

Reuse / Variability Management
and System Engineering

Olivier Renault
PLM Industry Expert
PLMSys Consulting
111, avenue Victor Hugo – 75784 Paris Cedex 16
olivier.renault.pro@gmail.com

Abstract: this paper aims to share industry experience in managing the reuse and
variability in the industry and to analyze the linkage between this topic and system
engineering. Reuse and variability management are two faces of the same coin and
strongly influence business performance. Hard products industries (where
mechanical and structural engineering were historically dominant) and soft
systems industries (where electronic and software engineering are dominant)
addressed the questions from different perspectives. After describing the observed
practices for managing the reuse and variability from the physical product
standpoint, and taking in account concepts and approaches used in “Soft”
industries, we analyze how systemic approach should help in better mastering the
variability. In conclusion, we identify some principles and rules which would need
to be investigated through research to better link PLM and systemic approach in
variability management

Keywords

Variety, Variability, Reuse, Options, Variants, Configuration, Product
Families, Product Lines, Requirements, Features, Systems, Platforms, Modules,
Architecture, Interfaces, Product Life Cycle, PLM Systems

1 Introduction

As we will see across this paper, variability and reuse management is a topic
which crosses the full life cycle of complex products and systems and address all
the engineering disciplines. One of the identified difficulties is that variability
management have often been addressed separately by different methods and IT
systems according to their positioning on life cycle and engineering disciplines.
My own experience presented in the first sections of this paper, is mostly relevant
to the management of the variability implemented in PLM and ERP systems. It
focuses on variability management relying on product structure (from the classical
perspective of BOM management supported by both classes of systems, but also
from the perspective of the 3D Digital Mockups used by a large bench of

engineering disciplines for concurrent engineering. But this perspective is too
limited. I intuitively thought that system engineering should be analyzed in the
variability management context for two main reasons:
• First, electronics and software is massively invading all traditional products

whose design and development previously relied on structural and mechanical
design. Even if these engineering disciplines are often treated with separated
methods and dedicated IT application, mutual dependencies are growing.
Complex systems/product definition need to be managed from a consistent
point of view for configuration, including variability management and changes
across time.

• Secondly, my experience focused on physical product variability management
and the problems encountered convinced me that a systemic approach is
required to better manage the variability. This relies on the fact that variability
is strongly linked to the way we structure and manage the requirements in
parallel with the definition of the system/product architecture.

This also pushed me to do a brief research review where I found interesting

papers. A part of them were centered on the domains of the physical product
variability. But I also discovered that a lot of the research papers address the
question of variability from the software engineering perspective. These papers
helped me to clarify and confirm some intuitions I got from my own experiences.
They also help me to formulate the reasons why I think that system engineering
and system modeling approaches may provide a strong foundation to design and
model the variability. They provide a way to consistently articulate variability and
architecture definition during the development process of complex systems
/products.

2 Business approaches and drivers for variability management
in industry.

We will mention here two industries which showed a strong concern on
variability management, just to underline the business impact it had.

In the Information Technology industry, IBM introduced early in the 60s an

ambitious modular and configurable architecture of business computers with the
IBM 360 systems. This program was very successful and constituted one of the
main reason of the further dominance of the market by IBM [Manet Hamm
O.Brien 2011]). IT industry is now an industry where standards (OS, telecoms,
DB, Internet….) and layered architecture took an essential part in its uninterrupted
growth.

The automotive industry is probably one, in hard products domain, which faces
among the most complex challenge to manage variability. A car is a technical
complex object (several thousands of parts) and has to sustain a very large
variability [Jiao, Simpson, & Siddique 2007]. [Volkswagen 2011] & [Renault
Nissan 2013] summarize the respective approaches of Volkswagen and Renault-
Nissan groups to manage their variability based on approaches to platforms and
modules. We may summarize them by the following principles.

• Vehicles of these brands are organized by vehicle families. Often a vehicle
family covers one market segment for a brand and includes all types of
bodies for the brand and the segment, with different possible engines. One
vehicle family generally reuse one single platform family (sometimes two
for market–cost optimization).

• A platform family is generally common to several vehicle families of one
or several brands and may cover one or more vehicle segments. The
platform integrates the chassis and all equipment generally hidden to the
customer while the complementary part of the vehicle includes all
elements of style directly perceived by the customer.

