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Abstract. We present a design framework for small-satellite systems
that ensures that (1) each satellite has a consistent theory to infer new
information from information it perceives and (2) the theory for the en-
tire system is consistent so that a satellite can infer new information
from information communicated to it. This research contributes to our
Reliable and Formal Design (RFD) process, which strives for designs
that are ”correct by construction” by introducing formal methods early.
Our framework uses Barwise’s channel theory, founded on category the-
ory, and allied work in situation semantics and situation theory. Each
satellite has a ”classification”, which consists of tokens (e.g., observed
situations) and types (e.g., situation features) and a binary relation clas-
sifying tokens with types. The core of a system of classifications is a
category-theoretic construct that amalgamates the several classifications.
We show how to derive the theory associated with a classification and
the theory of the system core, and we show how to check whether a given
requirement is derivable from or consistent with a theory.

1 Introduction

This research represents our ongoing effort to develop a model-based systems
engineering methodology for small satellite systems that is reliable, formal and
results in a ”correct-by-construction” design. We present a knowledge-based de-
sign framework for ensuring that (1) each satellite has a consistent theory it can
use to infer new information from information it perceives and (2) the theory
for the entire system is consistent so that a satellite can infer new information
from information communicated to it, and it can assess purported information
from fellow satellites. The theories mentioned can be updated as insight is gained
about the sensing satellites and the part of the world observed.

This research contributes to our development of a Reliable and Formal Design
(RFD) process [1] [2], which strives for designs that are correct by construction
by introducing formal methods early in the design process so that redesign may



be minimized. In previous work, we defined the structure for checking consistency
and traceability of requirements in a formal manner [2]. In this paper, we expand
on our definition of consistency in terms of category theory and information
flow as it relates to designing systems of heterogeneous satellites that share
information about the situations they observe.

Consider a particular small satellite S. A type (for S) is a feature of interest
that S may observe in a monitored situation. We assume that we can identify a
set of types that characterize S’s sensory capabilities and, further, that we can
form a table indicating the combinations of types that may occur together in an
observed situation. In Section IV.A, we present an algorithm to derive a theory
(for S) from this classification table. The algorithm can detect inconsistency.
We may have to update S’s classification table: we may find a new combination
of types that may occur together (and so add a row to the table), or we may
find that a previously postulated combination is in fact spurious (and so delete
a row from the table). We may even find it necessary to introduce a new type
for S. Whenever S’s classification table is updated, we can run our algorithm
and update S’s theory (and check for consistency). S’s theory allows it to infer
additional information about a situation from information about that situation
that it has perceived or received via communication with other satellites. S’s
theory also allows it to detect when purported information about a given situa-
tion from another satellite is incoherent from its (that is, S’s) point of view or
is inconsistent with the information S has about the situation in question.

We are concerned with a system of small satellites, so we consider the amal-
gamation of the classification tables of the several satellites in a given system as
well as the theory inherent in this amalgamation. The amalgamation combines
the content of the classification tables for the individual satellites and adds re-
lations among types from several satellites. We describe this amalgamation in
Section IV.C in terms of category theory. We can think of the system (with its
classification table and theory) as the ”whole” and the individual satellites as
”parts”. Again, in deriving the theory, we can determine whether it is consistent,
and we can update the theory of the whole when the classification table for a
part or a cross-part type dependency changes.

We describe, in an abstract manner, the algorithms and procedures that
are used at a system-wide level in order to manipulate information and general
knowledge for the satellite system. We do not suggest that the final implemen-
tation of the system of satellites will use these procedures. Rather, they are to
be taken in the spirit of executable specifications. Later stages of the design
process will refine the specifications into concrete designs that can be directly
implemented.

The higher-level view taken here is based in the first instance on category
theory, which captures abstract algebraic structures and their interactions in a
coherent way (as categories) and also captures the relations between the cat-
egories. We make use of Barwise and Seligman’s channel theory [3], which is
an application of category theory to the ”flow of information”. Information is
addressed here, not in terms of the amount of information as per the discipline



initiated by Shannon, but in the sense of the information content of an event or
message. Flow here is not to be interpreted in a physical sense, but in the sense
that X being α carries the information that Y is β.

