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Abstract. Cyber-physical systems are being deployed in a wide variety
of applications, creating a highly-capable infrastructure of networked
“smart” systems that utilize coordinated computational and physical
resources to perform complicated tasks either autonomously or in co-
operation with humans. The design and testing of these systems using
current methods, while time-consuming and costly, is not necessarily
sufficient to guarantee appropriate and trustworthy behavior, especially
under unanticipated operational conditions. Biological systems offer pos-
sible examples of strategies for autonomous self-improvement, of which
we explore one: active experimentation. The combined use of active ex-
perimentation driven by internal processes in the system itself and com-
putational reflection (examining and modifying behavior and structure
during operation) is proposed as an approach for developing trustworthy
and adaptable complex systems. Examples are provided of implementa-
tion of these approaches in our CARS testbed. The potential for apply-
ing these approaches to improve the performance and trustworthyness of
mission-critical systems of systems is explored.

1 Introduction

Complex systems of systems (SoS), especially those that include cyber-physical
systems (CPS), are now being deployed in critical infrastructure applications
such as the electrical grid, health care, manufacturing, transportation, commerce,
law enforcement and defense. We bet our lives, or at least our livelihoods, that
these systems will function as anticipated. Yet, as they become increasingly com-
plex and interconnected (networked), developing the systems engineering meth-
ods to ensure that these SoS will be trustworthy has become its own technical
challenge.

For example, space systems (which term includes not only the satellites, but
also the ground control and dissemination systems and the launch systems that
put them up there) are simply the most complex engineered systems that humans
build that work (and they do work almost always and often far beyond their pro-
jected design life). They typically involve hundreds of organizations, thousands
of people, tens of thousands of components, millions of pages of documentation,



and they are expected to last sometimes for decades. (The development process
does usually last for decades even when the satellites are not expected to). It has
been clear for some time that these systems exceed our ability to understand
them, and that they only work by dint of what we have heard called “heroic
engineering”, but even that approach is now regularly exceeded by current and
planned systems.

Successfully planning and implementing the integration of such complex con-
structs would, in principle, require detailed knowledge of hundreds of thousands
(or more) of components, how they are connected into subsystems, and all of
the possible interactions between components, subsystems, and the environment.
From a practical perspective, it is exactly the lack of this detailed knowledge that
leads us to characterize a system as complex. [22] Various approaches based on
formal compositional methods [10, 11, 21, 24, 25] or brokering of mutual require-
ments (service-oriented architectures) [2, 23] have had some success, but these
approaches do not adequately address the central problem: precise descriptions
of all of the components to be integrated, and especially all of their possible in-
teractions, are not fully known, and therefore not available for use in the design
and integration processes. Existing approaches do not enable the discovery of
the new knowledge that is needed to guarantee appropriate functioning of the
integrated SoS.

Systems of systems are built from systems that themselves have been de-
veloped and tested, often for a different application. The integration challenge,
then, concerns most importantly the necessity of reconciling the multiple and
sometimes conflicting operation and control strategies of these systems with re-
spect to a new SoS purpose or goal. [6] Conflicts in which a component system
continues to operate in accordance with its own best interests given the previous
application may no longer allow the full SoS to operate as needed, but these
conflicts are difficult to discover without testing the full operating SoS. There-
fore, the testing required for verification and validation of the operation of the
full SoS is potentially damaging to the SoS itself, and also risks interruption of
the services it supplies. This paper proposes a strategy by which active experi-
mentation coupled with computational reflection can refine or even discover the
knowledge needed to ensure appropriate functioning of the overall SoS.

2 Systems Engineering Challenges

Complex systems of systems challenge established systems engineering practices
in several ways.

– Managing the complexity is a fundamental technical challenge in itself, in-
dependent of the particular system or application.

– Updates and upgrades mean that the SoS evolves during its operational life.
– The capability and value of a system / component / device leads us to re-

purpose it for applications that were never envisioned by its original designers
rather than developing a completely new device.



– Instances of the system are often unique, although there may be other, sim-
ilar instances (i.e. Amtrak’s reservation system, a segment of the electrical
power grid, a space system including all ground and launch resources).

– Ubiquitous wired- and wireless communications networks mean that the
boundaries of the SoS and its possible states are probably not completely
definable.

– Self-x capabilities mean that the system is never fully designed.