• Common modules are designed to equip the whole range of platform
families in order to maximize the scale economy. A similar function (e.g. a
seat), may be implemented through one, or a very limited number of
module families. Each module generally include the variability required to
cover common market needs for all platform and vehicle families.

Multiple sources of research papers and articles develop the business drivers

for variability and reuse management.
• [Jiao, Simpson, Siddique 2007] provides a comprehensive review of state

of arts research on product family design and platform-based products As
part of the work the economic justification section references most
important papers on this topic..

• For the software industry, an economic model is proposed by
[Rokunuzzaman & Choudhury 2006]. It estimates benefits to reuse
software components for building a customized software solution. [Lim
1994] gives metrics collected during two reuse programs of Hewlett
Packard.

• [Pil, Holweg 2004] analyzes the variability and its economic drivers
focusing the study mainly on the automotive sector. They gives order of
magnitude of the variability and focus on how the products variability has
to be linked to the order fulfillments strategy. Their paper well illustrates
the strong focus that hard products industries had to manage variability
from the physical product and supply chain perspective.

Table 1 hereafter proposes a summary the main business drivers for the

variability and reuse management for hard products industries.

Table 1

Drivers for Variability Drivers for Reuse
(B2C) Customer diversity of demand
(ie: Car bodies, painting, engine,
equipment’s …)

Supply chain costs and delays reductions
• Production (scale effects) – Internal /

External (supply chain)
• Standardization / flexibility of

production process and facilities
• Capacity planning
• Order to delivery delay
• Quality improvement (repeatability)
• Development reduction cost (initial

and change management)
(B2B) Ordering company
differentiation
(ie: Aircraft companies specific cabin
layout – engine – electronic systems
variants, length, capacity, mission…)

Development delays / costs / risks
• Development reduction cost (initial

and change management)
• Innovation value focus
• Risk minimization
• Tests validation reduction

(B2C – B2B) Country constraints
• Regulations
• Climate
• Customer Usages
• Infrastructures …

Innovation
• More focus on value innovation
• Faster introduction in existing

products (standardized modular
architectures)

(B2C – B2B) New Technologies
introduction

Flexibility – Speediness to change and
adaptation. (same changes to apply on a
wider spectrum)

[Main business drivers for variability and reuse for hard products industries]

3 Approaches and gaps for managing variability in IT Systems.

3.1 Management of variability in CRM, MRP/ERP and PLM

As explained by [Pil, Holweg 2004], the variability management encompasses
the full life cycle of the products. This is illustrated by Figure 1 hereunder
reproduced from their paper.

Figure 1: [Pil, Holweg 2004] – Holistic view of Product Family Design and
development.

CRM (Customer Relationship Management), MRP/ERP (Manufacturing

Requirements Planning/Enterprise Resource Planning) and MRO (Maintenance,
Repair and Operations), each of these systems manage the product during one of
its “physical” life cycle stages. So they are impacted by reuse and variability
management. Variability management requires capabilities for each of these
domain systems. They may be standard capabilities provided by market software
packages, but they also often rely on specific development extending these
software package or working as stand-alone systems/applications.

The industry experience I present in this paper is mainly focused on practices

used in PLM (Product Life Cycle Management). PLM is the system used to
support the design and definition of products and of the life cycle processes and
resources related to these products. The PLM supports and coordinates all
engineering disciplines and manages all the technical information attached to the
product and its product life cycle. So, PLM is placed at the critical stage where
variability and reuse are designed. PLM architecture is built around a PDM
(Product Data Management) system which offers central services to store, retrieve,
classify, and configure all technical data (models and documents). The different
applications or systems used to sustain each of the engineering discipline activities
are commonly articulated and integrated with the PDM central system to build the
overall PLM system architecture. Software engineering and configuration
management remains relatively autonomous. Nevertheless there is need to better
integrate them within the PDM systems to enable a consistent multi-level
configuration management.

PLM variability definition has vocation to be the reference basis for the
configuration models used by CRM and MRP/ERP systems or applications. The
configuration models of the product families used by each system need to be
maintained and synchronized across the change management process.

3.2 Main practices used in PLM for managing the variability

We present here PLM observed practices for managing the reuse and
variability. We compare practices mainly applied for managing the reuse and
variability in product structures representing the physical product. As explained in
section 4, for hard product industries, requirements and functional variability were
historically managed through documentation in a traditional development process.
Impact of system and software massive intrusion in these industries changed the
game. But, from our experience, we still see system and software and PDM
managed very separately.

