of its architec-
ture as a result of changes in the context of the SoS or the changes of
individual or global goals. The aim of this paper is to define a modeling
concept for evolution specifying all possible changes of the SoS over time.
This evolution model is used to generate and analyze future architectures
enabling the prediction of future violations of static specifications. We
derive so called dynamicity contracts and restrict the evolution model in
such a manner, that false architectures are not reached.

1 Introduction

In recent years the co-operations and inter-connections between individual, ge-
ographically distributed systems heavily increased, leading to a new paradigm
called Systems of Systems (SoSs). Also in safety critical areas the significance
of these topics increased. As an example, much effort has been invested in the
development of Car-to-Car communications with the aim to increase the safety
in traffic and optimize traffic flows. Another example is the dynamic partitioning
of the airspace with respect to time investigated in the SESAR (Single Euro-
pean Sky ATM Research) program. The recent partitioning of the airspace is
performed in a statical manner with respect to time, i.e. the trajectories are
not changed during the whole landing approach and the take off. The shift to
a dynamic partitioning, which is called 4D-trajectories, involves a much more
intensive co-operation between the tower and each airplane.

To distinguish between complex systems and SoSs, Mark Maier defined a
set of characteristics [1], like the geographical distribution or the operational
independence. The more a system exhibits these characteristics, the more it is an
? This work was supported in part by European Commission for funding the Large-
scale integrating project (IP) proposal under the ICT Call 7 (FP7-ICT-2011-7) "De-
signing for Adaptability and evolutioN in System of systems Engineering (DANSE)"
(No. 287716).

SoS. The main characteristic we are interest in is the evolutionary development,
i.e. the change of the architecture of an SoS during its lifetime. A model for the
evolutionary development can be created based on prognosis on possible future
evolutions of the SoS. As an example, statistical data could be used to do a
prognosis on the future traffic density in a district of a city. We propose graph
grammars to model the possible evolutions of an SoS. These transformations
could also be specified via temporal logics as we proposed in [2]. However, the
specification with graph grammars is more intuitive than temporal logic.

Graph grammars describe the adaption to a context change in form of trans-
formation rules. With these transformation rules the inter-connections of the con-
stituent systems and thereby their roles and interaction protocols are changed.
The trigger of such transformation rules are the constituent systems itself: When
systems adapt or change their local goals and thus affect their local behavior,
change their services offered to the environment, or need some services from their
local environment, a request to change some parts of the SoS architecture are
triggered from the corresponding constituent systems. In [2] we already discussed
the initiations for transformation rules from constituent systems.

Besides the evolution model, we will consider static specifications of SoSs by
contracts defining invariants and constraints on the architecture of the SoS. An
example for a static contract is that systems applying inconsistent roles should
not co-operate. The set of static contracts of an SoS defines all legal architec-
tures of this SoS. Beginning with an initial SoS architecture, the evolution model
successively generates a set of successor architectures. Transformations are ap-
plied locally resulting in sequences of transformations which could lead to an
architecture violating the static contracts. In this paper, we derive so called dy-
namicity contracts which restrict the dynamics of the evolution model of the SoS
to prevent the SoS entering an architecture which violates its static specification.
We extend this approach by tolerating a finite set of intermediate architectures,
which violate the static specifications. These intermediate architectures have to
be left finally and a safe architecture has to be reached within a specified num-
ber of changes. The idea to allow temporarily intermediate faulty architectures
is inspired by the fault tolerance time intervals defined in the ISO 26262 [3].
After the occurrence of a fault, a safe system state has to be reached within a
defined time interval. If this interval exceeded, an hazardous event could occur.

To model the static architecural part of an SoS we use the UPDM framework
[4]. UPDM is a unified Profile for DoDAF (Department of Defence Architecture
Framework) and MODAF (Ministry of Defence Architectural Framework). It
supports the capabilities to model architectures of complex systems, system of
systems, and service oriented architectures. Beside milestones, no dynamicity
aspects of systems of systems were considered in this framework.