Component, subsystem, and system design and test currently utilize a va-
riety of models at differing levels of detail, together with a set of “goodness”
measures linked to a priori requirements, as inputs to computational processes
(often optimization) that evaluate candidate strategies. However, as complexity
increases, “emergent” behaviors become increasingly likely. Such self-organized,
coherent actions that were not planned or anticipated by the designers often
occur through interactions that are not present in the models of components,
processes and interactions used in design, integration and test. CPS SoS design
and testing is further complicated by the re-purposing of legacy hardware and
software which may not have been designed in accordance with current pro-
cedures, standards and interfaces, thus requiring specialized adaptations. New
approaches are needed for design, verification and validation of complex cyber-
physical SoS to better ensure their trustworthiness. The most desirable of these
approaches will also address the spiraling cost of implementing and testing these
complex SoS.

3 Biologically Inspired Control Strategies

Biological systems provide a rich source of inspiration for engineering complex
SoS both because, in spite of their obvious complexity, they achieve remarkable
robustness, and also because of the extreme degree of interconnection of their
various components and subsystems. [5, 9] A central lesson that we have taken
from biology is that both robustness and controllability can result when each
component or process interacts strongly with many other components and pro-
cesses in a monitored and regulated system. (A recent example comes from work
on the immune response of the mammalian gut microbiome, [1,20] but there are
many others.)

Control in biological systems occurs through the combined operation of many
processes and actions, with desired behaviors being achieved by small changes
in relative strengths. A web of overlapping monitoring and regulatory processes
that maintain appropriate conditions at all levels of complexity is critical to
the success of this paradigm. For example, the actions and processes used to
achieve the top-level goal of walking over rough terrain are achieved by many
instances of humans in spite of significant differences in their structure, strength
and ability. That is, biological systems rely not on uniformity of structure, but on
the ability to adjust similar structures and generic patterns of actions based on
a high degree of monitoring of local conditions in order to accomplish a behavior
that is adequate for the current context and goal.



Controlling a SoS with a complex web of balanced interactions is strikingly
different from the traditional block-diagram approach to engineering design that
focuses on building a few strong and well-understood interactions between com-
ponents while striving to nullify all other interactions. We suggest that the as-
sumption that small interactions can be neglected, together with implementation
of this assumption throughout the modeling process, is one important reason
that emergent behaviors are often not predicted by simulations. In contrast, the
biological style does not deprecate interactions, but instead achieves a “balance
of forces” form of control based on extensive overlapping webs of monitoring and
regulation at all levels of the hierarchy of complexity. We propose that imple-
menting this style in strategic portions of engineered systems could mitigate the
challenges posed by unmodeled interactions.

The biological design approach leads to a “permissive” style in which, while
actions, states, conditions, and processes may vary from one instance to another,
overall performance goals are achieved by adjustments in their relative intensi-
ties. This permissive style is in clear contrast to the restrictive control approach
of traditional engineered systems, in which adjustments of a few inputs achieve
all of the desired actions or processes through clearly defined pathways. However,
there is promising similarity between the dense web of interactions in biological
systems and the challenge of managing the many unknown or unmodeled inter-
actions in a complex SoS, again suggesting that a more biological approach to
design, operation, and integration may be useful provided that the appropriate
information about actual interactions can be discovered.

The admirable robustness of biological systems is due in part to their ability
to learn to accomplish the same goal using a variety of strategies, although not
necessarily equally efficiently. For example, if you break your right arm you are
still able to accomplish most of the tasks of daily life by substituting your left
arm or accommodating to the reduced motion allowed by a cast. This broad
ability to find a way to accomplish a goal in spite of changes in capability or
configuration is exactly the type of robustness and reliability that we would
like to have in engineered SoS, and to understand and utilize during design
and integration. New ways of acting can take place through the recruitment of
existing structures and processes in new combinations to address a new context,
purpose or goal. [3] Thus, a large space of possible responses can result from
small departures from previous conditions. Since this style of operation differs
significantly from the usual engineering approach with narrowly defined and
targeted control pathways, new tools and methods are required in order to exploit
it effectively.

4 Active Experimentation and Computational Reflection

The success of the biological control-through-balance style rests on experience
with the available processes, structures and patterns, as well as of their limits of
capability and their applicability to situations similar to the present one, either
through evolutionary selection or from the experience of a specific individual.



This knowledge is not necessarily innate in a biological system, just as there is
important knowledge lacking in models of SoS.