In the following, we will use the words
• system/product to specify the high level “final” system/product which has

to be designed and developed and which represents the higher level of
integration. If, in physical product structure, we should speak only on
product, we extend the concept to system/product in the perspective of
system integration in our analysis as presented in section 4.

• Sub-systems/modules to specify the element of a product/system definition
which could be reused between different higher level systems/products. As
the high level product is represented by a product structure defining its
composition, a module may be itself defined by a product structure
representing its own product composition.

The 3 dominant practices are summarized in Figure 2 extracted from [Reiser
2009]

Practice a: Duplicate and specialize systems/products structures (independent
development of products)

The principle is to create a specific system/product structure for each (top level)
product. The reuse is done by initial copy or several partial copies from structures
of similar system/product. The inconvenience of this approach is that the
duplication of common elements encourage the specialization of the definition,
even if there is a significant business advantage to maintain a common definition.

Figure 2: Product portfolio development approaches [Reiser 2009]

Practice b: Separated products top structure sharing common configured
product components (development with conventional reuse)

In this approach, common sub-systems/modules internal structure are

instantiated in each top system/product structure, but remain unique. If the
common sub-systems/modules holds variability, it is only the resolved
configurations which are instantiated where needed. The main advantage is that
this approach forces to maintain a better communality of sub-systems/modules
across the different systems/products where they are used. The constraints and
limits are:

• sub-systems/modules need to be designed to address requirements of
future product-systems (at least at the architectural design level).

• changes to sub-systems/modules need to be controlled with all different
upper levels systems/products using them.

• sub-systems/modules variants need to be explicitly configured (specific
references) in the upper-level systems/products structure.

• on multi-level architecture, rules for managing and updating the
configuration of the different systems/products (number of Configuration
Items (CI) levels –revision number absorption levels and rules), and
process for propagating changes on upper levels need to be carefully
designed to minimize the number of revision updates.

• when there is a large number of combinations of options-variants,
impacted by a change, the process to update and maintain all these
combinations may be complex. Revision numbers have to be updated on

all parent structure representing these combinations and may need some
PLM automation. A good approach is to group several changes and to
apply revision number changes on the upper structure only when the group
of lower level changes has been fully defined and validated.

• Another condition is to really have a unique structure to maintain the
common part of different configured variants structures. On the contrary a
change in the common part implies to update each configured variants
where it is duplicated. This could be painful and leads to error if this is not
automated in some way.

Practice c: Define a common system/product family structure.

This practice consists in creating a unique structure for product family holding the
whole variability description for the family. This rely on options – variants
mechanisms. This practice is detailed in the following section.

3.3 Practices used in PLM for managing system/product family
(product lines oriented development)

Practice a: Product family unique structure carrying the variability description
for the whole family by production effectivity

The principle is to have a unique structure for a family of products and to

associate a production effectivity to the proper elements of the structure. A
production effectivity is generally a set of serial numbers, a range of date
delimiting a batch of production for the same products, a batch ID. The
configuration of one specific system/product instance (physical product produced
or planned to be produced) may be retrieve by selecting all structure items with a
product effectivity matching its own production ID. This mechanism may also be
implemented through a change management process as summarized in Figure 3
here under.

This approach seems well suited to industries where the variability is driven by

a custom to order process where specificities of each variant/option cannot be
anticipated and may be very specifically linked to the order requirements for
customization.

Figure 3: Product family with variability managed by production effectivity

Practice b: Product family unique structure carrying the variability description
for the whole family by variability effectivities and logical rules

This principles are the following:
1. Describe the possible option/variants by a language based on:

a. variability criteria objects holding each one a “dimension of
variability”

b. variability criterion values, each value corresponding to a variability
possibility inside the same variability dimension

2. Associate to item nodes in the structure a logical expression corresponding
to the combination of option/variant values for which the structure under
the item has to be retained. We name it variability effectivity or effectivity.
This logical expression may contain logical operator such as NOT, AND,
OR…

3. A set of rules may be added to define compatibilities or dependencies of
different options/variants.

4. Finally, to define a particular product in the product family, we must select
directly or indirectly one value for each option/variant criterion proposed
at the family level. The selection request to configure one system/product
instance may be explicit. In this case we must express each criterion object
with its possible options/variants value (any number). Or it may be implicit
(all values of criteria not specified are, by default, retained). The selection
is then modified or rejected against the set rules for dependencies and
compatibilities.