1.1 Related work

In [5] a method for modeling and analyzing the dynamicity for multi-hop ad hoc
networks was presented. Statistical estimation theory was applied to model the so
called configuration of a multi-hop wireless network. In [6] a supporting model

called dynamicity aware graph relabeling system is introduced. This model is
used for ad-hoc networks to take mobility into account. Ultra large scale systems
are the topic of [7], where the main characteristics are captured and specified,
e.g. decentralized control, conflicting requirements, and continuous evolution.
In [8] some major issues in self-coordinating systems are depicted. The main
statement is that a tight integration of all disciplines in the development process
of such large scale self-coordinating systems has to be established. An approach
for the design and analysis of multi-agent systems was presented in [9]. Agents are
able to sense and manipulate specific aspects of the environment. Sets of agents
form community types, which interact in the modeled environment with some
interaction specifications. In [10] self-adaptive systems were presented. Initially
a system architecture with defined components, their interfaces, and a set of
coordination pattern is given. Coordination pattern define protocols between
components via roles. Reconfigurations are defined via graph transformation
rules and are initiated by environmental changes.

Automatic verification of the real-time behavior including the reconfiguration
is supported by CHARON [11], Masaccio [12], and Mechatronic UML [13]. There
are some approaches for modeling the structural aspects of adaptive systems [14,
15] or the behavioral aspects [16, 17] but none of them consider both aspects.

1.2 Outline
The following section introduces the fundamentals of our work, i.e. the considered
modeling formalism called UPDM, the contract-based specification formalism,
and the formalisms needed to express transformations. Section 3 illustrates our
approach to derivate dynamicity contracts in order to prevent the SoS to evolve
in architectures which violate its static specification. In Section 4 we illustrate our
implementation and give some example scenarios. Finally, Section 5 concludes
the paper and discusses some further work.

2 Fundamentals

The basic modeling elements of our approach are components as structural ele-
ments, and graph grammars. Our components are enriched by so called contracts,
specifying the allowed context of a component and its guaranteed behaviour.
Components and contracts are detailed in the following section.

2.1 Contract-based Modelling

We use Heterogenous Rich Components (HRCs) [18, 19] to model systems and
its artifacts in a black box manner. The dynamics of an HRC can be specified by,
e.g., an external behavior model. For each HRC a set of specifications in terms of
contracts [20] is defined. A contract is a pair consisting of an assumption (A) and
a guarantee (G). The assumption specifies how the context of the component,
i.e. the environment from the point of view of the component, should behave.
Only if the assumption holds, then the component will behave as guaranteed.

The system decomposition can be verified with respect to contracts without the
knowledge of the concrete implementation. The specification of both assump-
tions and guarantees can be provided based on a pattern based language like
introduced in [21].

Having a formal specification for the component and its sub-components the
so called Virtual Integration Test (VIT) [22] can be performed. It is called virtual
because no implementation for the sub-components or any testbed is required.
This analysis is performed based on the specifications, the interfaces, the connec-
tions, and the structure of the composition. This test checks if the composition
of the sub-component contracts implies the contracts of the surrounding compo-
nent. In this work we assume that the components are implemented according
to their contracts and call an architecture valid iff the VIT is successful.

2.2 Rewriting Rules
An architecture of an SoS is a composition of CSs at a specific time, where roles
and inter-connections of all systems are specified. Changes of an architecture of
the SoS are defined by a set of rewriting rules. Rewriting rules consist of a left
hand side and a right hand side corresponding to architectures of the SoS. In
this work, rewriting rules restructure the architecture of an SoS by composing or
separating system instances in a well-defined way, and applying the right roles
to the corresponding systems. So, a single transformation affects a subset of
participating system instances, their inter-connections, roles, and modes. In the
following, we will formalize the concept of graphs and rewriting rules.

A graph is defined as a tuple G = (V,E, s, t) where V is a set of vertices, E is
a set of edges and s, t are a source and a target function defined as {s, t} : E → V.
Let L,R be two graphs. A rewriting rule r : L→ R is defined in such a way, that
whenever an instance of L, called match, is found in a graph G, this instance can
be replaced through an instance of R leading to the transformed graph G′. For
two graphs H,G let h : H → G be a graph homomorphism, mapping nodes and
edges of H to G. The homomorphism consists of two functions hV : VH → VG
and hE : EH → EG, such that µG ◦ hE = hV ◦ µH , with µ = {s, t}. A rule
r : L→ R can be applied to a graph G leading to a changed graph G′, in short
d : G →r G

′, if there exist two homomorphisms h1, h2, such that h1 : L → G
and h2 : R → G′. In Section 3 we will apply a set of rewriting rules specifying
the dynamic behaviour of an SoS.