Barwise and Seligman developed channel theory to explain the notion of a
constraint, which was central in Barwise’s account of ”X being α carries the in-
formation that Y is β” in situation semantics. Barwise and Perry [4] developed
situation semantics as a general theory of naturalized meaning and information.
Devlin [5] provided a systematic presentation of situation semantics and the situ-
ation theory behind it. We exploit situation semantics and situation theory along
with channel theory to give a rigorous and general account of the information
satellites in a system of satellites have and share.

A situation is an ongoing happening in the world, while an infon is the basic
item of information. An infon involves an n-place relation R, n objects appropri-
ate for the corresponding argument places of R, a spatiotemporal location, and
a polarity of 1 (indicating that the objects are thus related at the indicated place
and time) or 0 (indicating otherwise). Alternatively, one may think of a situation
as a partial function from tuples, with all the above components except polarity,
to the codomain {0, 1}. A situation, unlike a possible world in the semantics of
modal logics, targets only part of the world. A real situation is a part of reality
(and considered a single entity) that supports an indefinite number of infons,
while an abstract situation is a fixed set of infons.

Information flow is made possible by uniformities across relations between
situations, that is, (as in channel theory) constraints (including natural laws
and linguistic rules) that link various types of situations. Situation semantics
addresses speech acts (utterances) and the ”situatedness” of language use. It
presents a theory of meaning that is relational in that language use relates situa-
tions: a linguistic unit (such as a declarative sentence) is uttered in an ”utterance
situation” whose descriptive content is some ”described situation”.

We retain the terminology of situation semantics for communication among
small satellites since viewing satellite communication at a high level, in terms
of utterance situations, allows us to abstract away unnecessary detail that adds
nothing to the analysis. It also allows us to exploit notions relating to conversa-
tion that are not applicable at a lower level. A satellite broadcasting information
delineates a spatiotemporal region in which there occurs an utterance situation
(which also includes the satellites that are its physical neighbors given that an
appropriate channel exists). We are interested in the information, its flow, con-
ventions for taking turns, assumptions about content, and many other things
at the level of speech and conversation. We are not interested in the physical
aspects of communication and so eschew terms such as ”broadcast”.

The information of interest here concerns only the observed situations. The
types relate only to observed situations, never to the satellites themselves. We
do not address the issue of control actions taking by the satellites nor are we
concerned with how information is extracted from signal. Real situations, with
real objects and happenings, are observed although different satellites observe
the same real situation from different perspectives and with different modalities.



We generally prefer ”observe” for the verb relating to the source of information
unless the emphasis is on the medium, in which case we tend to use ”perceive”.

We view the critical aspects of a small satellite as an intelligent knowledge
based system (IKBS). An IKBS as proposed here has a syntactic aspect and a
semantic aspect. The semantic aspect relates to the specific kind of information
that the satellite can process and is represented by a finite number of ”classifi-
cations.” For generality, we allow for several classifications associated with the
same satellite since it is common for a single satellite to have several sensing
modalities or to use several fusion techniques. Each classification A (in the sense
of channel theory) consists of a set typ(A) of types and a set tok(A) of tokens;
a token a ∈ tok(A) may be classified of type α ∈ typ(A) in classification A,
written a �A α and called a simple proposition. So a classification A is a triple,
(tok(A), typ(A),�A). For a small satellite system, tokens are real situations (as
observed by the satellites). All the classifications with which a given satellite is
endowed are amalgamated into a core classification (as explained in Section IV)
for that satellite, which we shall refer to as the classification of the IKBS.

The syntactic aspect of the IKBS of a satellite is a set of implication rules,
which are the constraints mentioned above. Each rule is a sequent, of the form
Γ ` ∆, where Γ and ∆ are sets of types. Suppose the classification in question
here is A. This sequent is satisfied by a token (real situation) a as long as, if
a �A α for all α ∈ Γ , then a �A β for some β ∈ ∆. A sequent is a constraint (for
A) if it is satisfied by all tokens in tok(A). The deductive closure of the set of
constraints is the IKBS’s (or satellite’s) theory (discussed above). The deductive
closure of the set of rules is the IKBS’s (or satellite’s) theory (discussed above).
Such a rule, if appropriately enabled, allows the satellite to infer new infons from
its IKBS given other infons in the observed situation or the described situation
associated with an utterance situation (where the utterance is by a neighboring
satellite).