The Figure 6 summarizes the main principles for describing the variability of
the product family in a unique product family structure.

Figure 6: Product family unique structure using based on variability effectivity
and rules

When both the number of potential combinations and the volume of production

are high, this approach enables us to directly and dynamically “solve” the
configuration of the configurable structure by selecting the options/variants value
for each criterion. But there are some constraints and limits:

1. The system/product family configurable structure need to be properly
defined (system/product items with, for each of them, the proper variability
effectivity defining the options/variants for which this item substructure
and definition is applicable). This implies the two following rules to be
verified.
• Any selection of options/variants values should not lead to an

incomplete configured structure (no function/parts “holes” in the
configured structure).

• Any selection of options/variants values should not lead to a number
of system/product items selected beyond the number expected (no
function/parts “bump” in the configured structure).

2. If this approach is basically used, the variability of a sub-structure has to
be configured by criteria defined for the overall system/product family
structure. This could lead to the impossibility of reusing this configurable
sub-structure in another system/product family. In the automotive industry,
platforms and modules variability management cannot be done in a single
system/product family without strongly complicating reuse.

Practice c: Multi-level Product families

It may be necessary to manage variability at different systems/product

structures levels. This is the case in automotive for vehicles, platforms and
modules.

In this example, each level (vehicle, platform, sub-systems/modules) holding

variability must be considered as a distinct system/product family (product line).
The vehicle family structure will instantiate the platform family structure it reuses.
Each of them (vehicle or platforms) will also instantiate the sub-system/module
families structures they reuse. Applying variability effectivities principles, each
family is supposed to have its own variability definition relying on a specific set of
variability criteria and criterion values.

When configuring a specific configuration at the higher level (ie: vehicle) by

selecting value for each criterion specified in this family, three approaches may be
used to select the proper variability of the lower level families.

• Approach 1: Instantiate in the upper-level family structure only configured

options variants of lower level family (see Figure 4 hereunder). Each
configured option/variant of the lower-level family will be characterized in
the upper level structure by a use-case (logical expression of options/variants
of the upper family in which this structure has to be configured). The
inconvenience of this choice is that the maintenance of the configured lower
family structures may be heavy in case of changes. This is especially true
when changes are located in their common parts and when the number of
configured structures for the lower family is important.

Figure 4: Instantiation of configured structure of the lower level family.

• Approach 2: Reflect all criteria and criterions values of the lower level
families in the upper level. For example, all platforms and sub-
systems/modules criteria and criterions values will be directly included and
visible in the set of criteria used at the vehicle level. We may easily
understand that this approach will strongly increase the number of criteria
used at the higher level and make the configuration process complex. In other
words, with this approach, we expose all the internal variability of the lower
family levels to the higher levels even when this does not create value. (e.g.:
expose the internal variability of the seat with its options motor and heating
when, at the vehicle level we want to use only a couple of criterion such as
level of equipment and country/geography of sale to drive the internal
configuration of the seat). This approach may be impracticable.

Approach 3: Define the selected options/variants of the lower level family by
rules enabling to convert variability effectivity of the higher level family to
variability effectivity of the lower level family. This approach enables us to
simplify the number of criterions used at the higher level, while enabling the
use of a larger number of options/variants at the lower level. The complexity
of the work is to define the mapping rules and to be sure that this mapping
enables the effective respect of the two basic rules (“no holes”, “no bump”) in
any resolved configuration. It is summarized in Figure 5 hereunder.

Figure 5:Multi-level families with variability effectivity mapping

3.3 Variability management in engineering – The question of 3D
configurable Digital Mockups

This is a complete topic which needs to be developed more. We will only
summarize the main outcomes of our experience here without explaining them in
detail.

The principle main goal of the 3D Digital Mockup (DMU) is to integrate all the
3D definitions of the different components in a common model making a complex
product. In this way, it sustains concurrent engineering and allows 3D Design in
context.