2.3 Modeling the SoS

System of systems (SoS) consist of several constituent systems (CS) which are
instances of systems or even SoSs themselves. To distinguish between complex
systems and SoSs Maier proposed five criteria for the "SoS-ness" of a complex
system, which are introduced in the following [1]:
– Operational independence of elements: The CSs can operate independently.
– Managerial independence of the elements: The CSs are separately acquired

by different managerial entities.

– Evolutionary development : An SoS evolves over time, developing its capabil-
ities as the CSs are changed, added, or removed.

– Emergent behavior : The SoS itself offers additional services beyond the capa-
bilities of the CSs including unexpected and potentially damaging behaviors.

– Geographic distribution: The geographical extent of the CSs could be “large”.

We focus on the evolutionary development aspect of SoS and therefore concen-
trate not only on the architecture at a specific time but also on the evolution of
the CSs and their re-configurations. We distinguish two levels of behavior, i.e.
system dynamics, and evolution. System dynamics deal with the question, how
systems exchange data via their inter-connections. The topic evolution poses the
question, how systems and their inter-connections are changed over time.

System dynamics are covered by the UML/SysML behavioral models and
diagrams, e.g. state charts. We use contracts to specify the assumed and guar-
anteed behavior of each CS.

We address the evolutionary development and extend the milestone-based
representation of SoSs in UPDM. A milestone represents an architecture of the
SoS at a specific point in time. We will focus on the system view which basically
represents systems itself, their resource roles and inter-connections. The SV-1
allows to characterize the inter-connections of the CSs for a single architecture.
The milestone plan (AV-2) is the planed evolution of the SoS taking the entire
life-cycle of the CS into account. This plan is created manually and explicitly
since each milestone consists of an entire SoS architecture.

The problem we address is that the owners or managers of the CSs follow
their own goals, and change or influence changes of their CSs independently from
a central authority. We define goal as an optimization metric which represents
how good (or bad) a CS (or an SoS) performs. These values can be statically
computed for an architecture of the SoS, or depend on the system dynamics
and are measured during execution. The owners of a CS are assumed to monitor
this values and decide to change the behavior or connectivity of their CS to
improve their goals. This change might take place on the CS level by switching
into another mode or on the SoS level by changing the inter-connections to other
CSs. In the first case this behavior is part of the CS specification and covered
by the contracts of the CS. In the second case the change is beyond the system
borders of the CS and therefore not in the scope of the specification of the system
dynamics. The evolution behavior of the SoS is based on changes which might
impact the dynamics of the SoS.

3 From Evolution Model to Contracts

A model for an SoS consists of an initial architecture, a static specification and
an evolution behaviour. As said before, evolution behaviors define the possibility
of re-configuring a given architecture as a result of e. g. changing environmen-
tal conditions, or some adaption of cooperations between a set of systems. We
will apply graph grammars to model such a behaviour. The benefit of the usage

of evolution models is the possibility to generate and analyze future architec-
tures enabling the prediction of future violations of specifications. Changes of a
given SoS can be explored before they occur in reality in order to prevent in-
valid architectures of the SoS. Typically an infinite number of architectures will
be generated by graph grammars. In our concept, we will apply the concept of
bounded model-checking, i.e. we will only consider a finite number of architec-
tures reached by a grammar specification. This also has a practical relevance,
as in general the evolution model shall only predict the possible behaviour for a
finite time frame instead of an infinite time frame. To obtain a finite set of ar-
chitectures, we could apply abstraction techniques like the Partner Abstraction
introduced in [23].

3.1 Derivation of Evolution Contracts

r0,...,rn

r0,...,rk

rm

rj
r0,...,rn

r0,...,rk

rj

G0

Gk

Gn

Gn

Gn+3

G0

Gk

Gn

Gn+3

...

... ...

...

rj

Gm+2
...

Gn+1

rj

rm

rk

r0,...,rn,rm,rk
Gh

r0,...,rn,rm,rk
Gh

... ...

 cnew: (A: Gn+1 /\ (r0,...,rm) , G: !rk)

Fig. 1: Example scenario for derivation of evolution contracts – Left: Initial sit-
uation for a given SoS model; Right: Derivation of new dynamicity contracts.