Biological systems use excess resources to actively experiment. By doing so,
they discover and refine models of their capabilities, limitations, and possible
interactions with their surroundings that include consideration of both inter-
nal state (hungry, cold, tired, etc.) and external conditions. Significantly, such
experimentation also enables the grouping of collections of useful resources, pro-
cesses and capabilities into generic pre-patterned templates with simplified con-
trol mechanisms. Such templates can be easily shaped to fit a specific current
context. [7, 8]

The biological analogy suggests that, if it were possible for a complex SoS or
some of its components and subsystems to engage in active experimentation, the
existence of conflicts between the existing operation and control strategies of a
repurposed subsystem and the overall SoS purpose or goal could be identified and
modeled before such a conflict gives rise to failure or to disruption of the service
provided by the overall SoS. In addition, efficient strategies for accomplishing
common purposes and goals could be discovered and collected into templates
for accomplishing similar operations. Such templates could then be reviewed for
correctness either by the system itself using further active experimentation, or
supplied to designers, integrators and operators for evaluation.

Our existing systems have not been built with the capabilities required in
order to engage in active experimentation. Thus, an important research chal-
lenge is to implement such processes while preventing the resulting experiments
from damaging some part of the SoS or compromising the service it provides.
Implementation is particularly challenging when, as with space systems or the
electrical grid, there is only one operating instance of the entire SoS.

In following sections we discuss several possible approaches for introducing
active experimentation into engineered complex cyber-physical SoS. However,
first we list the additional capabilities required of such implementations. They
are:

– instrumentation at all levels of the hierarchy of complexity to measure what
happens.

– models that relate what is measured to properties or symbols that are local
but have meaning that can be communicated to other parts of the SoS.

– models that relate what is measured locally to higher-level purposes, goals
and constraints.

– the capability to retain the information produced by these measurements
and models.

– a hypothesis-generating engine that can propose possible actions (experi-
ments).

– a predictive capability to project and analyze the potential consequences of
a proposed future action.

– the ability to engage in a proposed action.

Taken together, these resources and capabilities would create an engineered SoS
able to reason about itself (its resources, capabilities, and limitations) in the



context of its current environment, purposes and goals, and also to both propose
and implement a course of action based on that reasoning rather than on pre-
programmed control strategies. [13, 15]

These capabilities required for achieving active experimentation, taken to-
gether, constitute computational reflection. [18, 19] That is, the SoS is able to
retain meta-information, reason about itself, and implement modifications to its
behavior. Computational reflection is more nuanced than feedback control, but
certainly less than consciousness. Importantly, we do not conceive that com-
putational reflection will be implemented as one top-level control strategy, but
will rather be distributed throughout the hierarchy of complexity of the SoS in
keeping with the lessons learned from biological systems.

5 Approaches to Implementation in Mission-Critical SoS

The crucial question is, of course, how to implement this biologically-inspired
approach of active experimentation coupled with computational reflection to
improve and extend existing SoS, as well as to design, develop, integrate and
test new ones. We suggest two complementary strategies, both of which leverage
the capabilities we have listed above. One approach, which we are following
in our own work, is to build testbeds [7, 12, 17] to refine our understanding of
the methodologies and tools required to incorporate active experimentation and
computational reflection in a cyber-physical SoS.

The other, and more advanced, strategy is to implement portions of the re-
quired capabilities locally in an already-operating system and monitor the pro-
posed courses of action for compatibility with known “concepts of operations”
(CONOPS), which are the different styles of use intended for the system. Since
the cases of most interest are also SoS providing important services that can-
not be interrupted, we suggest that, after testing at the subsystem level, such
modifications could be implemented during planned maintenance, update, or
upgrade periods for the affected portion of the SoS. We note that all critical
systems have methods for implementing such planned modifications. Addition
of reflective capabilities and active experimentation could be implemented one
step at a time, starting with reflection, but trapping the proposed modifications
instead of implementing them. Multiple periods of testing and review could be
accomplished during successive maintenance periods, carrying out all of the nec-
essary processes for implementation except executing the proposed actions. This
strategy allows a period during which the proposed actions can be compared
with known CONOPS for consistency throughout the entire SoS, providing a
basis for verification and validation of the expected operation of the entire SoS
once the new capabilities are allowed to affect operation.

In a SoS that supplies a mission-critical service, we do not have the ability to
isolate the whole system (with new incoming systems or capabilities and legacy
systems) from its ongoing requirements within its true operational context. And
yet, it is arguably even more critical that SoS, which are dynamic, which have
many unknowns, which have constantly new combinations of legacy systems /



components and new systems / components, have some “safe” places within
which to actively try out component configurations and to reason about and
record / learn the impacts of such configurations in matching their requirements
and operational constraints.