The first concern of variability management in DMU is that each engineering
team needs to design the whole variability corresponding to the product items and
potential families it has in charge. But reversely, it must take care only of the
surrounding variability which could affect it. The approach of 3D Design in
Context based on DMU pushes some companies to fully configure these mockups
with variability and to do it at part level. Even when achieved, the observed fact is
that it is very difficult for engineering teams to select among the multitude of
surrounding variability combinations those which are the most constraining for
their design. That is why I recommend to model physical architecture of the
product in the DMU. For one product family, we may have variability in spatial
architecture, but it would be considerably reduced compared to the whole
variability of parts. Thus, we will privilege 3D Design in context with a context
specified by architecture models greatly simplifying the variability selection of the
context.

Another important difficulty observed for configurable DMUs is the

management the variability of positions of assemblies and parts. For the supply
chain, variability management at the BOM level does not need to consider the
positions. But DMU has to do it. It is extremely important to use an architecture
relative positioning in DMU to minimize the variability. Otherwise, absolute
positioning will introduce additional variability even where sub-assemblies are
strictly identical, just because they have different absolute positions.

So we recommend modeling spatial architecture of the product with the

required variability and based on the following types of models:
• Reference geometry models. They specify dimensions and provide the

architecture of positioning through the set of triaxial geometric frame of
reference needed to support relative positioning of lower level assemblies.

• Geometric Interface Models. They specify the geometric interface between
physical assemblies.

• Space allocation geometry to define the overall space allocation for each of
the physical assemblies.

4 System Engineering and variability management

4.1 Impact of systems massive intrusion in traditional products

Systems and software are invading traditional hard products to make them
smarter and to allow them to operate as pieces of larger systems. This trend
increases the complexity of products. For example, the automotive industry
anticipates now an order 10 million of lines of code for the embedded systems of
one car. Management of variability needs to cover this systemic dimension. Said
in another way, in engineering, the variability of industrial products cannot be
managed only under the angle of the physical products structures anymore, as it is
often done, but needs to address the system variability (including functional, and
behavior). Moreover, these two dimensions of variability need to be managed
consistently in configuration (including the management of changes across times).

The PLM/PDM systems role is mainly focused on sustaining the engineering

activities for the definition of product families carrying internal variability
(design, development and change), as well as the definition of the technical
processes of their life-cycle and the definition of the technical resources involved
by these processes.

Figure 5 hereunder summarizes the different components of the PLM. It

illustrates that the full coverage of all engineering activities relies on different
sources of applications which were progressively integrated around PDM systems.
It illustrates also that System and Software Engineering are still often being
managed independently and reflects a need and a trend to make them converge
under a consistent and integrated configuration and variability management

Until now, the PLM/PDM focus was mostly dedicated to managing the

technical dossiers (definition, manufacturing and maintenance) and the DMU.
This explains that the focus of configuration and variability management in
PLM/PDM was to manage the physical product structure and parts configuration.

But there are two strong trends in the PLM/PDM landscape:
• The transformation of system engineering with the development of Model

Based System Engineering (MBSE) and a better integration of software
engineering.

• The very fast and strong intrusion of systems into traditional products which
push PLM/PDM editors to better address and integrate system engineering
under the PLM/PDM umbrella.

Figure 5: PLM progressively integrates all engineering specialized applications
under the PDM umbrella for configuration, models and documentation
management

Sections 4 and 5 discuss the perspectives for using the System Engineering

approach for improving reuse and variability management and overcoming current
limits observed in current PDM practices to address them.

4.2 Concepts and lessons from Software Variability Management

Variability management has been largely studied in numerous research papers.
There are differences between variability management of software and physical
products. Software is largely immaterial, easily produced and can be easily
changed while physical products often require expensive manufacturing facilities
and tools and changes are difficult and costly or even impossible on the already
manufactured products. But for many aspects, variability management faces the
same challenge in both kind of industries. Moreover, due to the very important
intrusion of electronic and software in traditional industry, variability in both
domains needs to be managed consistently as the “mechatronics” nature of present
products induces dependencies between them. The [Chen, Babar & Ali 2009]
paper reviews research studies in variability management and software products
lines management (SPL) which is an equivalent concept of products families.
[Capilla, Bosch & Kang 2013] made a systematic review of the main concepts and
principles used for managing variability. When looking at these papers and others
cited in the bibliography, we may notice several interesting concepts, questions
and approaches to solve them.