The concept of dynamicity contracts complements the static contracts for the
SoS and constituent systems. The static contracts restrict the allowed behaviour
of the overall SoS and each system, whereas the dynamicity contracts restrict
the dynamics of the evolution model of the SoS.

Starting from an initial architecture each reached architecture is analyzed if
it is valid. If invalid architectures are reached, a dynamicity contract is derived in
such a way, that the evolution model is prevented to generate this architecture.
Thereby, the assumption part of a dynamicity contract encapsulates the archi-
tecture, from which a violating one can be reached by the application of a rule
defined in the evolution model. The guarantee part then consists of the negation
of the corresponding identifier of the rule. Further, we extend this approach by
allowing intermediate architectures, which violate the static specifications, if a
valid architecture is reached after “some time”. In this work, we require that a
specified number of successive invalid architectures may be tolerated, and after
this number a valid architecture has to be reached. In future work, we will extend
this approach by specifying some allowed time frames.

Consider the example of Figure 1, where the initial architecture G0 can evolve
to different future architectures by applying an evolution model consisting of a
set of rewriting rules r. Assume that we allow that during the evolution maximal
a single architecture may be reached which violates the static contracts. On the
left part of the figure the initial situation is depicted, where no restrictions exist
so far for our evolution model. If the sequence of rules r0, ...rn, rm is applied,
we can reach the architecture Gn+1 which violates the static specification. If we
would now apply rule rk we would again get an architecture violating the static
specification. In order to restrict our evolution model we derive the contract il-
lustrated in the right part of Figure 1. The contract states, that whenever we are
in an architecture isomorph to Gn+1 and we previously applied the sequence of
rules r0, ..., rm, the rule rk will not be applied. Note, that we need the architec-
ture within the assumption part, as rewriting rules are non-deterministic. The
sequence of rules r0, ..., rm can also lead to some architectures not violating the
static contracts as illustrated in Figure 1.

Next, we define our applied graph grammar formalism, and formalize the
derivation of dynamicity contracts.

Graph Grammars Let w = r0, ..., rn, ... be a word over an alphabet Σ,
pre(w, n) = r0, ..., rn be its prefix consisting of n+1 symbols, and w(n) = rn ∈ Σ
the (n+1)−th symbol. A dynamicity contract is a contract talking about graphs
and prefixed of words: The assumption (A) part of a dynamicity contract c con-
sists of a (possibly empty) finite prefix of a word w and a graph G, its guarantee
(G) consists of a symbol in Σ, in short c : (A : pre(w, i−1)∧Gi, G: !σ) for some
i ∈ N with σ ∈ Σ. The intuition is that whenever a finite sequence of symbols
pre(w, i− 1) is received and the graph Gi is reached, the next symbol shall not
be σ. With these dynamicity contracts we will restrict graph grammars in such
a way, that through the successive application of rules it always holds, that no
graph can be reached violating some static specifications.

A graph grammar is a tuple G = (G0, R, CD) where G0 is a start graph,
R = {r0, ..., rk} is the set of rewriting rules (each with an unique identifier), and
CD is the set of dynamicity contracts, which may be empty at design time. In
the next section we detail the iterative extension of this set. A graph grammar
can be translated to a finite ω−automaton TE = (S, so, Σ,→), where S is a set
of graphs corresponding to the set of states, s0 the initial state, Σ an alphabet
consisting of the identifiers of the rules in R, and →⊆ S ×Σ × S the transition
relation. All states are considered to be accepting ones.

A run ρ of TE over an infinite word w = r0, ..., rn, ... is an infinite sequence
of graphs G0 →r0 ... →rn Gn,→rn+1

... such that G0 is the initial graph and
(Gi, ri, Gi+1) ∈→ for all i, j ∈ N, for which holds that (A : pre(w, i − 1) ∧
Gi, G : !w(i)) /∈ CD. The language of a graph grammar is defined as the set of
words accepted by its finite automaton.