Most SoS are modular and utilize redundancy to achieve robustness so that
sections can go down without bringing the rest of the system down, and also can
be routinely taken offline for necessary check-out, maintenance, and upgrades.
To leverage redundancy and maintenance periods for evaluation of the effective-
ness of new capabilities such as reflection and active experimentation, one would
have to devise a simulation that would mimic the current operational settings.
Combining emulation / simulation and protected operation are currently done
for checking out space vehicles and their subsystems and components, as well as
other similarly expensive systems that require testing within very realistic oper-
ational conditions. These operational simulations could be used to test the new
combinations of components, capabilities and system integrations by a human
system engineer using a set of pre-designed tests. Certainly this would have great
advantages over the current practices in developing and testing SoS, changing it
from a certification process into one of continual verification and validation.

We now discuss our testbed, how it enables us to implement both active
experimentation and computational reflection, and how we can apply what we
learn to the cases of complex SoS.

6 The CARS Test Bed

CARS (Computational Architectures for Reflective Systems) is a testbed that we
have been developing as an ongoing student project at California State Polytech-
nic University, Pomona. [7,8,17] This testbed is based on a set of design decisions
that enable us to confront many of the challenges of implementing real SoS. It
is composed of a group of robotic agents built from low-cost commercial off the
shelf (COTS) hardware. Specifically, we use inexpensive toy radio-controlled cars
and trucks. These vehicles are decidedly not ideal for the tasks we assign them,
and they are also quite different one from another. Both of these circumstances
mean that the self-modeling aspects of our reflective architectures are critical
to successful system function. By adding our own sensors, computation, com-
munication, and control, these toy vehicles become useful agents, although they
have capabilities that are deliberately limited compared to the relatively com-
plex tasks we require of them, a situation often replicated in real-world systems
containing legacy hardware.

A series of benchmark tasks are utilized for evaluation of CARS that span a
broad range of sometimes conflicting strategies: independent or multi-agent, co-
operative or competitive, asynchronous or synchronous. Specifically, we use the
“games” follow-the-leader, tag, soccer practice (bump a ball into a designated
goal), and push-the-box (move a large, heavy object that cannot be moved by any
individual agent to a designated goal). We use Wrappings to implement compu-
tational reflection and self-modeling. Wrappings grew out of work on conceptual



design environments for space systems, and has been in continuous development
since its inception in 1989. [4, 13–15]

Some of the important characteristics of CARS are

– The cost of each robotic motion platform (< $50) means that, unlike most
deployed systems, the investment in any part of the system is relatively small.
(A new agent can be prepared in less than a day from COTS hardware and
the electronics of a damaged agent.)

– The robotic components are relatively crude, requiring more modeling and
self-refinement of generic models than better hardware.

– The performance of the SoS for any task can be evaluated from recorded
video of the “field of play.”

– The tasks and the appropriate performance measures are easy to express in
everyday language.

– Use of Wrappings frees experimenters from many of the detailed program-
ming tasks normally associated with adding or modifying a process, model,
or sensor interface.

What Wrappings provides here is the ability for the system to have multiple
alternative resources for any given problem, and to select them according to
their operational context at the time of use. Because the process that make
those selections are also resources, and are also selected just like any other,
these systems have a very strong kind of computational reflection [15, 16]. The
Wrappings approach also allows active experimentation in two ways. First, the
system can create or otherwise collect new resources and try them out in a
context that indicates simulation and evaluation, thus not needing to activate
them in the “real” operational system until they are deemed to be ready. Second,
the system can adjust the context conditions under which certain resources are
selected and adapted, so that resources may be used in different ways.

We now speculate on the applicability of both the CARS testbed and the
incremental approach as strategies for eventually implementing active experi-
mentation and computational reflection in mission-critical SoS.