Feature modeling is a key concept to specify and model SPL. SPL is defined
from the variability point of view by a feature tree. It structures the configuration
model of SPL with two main types of nodes: variability points and, under them,
options-variants nodes. Variability points means there is a variability choice to
make at this level to configure the software product. The choice must be made by
selecting one of the options-variants nodes proposed as child nodes. Option means
that the node can be selected or not. Variant means that one of the variant nodes
must be selected. [Kang, Cohen, Hess, Novak & Peterson 1990] proposes a
method for identifying and specifying features (Feature-Oriented Domain
Analysis FODA method). These basic principles are enriched with more
possibility of specification of the cardinality of the choices and the possibility to
add attributes and constraints in the model [Capilla, Bosch & Kang 2013]

But numerous research papers point out some questions and difficulties and

approaches to respond to them. We list hereunder these points and how they are
linked to our observations and industry experience in hard products domain.

1. Definition and number of features

The way to define and choose the features to build the configuration model
may be difficult because variability may be seen from different points of view
and the number of features to support them may become important and
complex to manage. [Capilla, Bosch & Kang 2013] said that features are used
by a feature based approach as container of:
• Capability that is delivered to a customer
• Requirements containers i.e., units of requirement specifications
• Product configuration and configuration management
• Development and delivery to customers
• Parameterization of reusable assets
• Product management for different segments
Difficulties to define variability criteria and values often encountered in the
hard products industry would benefit from an approach based on requirements
and feature modeling.

2. Multiple point of views for variability:
One of the reason for complexity of features modeling is the fact that the
variability modeling must endorse different points of view. [Chen, Babar &
Ali 2009] underlines first a distinction between external variability (as seen
externally by the customer) and the internal variability or technical variability.
It also shows that requirements are progressively defined and refined from the
initial architecture definition stage to the running system across all the stages
of software development.
This is a current weakness of variability management in the hard product
industry to essentially manage the physical product point of view and not the
others.

3. Variability and product / systems life cycle definition artifacts:
The definition of a complex systems or products is made through artifacts
organized in different hierarchical structures, often managed relatively
separately. The variability model has to be declined on each of these
structures to retrieve and compose them accordingly to the configuration
selected. [Jiao & Tseng 1999] addresses this topic by proposing an integrated
data model mixing the different views consistently (not specific to software
engineering). [Asikainen, Soininen & Männistö 2003] studies and compares
how applications used to model and manage software architecture may be
also used to manage variability through product configuration. This is also
comparable to the industry experience presented in section 3 where we see
how PLM is used to manage the variability, but with a focus on physical
product structure and DMU.

4. Multilevel variability – Multi-level product families
[Reiser 2009], who deeply analyzes SPL for automobile, suggests that
variability must be designed at different levels. This fits with our observation
and approaches developed in section 3.2 well (multi-level products families).
This requirement seems to be fundamental if we want to reuse a variable
module in different variable platforms and in different variable vehicles.
[Reiser 2009] develops a concept of configuration link which seems close to
the concept of variability-effectivity mapping that we describe in section 3.2
and whose mechanism is provided by some PLM/PDM software packages.
This approach and principle should also enable “local” specification and to
management of the variability by considering only those which are
meaningful for the perimeter of the considered product family. Inside the low
level product family reused, the variability effectivity definition is not
constrained to be expressed by options/variants values of the higher level
product families. Configuration links or equivalent variability-effectivity
mapping rules are needed to select the proper lower level family configuration
corresponding to the variability effectivity of the upper level. Another way to
see it is that this multi-level approach may enable some decoupling of the
specification of the variability of the upper level product family from that of
the lower level reused product family. This make possible to hide internal
complexity of the variability lower level product family from the upper one.
The classic example for automotive is to decouple a commercial feature such
as “level of equipment” (values: lux – comfort – economy) and “country”
from the technical features used at a module level such as a seat. A technical
feature at the seat level such as “heating seat”, for example, could be linked
through a configuration link/mapping rules to the equipment level “lux” in
Southern Europe and “comfort” in Northern Europe.

5 Conclusions: Using the System Engineering approach to
define and model Systems/Products Families variability

These are just embryonic and not yet proven ideas which came to me when
confronting my experience and the research review I have made in SPL. These
ideas are driven by the conviction that the system engineering and the traditional
physical product engineering approaches need to be consistently integrated into a
unified approach and model.