Derivation of Dynamicity Contracts A specification for an SoS is given by
the tuple SoS = (G, Cs) where G is a graph grammar specifying the evolution
model, and Cs a set of static contracts defining the allowed SoS behaviour. In

general, the evolution model specified through the concept of graph grammars is
not initially consistent with the static specification specified as a set of contracts,
as rewriting rules are applied locally resulting in sequences of rules which could
lead to a graph violating the static contracts. This can happen because the
application of a rule does not check whether the reached graph harms a static
contract. In order to make the evolution model consistent with respect to the
contract specification, such paths have to be removed from the evolution model.
For this we derive new dynamicity contracts from these paths.

The easiest case is given, when a direct application of a rule violates a static
contract and no intermediate architectures violating contracts are allowed. For
such cases we can derive a dynamicity contract consisting of the current ar-
chitecture G as the assumption part, and the negation of the identifier of the
corresponding rule for the guarantee part. That is, we extend our dynamicity
contract set CD of G with the contract {(A : G, G : σ)}, if there exists a rule
σ : L→ R in G, and G→σ G

′ could be applied, such that G′ 6|= Cs.
With this extension the graph grammar will be prevented by firing rule σ

when an isomorphic graph to G is present. If violating graphs are accepted tem-
porarily, e.g. a finite amount of time, or a finite number of violating graphs,
we need to extend such dynamicity contracts with the history which lead to
a corresponding architecture. In this work, we will only consider the maximal
successive number of incorrect intermediate architectures, i.e. architectures vio-
lating the static specification.

Let ξ ∈ N be the maximal number of successive graphs violating the static
specification, which is defined to be tolerable. Let pre(w, n) = r0, ..., rn be a
prefix of a word, for which there exists a run ρ = G0 →r0 ... →ri Gi... →rn Gn
of the automaton of G, such that Gi, ..., Gn 6|= Cs and |{Gi, ..., Gn}| > ξ. Then
we derive the following dynamicity contract and extend the set CD as follows:

CD ∪ {(A : Gn−1 ∧ pre(w, n− 1), G : !w(n))}. (1)

Note that a word w could result in a set of runs instead a single run. In this case
our new dynamicity contracts are correct in the sense, that no legal evolutions
resulting in graphs which all fulfill the static contracts are excluded. This is
because the assumption part exactly states, that a rule shall not be applied if a
specific architecture is given.

4 Application of Methodology

To illustrate our approach we consider an emergency response scenario, con-
sisting of a set of constituent systems like fire stations and fire brigades. All
CSs participating in this SoS shall behave cooperative in order to minimize the
needed time for an operation in case of an emergency.

We use a new custom diagram via an additional profile which allows to model
rewriting rules graphically in IBM Rational Rhapsody c©. These diagrams allow
to add placeholders which refer to model elements of the Rhapsody UPDM
model. This reference mechanism ensures that the model itself and the rewriting

rules are clearly separated. The rules contain four different kinds of graphical
elements for each CSs and their inter-connections, i.e. Reader, Creator, Eraser
and Embargo. Reader elements are unchanged elements of a corresponding rule.
Creator elements represent newly generated elements on the right hand side of
the rule. Eraser elements address elements of the left hand side which are re-
moved via the rule application. Embargo elements restrict the applicability of
the rule if the match can be extended by these elements. The Rhapsody model
including its rules are exported to GXL[24] files which are the input language
of the GROOVE[25] tool. GROOVE is used for the generation of architecture
alternatives and is also able to perform the isomorphism check of the generated
architectures. After applying GROOVE we get a set of architectures, and the
corresponding network representing the applied rules. As an example consider

(a) Rhaposody (b) GROOVE

Fig. 2: Excerpt of the Emergency Response System

Figure 2 and 3. The purpose of the fire service is to delete fire at any location
within a city and to save the involved people. The time between the incident
harms people and the treatment begins is critical for the recovery of the injured.
Therefore the goal of the fire service is to minimize the time between the noti-
fication and the arrival of the right amount of units to treat the injured people
at the incident location. Increasing traffic density typically extends this time
frame and might require to send units from locations with a larger geographical
distance but lower distance in travel time. To improve this, one option is to in-
crease the number of units like fire brigades but this is only partially possible.
Another option is to increase the awareness of the fire head quarter about the
required number (and kind) of units at the location. This can be achieved by
improving the communication technology, in this scenario the change from the
current TETRA 1) to the LTE2) communication technology. The application of
such a rule leading to an architectural change is illustrated in Figure 3(b). In
1 TETRA: Terrestrial Trunked Radio, ETSI EN 300 392-2 v3.2.1
2 LTE: Long-Term Evolution