7 Prospects

In the CARS testbed, we have the luxury of allowing the system and its agents in
the true operational environment to practice, make mistakes, learn its character-
istics (e.g., turning ratio, speed on different surfaces etc.), and even damage an
agent without dire consequences to itself or to the rest of the testbed, somewhat
as children learn their capabilities and the constraints of their various environ-
ments through play. However, in addition to pre-defined test sets, we speculate
that in fact the style of self-modeling, learning, and subsequent recording of new
rules and constraints that we have advocated for the CARS testbed could be-
come very useful for offline testing and progressive integration of parts of a SoS.
In our approach, each component and subsystem of the CARS is constantly de-
veloping better and better rules and constraints on its behavior and its allowable



operational envelope. The result is that because the “experimentation” is being
developed in parallel from the point of view of many different types of compo-
nents playing their diverse roles, the system is very likely to discover much more
about potential problems than a test set developed by even a knowledgeable and
experienced system engineering team.

This kind of exploratory behavior is an extension of exploring the system’s
external environment to exploring the space of potential behaviors. Since this
space is enormous, some very powerful directive constraint mechanisms will be
needed to keep the system within some reasonable expectations, and some very
powerful verification and validation methods will be needed to assure us that
the system will accede to any safety- and mission- critical constraints we may
choose to impose.

Eventually, we can envision a situation in which the components themselves
when faced with a novel component interface or configuration or operational
setting can request a time out, a voluntary removal of themselves to maintenance
/ self-examination / hypothesis generation and testing mode in a simulation.
Imagine that in addition to the meta-knowledge normally provided to a SoS
broker, each component / system has strong self-models at multiple time and
space resolutions that are being continually refined with interaction with other
components and environments. Initially, as a new configuration of components
is brought together with the top level descriptions provided to the broker in
the Wrappings, there will now be a deeper process of negotiation among the
components as their self-models now compare constraints, expectatins, rules for
best practice, and other behavior modification and constraint conditions. If a
component is now faced with either an unknown situation (a new condition for
which it has no rules or constraints) or a partially violated constraint (whose
priority might not be that high), it can request that the system allow it to
temporarily go into maintenance mode.

Of course, to be able to entertain this type of negotiation will take more
information in the self-model about that component’s expected CONOPS, in
addition to its expected environment. The system will either have some type of
holding action it can take or it might request the broker to provide it a new
component and go on. Meanwhile the offline component now starts a set of
experiments in the safe simulation, with current operational setting values and
conditions and with either the other relevant software components (clones) and /
or emulated hardware components. If its experiments go well enough (measured
by seriousness of system use), then that component can go out of maintenance
mode and back online. At that point, it tracks and records all the real results of
its interactions in this new use or configuration for future rules and constraints.
If the results of the experimentation are equivocal, then human intervention may
be requested for further experiments.

To summarize then, we want to develop methods that allow and even en-
courage processes that continually improve the performance of a system through
better use of its existing resources, the correct incorporation of new component



resources, and the most appropriate integration among resources given the cur-
rent operational context and CONOPS.

8 Conclusion

A study of biological systems suggests possible strategies for creating robust
adaptive responses of a complex SoS to changing or even unanticipated condi-
tions. In this paper, we focused on one such strategy: active experimentation.
We have shown that successful active experimentation requires several special-
ized capabilities that, taken together, amount to computational reflection. We
then proposed various strategies for implementing active experimentation and
computational reflection in mission-critical systems of systems.

We have suggested that having testbeds like CARS allows components, sub-
systems, and systems to build ever-improving self-models based on active ex-
perimentation. The active experimentation coupled with the reflective reasoning
processes allows these components / systems to develop and refine rules and
constraints with specific details about different operating conditions and other
components or systems.

We have then speculated that some of these approaches could be applied
to mission-critical SoS by taking advantage of the offline maintenance mode
allowed for most SoS components / subsystems. This second best case is to have
during maintenance, some way of setting up a safe operational environment (set
of simulations and emulations) for the offline components to actively experiment
performing new behaviors, joining in novel configurations of components, or
experiencing new operational settings. This experimentation would help refine
the current self-models to take into account these new conditions.

The last case is to develop a new style of negotiation where components
are outfitted not only with their own constraints and behavioral rules, but also
CONOPS that helps explicitly define the expectations for how this component
is expected to be used under different circumstances. This negotiation would be
going on in parallel across layers of systems and components, allowing many lines
and types of detailed interactions to be analyzed by the self-modeling processes.
In this last most speculative case, based on this negotiation, individual compo-
nents would request being put into study mode (offline maintenance mode and
into operational simulation mode) in order to follow up on any conflicts with
current constraints or lack of information on requested behaviors.

We are hoping this paper will stimulate a community wide discussion into
many different ways one could create safe places for self-modeling and experi-
mentation resulting in better system integration, system validation, and system
performance.
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