From the experiences seen and described here, we may derive some

conclusions and intuitions for the future:
1. It is necessary to find a common approach for managing systems variability

and product variability. Until now, the two approaches were traditionally
managed separately. The hard products industries mainly focused their PDM
and ERP systems on managing the physical product variability. Strong
intrusion of systems in hard products industry and growing interdependency
of functional and physical dimensions push for an integrated approach

2. Variability criteria (features) are strongly related to requirements. In other
words, it seems us that a variability criterion value may be quite formally
linked to a consistent set of requirements.

3. The system model (according to SYSML common standard) offers a way to
simultaneously and consistently mix the requirements, the functional, the
physical and the behavioral points of view. So, if we are able to model the
variability through a consistent set of features (requirements regrouping in
line with systems model components), we have a solution to the question of
multiple points of view for variability.

4. System level requirements are defined at the beginning of the system design
and refined and allocated to the system architecture components in parallel
with the architecture design. So variability definition is naturally and strongly
related to the system engineering approach. Adding a feature concept to
SYSML model (functional, physical and behavioral) offers a perspective to
model variability progressively with the system architecture development, and
to manage consistently the different points of view provided by SYSML.

5. Variability must be multi-levelled and structured by an architectural
approach. When defining a system level, it is only required to define or know
the external specifications of the sub-systems it relies on, but it is not required
to define them internally. This abstraction capability enables us to define the
variability focusing the engineering effort for the relevant level of abstraction.
The system engineering approach could strongly help to properly define the
architecture of a complex system/product in a hierarchy of product families
according reuse and variability strategy. Moreover, limiting the variability of
the architecture itself by standardizing interfaces may enable us to fit in
different module families without (or limited) side effects on neighbor
modules it interfaces with.

There are still questions not addressed here, which would need to be studied,

for example:
• How, with a systemic approach, would we model manufacturing resources

and processes (with the linkage of process to the product and with the
variability at all levels product, process and resources)?

• What does variability for behavior mean (simulation, test, validation)?
What variability in behavior is driven by the system or product variability
definition, and what variability is added by the methods and process for
simulating, testing and validating?

Nevertheless, for the reasons exposed above, it looks to us that the system

engineering approach and that system-based-modeling-engineering (SBME)
relying on SYSML could be a strong foundation for supporting the definition of
complex systems/products with their variability. The configuration-
linking/variability-effectivity-mapping-rules needs to be articulated with the
system/sub-system concept. In this perspective, classic product definition would
be embedded into the system definition. This model would also need integration
of proper positions management with the physical description of the system and
with the system/sub-system architecture.

I would be interested in getting feed-back of researchers about these ideas and
possible research done on this subject I may have missed.

References

[Asikainen, Soininen & Männistö 2003] Towards Managing Variability using
Software Product Family Architecture Models and Product Configurators	 	
Timo Asikainen, Timo Soininen, Tomi Männistö – Helsinki University of
Technology – Software Business and Engineering Institute (2003 SoberIT).
http://www.soberit.hut.fi/pdmg/papers/ASIK03TOW.pdf

[Becker 2003] Towards a General Model of Variability in Product Families
Martin Becker -System Software Group, University of Kaiserslautern
Kaiserslautern, Germany - mbecker@informatik.uni-kl.de

[Capilla, Bosch & Kang 2013] Systems and Software Variability Management
- Concepts, Tools and Experiences -
Capilla, Rafael, Bosch, Jan, Kang, Kyo-Chul (Eds.). SPRINGER
http://www.springer.com/computer/swe/book/978-3-642-36582-9

[Chen, Babar & Ali 2009] Variability management in software product lines:
a systematic review,
Proceeding- Lianping Chen (University of Limerick, Ireland) - Muhammad Ali
Babar (University of Limerick, Ireland) - Nour Ali (University of Limerick,
Ireland) - SPLC '09 Proceedings of the 13th International Software Product Line
Conference - Pages 81-90 -Carnegie Mellon University Pittsburgh, PA, USA
©2009
http://dl.acm.org/citation.cfm?id=1753247

[Jiao, Simpson, Siddique 2007] Product family design and platform-based
product development: a state-of-the-art review
Jianxin (Roger) Jiao - Timothy W. Simpson Zahed Siddique - Springer
Science+Business Media, LLC 2007 - July 2007