(a) Rhaposody (b) GROOVE

Fig. 3: Rule Translation: Rules in Rhapsody (a) are automatically translated into
rules in GROOVE (b)

this example, the evolution model contains only a very small set of architectures
because the rule is only applicable once per fire brigade and the number of fire
brigades is low. If one would add a rule adding fire brigades to the model the
number of architectures would be infinite. In the complete model several fire sta-
tions are coordinated by one head quarter and also the number of fire brigades
is higher. Since the fire brigades are coordinated by the different fire stations
and must cooperate during operation it is essential that those brigades use the
same communication network. If each brigade is updated to the new technol-
ogy individually, invalid architectures are possible which can be characterized
as (at least) two brigades coordinated by the same fire station using different
networks. The evolution must be restricted to avoid those architectures. Typi-
cally not all those constraints can be derived from reasoning about architectural
pattern only but the reachable architectures have to be analyzed including the
system dynamics. This can be done via simulation or static analysis (e.g. tim-
ing analysis as proposed in [2]). The results of the analysis are annotated to
the reachable architectures and support the identification of contracts for the
evolution itself.

Fig. 4: Left: network of architecture alternatives; Right: annotated network.

In the left part of Figure 4 a network of reachable architectures is illustrated.
In the right part of Figure 4 a (simplified) network of architectures is presented.

For this network the invalid architectures are marked in red. From this net-
work global constraints are derived which restrict the application of rules. These
conditions are the previous architectures of any edge ending in an invalid ar-
chitecture. The evolution contract takes this condition as assumption and the
negated invalid architecture as guarantee.

5 Conclusion

We presented a modeling concept for evolution specifying all possible changes
of the SoS over time as an extension of the UPDM framework. We introduced
a novel approach for deriving dynamicity contracts restricting such evolution
models in order to prevent reaching invalid architectures with respect to the
static specification of an SoS. Our prototype implementation offers so far an ex-
port mechanism from UPDM models created with Rhapsody to GROOVE, and
feed back the generated architecture alternatives to Rhapsody. For the gener-
ated models we can apply our previously introduced virtual integration checker
[26] and manually derive dynamicity contracts. Currently, we aim to close this
loop, i.e. the generation of architectures and calling the verification back end
to automatically generate dynamicity contracts. In future work we also plan to
include the notion of time for the evolution models to enable reasoning about
timing constraints for the evolution.

References

1. W.Maier, M.: Architecting principles for systems-of-systems. In: Inc. Systems
Engineering. Volume 1. (1998) 267–284

2. Etzien, C., Gezgin, T., Fröschle, S., Henkler, S., Rettberg, A.: Contracts for evolv-
ing systems. In: SORT – The Fourth IEEEWorkshop on Self-Organizing Real-Time
Systems. (06 2013)

3. ISO26262: Road vehicles – functional safety (2011)
4. Group, O.M. In: Unified Profile for DoDAF and MODAF. (2008)
5. Hamlili, A., Morocco, R.: A common computational approach analyzing dynamic-

ity and connectivity for reliable communications in multihop wireless networks. In:
Int. Conf. on Models of Information and Communication Systems. ICST Alliance

6. Casteigts, A., Chaumette, S.: Dynamicity aware graph relabeling systems (da-grs),
a local computation based model to describe manet algorithms. In: IASTED PDCS.
In proceeding of: International Conference on Parallel and Distributed Computing
Systems, PDCS, Phoenix, AZ, USA (2005) 231 – 236

7. Northrop, L., Feiler, P., Gabriel, R.P., Goodenough, J., Linger, R., Longstaff, T.,
Kazman, R., Klein, M., Schmidt, D., Sullivan, K., Wallnau, K.: Ultra-Large-Scale
Systems - The Software Challenge of the Future. Technical report, Software Engi-
neering Institute, Carnegie Mellon (June 2006)

8. Schäfer, W., Birattari, M., Blömer, J., Dorigo, M., Engels, G., O’Grady, R.,
Platzner, M., Rammig, F., Reif, W., Trächtler, A.: Engineering self-coordinating
software intensive systems. In: Proceedings of the Foundations of Software Engi-
neering (FSE) and NITRD/SPD Working Conference on the Future of Software
Engineering Research (FoSER 2010). (2010)

9. Giese, H., Klein, F.: Systematic verification of multi-agent systems based on rig-
orous executable specifications. Int. J. Agent-Oriented Softw. Eng. 1 (2007) 28–62

10. Henkler, S., Hirsch, M., Priesterjahn, C., Schäfer, W.: Modeling and verifying dy-
namic communication structures based on graph transformations. In: GI Software
Engineering. (2010)

11. Ivancic, F.: Modeling and Analysis of Hybrid Systems. PhD thesis, University of
Pennsylvania (2003)

12. Henzinger, T.A.: Masaccio: A formal model for embedded components. In: IFIP
International Conference on Theoretical Computer Science (TCS), LNCS1872,
Springer, 549-563. (2000)

13. Burmester, S., Giese, H., Tichy, M.: Model-Driven Development of Reconfigurable
Mechatronic Systems with Mechatronic UML. In Assmann, U., Rensink, A., Ak-
sit, M., eds.: Model Driven Architecture: Foundations and Applications. LNCS,
Springer Verlag (2005) 1–15

14. Métayer, D.L.: Software architecture styles as graph grammars. In: SIGSOFT ’96:
Proceedings of the 4th ACM SIGSOFT symposium on Foundations of software
engineering, New York, NY, USA, ACM (1996) 15–23

15. Kramer, J., Magee, J., Sloman, M.: Configuring distributed systems. In: EW 5:
Proceedings of the 5th workshop on ACM SIGOPS European workshop, New York,
NY, USA, ACM (1992) 1–5

16. Allen, R., Douence, R., Garlan, D.: Specifying and analyzing dynamic software
architectures. Lecture Notes in Computer Science 1382 (1998) 21–36

17. Kramer, J., Magee, J.: Analysing dynamic change in software architectures: A case
study. In: CDS ’98: Proceedings of the International Conference on Configurable
Distributed Systems, Washington, DC, USA, IEEE Computer Society (1998) 91

18. Hungar, H.: Compositionality with strong assumptions, Mälardalen Real–Time
Research Center (11 2011) 11–13

19. Baumgart, A., Böde, E., Büker, M., Damm, W., Ehmen, G., Gezgin, T., Henkler,
S., Hungar, H., Josko, B., Oertel, M., Peikenkamp, T., Reinkemeier, P., Stierand,
I., Weber, R.: Architecture modeling. Technical report (03 2011)

20. Meyer, B.: Applying "design by contract". Computer 25(10) (1992) 40–51
21. CESAR SP2 Partners: Definition and exemplification of requirements specification

language and requirements meta model. CESAR_D_SP2_R2.2_M2_v1.000.pdf
on http://www.cesarproject.eu/fileadmin/user_upload/ (2010)

22. Damm, W., Hungar, H., Josko, B., Peikenkamp, T., Stierand, I.: Using contract-
based component specifications for virtual integration testing and architecture de-
sign. In: Design, Aut. and Test in Europe (DATE 2011. 1–6

23. Bauer, J., Wilhelm, R.: Static analysis of dynamic communication systems by part-
ner abstraction. In Nielson, H.R., File, G., eds.: Static Analysis, Int. Symposium,
SAS 2007. Volume 4634 of LNCS., Springer (2007) 249–264

24. Winter, A., Kullbach, B., Riediger, V.: An overview of the gxl graph exchange
language. In: Revised Lectures on Software Visualization, International Seminar,
London, UK, UK, Springer-Verlag (2002) 324–336

25. Rensink, A.: The groove simulator: A tool for state space generation. In Pfaltz, J.L.,
Nagl, M., Böhlen, B., eds.: Applications of Graph Transformations with Industrial
Relevance (AGTIVE). Volume 3062 of Lecture Notes in Computer Science., Berlin,
Springer Verlag (2004) 479–485

26. Gezgin, T., Henkler, S., Stierand, I., Rettberg, A.: Impact analysis for timing
requirements on real-time systems. In: Int. Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA 2014). (To be published)