[Jiao & Tseng 1999] An Information Modeling Framework for Product
Families to Support Mass Customization Manufacturing
Jianxin Jiao, Mitchell M. Tseng)
Department of Industrial Engineering and Engineering Management, The Hong
Kong University of Science and Technology, Kowloon, Hong Kong
CIRP Annals-Manufacturing Technology, 1999 – Elsevier

[Kang, Cohen, Hess, Novak, Peterson 1990] Feature-Oriented Domain
Analysis (FODA) Feasibility Study
Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak,
A. Spencer Peterson
Software Engineering Institute - Carnegie Mellon University - Pittsburgh,
Pennsylvania 15213
November 1990
http://www.sei.cmu.edu/reports/90tr021.pdf

[Lim 1994] Effect of reuse on quality, productivity and economics
WC. Lim Hewlett Packard– IEEE Software September 1994

[Manet Hamm O.Brien 2011] Making the word work better – The Ideas that
shaped a century and a company ‘IBM)
Kevin Manet, Steve Hamm, Jeffrey M.O’Brien
IBM Press/ Pearson 2011

[Pil, Holweg 2004] Linking Product Variety to Order-Fulfillment Strategies
Frits K. Pil – University of Pittsburgh - Matthias Holweg - Judge Institute of
Management, University of Cambridge –
Interfaces 2004 – Vol 34, N° 5 September-October pp 394-403

[Reiser 2009] Managing Complex Variability in Automotive Software
Product Lines with Subscoping and Configuration Links
Mark-Oliver Reiser Fakultäat IV {Elektrotechnik und Informatik der Technischen
Universitäat Berlin

[Renault Nissan 2013] Common Module Family (CMF): a new approach to
engineering for the Renault-Nissan Alliance
http://media.renault.com/global/engb/alliance/Media/PressRelease.aspx?mediaid=
49441

[Rokunuzzaman & Choudhury 2006] Economics of Software Reuse and
Market Positioning for Customized Software Solutions
M. Rokunuzzaman+ and Kiriti Prasad Choudhury+*
*School of Engineering & Computer Science, Independent University,
Bangladesh (IUB), Dhaka, Bangladesh and Beximco Pharmaceuticals Ltd, Dhaka,
Bangladesh. zaman.rokon@yahoo.com, kpmoni@yahoo.com
Journal of Software, Vol 6, n°1, January 2006

[Simpson, Siddique & Jiao 2007]
Platform-Based Product Family Development
Timothy W. Simpson1 -, Zahed Siddique2, and Jianxin (Roger) Jiao3
1Departments of Mechanical & Nuclear Engineering and Industrial &
Manufacturing - Engineering, The Pennsylvania State University, University Park,
PA 16802;

2School of Aerospace and Mechanical Engineering, University of Oklahoma,
Norman, OK 73019;
3School of Mechanical and Aerospace Engineering, Nanyang Technological
University,Singapore 639798 - Springer 2007
	
[Volkswagen 2011] Volkswagen Fact book 2011
http://www.volkswagenag.com/content/vwcorp/info_center/de/publications/2011/
04/Volkswagen_Group -
Factbook_2011.bin.html/binarystorageitem/file/Factbook+2011.pdf

[Zhang & Fan 2006] A Conceptual Framework for Product Lifecycle
Modeling
Wenlei Zhang1,2, Yushun Fan3
1Shenyang Institute of Automation，Chinese Academy of Science, Shenyang,
P.R. China
2Gradute School of the Chinese Academy of Science, Beijing, P.R. China
zwl@sia.cn
3Dept. of Automation, Tsinghua University, Beijing, P.R. China
fanyus@tsinghua.edu.cn
Innovative Computing, Information and Control 2006 ICICIC ’06 Vol 2

[Zhang & Fan 2007] A Conceptual Framework for Product Lifecycle
Modeling
Wenlei Zhang1,2, Yushun Fan3
1 Shenyang Institute of Automation, Chinese Academy of Science, Shenyang, P.R.
China
2 Gradute School of the Chinese Academy of Science, Beijing, P.R. China -
zwl@sia.cn
3 Dept. of Automation, Tsinghua University, Beijing, P.R. China -
fanyus@tsinghua.edu.cn
J Intell Manuf (2007) 18:5–29 - DOI 10.1007/s10845-007-0003-2