The next section describes our Reliable and Formal Design (RFD) process
and how the techniques reported in this paper fit into this framework. Section
III presents enough category theory and channel theory so that the reader may
understand the rest of this paper. Section IV is the technical heart of this paper
and presents techniques for amalgamating classifications, deriving a theory from
a classification, and checking whether a requirement (encoded as a sequent) is
derivable from a theory or may be consistently added to it. Section V considers
how the satellites in a system maintain and communicate information on real
situations. We assume that an IKBS may use its theory or the theory for the
entire system to infer new information. Special attention is given to communi-
cation since an IKBS may fail to interpret an utterance or the content of what
is uttered may be inconsistent with the information the IKBS has. Section VI
concludes.



2 Reliable and Formal Design Process

The RFD (Reliable and Formal Design) process [2] follows a risk-tolerant
philosophy that notionally will lead to a correct design with minimal-to-no re-
design through the use of an agile and formal design process based on models.
By integrating formal methods into the proposed design process at the appro-
priate levels, many design failures and integration challenges can be eliminated.
Formal methods will provide automatic means for verification by translating re-
quirements into a higher order logic language for which tools such as PVS [6] can
perform consistency and traceability checks and proofs throughout the design
process.

This RFD systems engineering process takes into account the fact that the
design team is small and multi-disciplinary as well as the fact that system is
complex and heterogeneous and is affected by its operational environment. Ad-
ditionally, design of a complex system involves multiple disciplines that must
interact symbiotically. This also implies that at the first step in the process each
of the disciplines must have a global view of the system. As they proceed to-
wards refinement, the design process becomes a local or discipline-specific activ-
ity, though always with a global perspective. The integration of formal methods
into the design process of a complex system can reduce the need for a significant
amount of revision during the system integration phase because of the ”correct
by construction” nature of the process. This leads to testing virtually at each
level of refinement. Therefor, the theme of this design process from a systems
engineering point of view is: Think globally, design locally, and test virtually.

At each level of abstraction, Ai, the state of the RFD process can be repre-
sented by requirements, models, and simulations:Ai = (Lin,Lil,Mi,Sip,Sib),where
the information flow between these components is indicated with arrows as fol-
lows:

Lin ⇐⇒ Lil ⇐⇒ Mi =⇒ Sip (1)

⇓
Sib

Here

– Lin is the set of requirements written in natural language form
– Lil is the set of requirements written as a set of logical functions
– Mi is the system of interconnected models
– Sip is the set of simulations based on the parameters of Mi.

– Sib is the set of simulations based on the logical description in Lil.

The central result of this paper is the technique presented in Section IV.A
for developing a theory for a satellite/IKBS from the classification table for it.
As this addresses individual satellites, it is in the realm of local design, albeit
at a very abstract level. The classification system used by an IKBS may be an
amalgamation of several classifications. We form the classification for the entire



satellite system by a similar amalgamation (see Section IV.C) given the classifi-
cations of the component IKBS; the theory for the system is derived from this
classification table. This is a return to a global perspective since the individual
satellites with their sensing and communication capabilities were originally se-
lected or built as required by the global mission. Theories for individual satellites
and for the entire system are tested for consistency, which is virtual testing from
the point of view of the system being developed.

The aspect in this knowledge-level design process emphasized in this paper
is endowing each IKBS present within the distributed system with a theory in
the form of a set of constraints. One determines for each IKBS the core classi-
fication with which it should be endowed and the classifications into which this
core should be decomposed as ”parts”. Henceforth, we call the core classification
for the IKBS simply the ”IKBS classification”. One then determines the types
for each of the ”part” classifications and the IKBS classification. These are the
features of the IKBS’s environment that it can sense or be informed about. One
then produces a classification table for each ”part” and for the core. The columns
in the classification table are labeled with the classification’s types, and we have
a row for each abstract situation that (to our knowledge) may arise for that
classification. A row has an ’1’ under a type if the abstract situation represented
by that row supports that type; otherwise, it has a ’0’ under the type. Once the
classification table for the IKBS classification is fixed, one can determine the
IKBS’s initial theory (a set of constraints) as described in Section IV.A. Deter-
mining the classifications for an IKBS can be done in a top-down fashion by first
determining its core (or IKBS) classification and then determining the relative
parts in a way that is sensitive to its physical attributes. Alternatively, this can
be done in a bottom-up fashion, by mixing and matching basic classifications in
an engineering repertoire and forming the IKBS classification once the parts are
given.

Given a system of small satellites, we consider the amalgamation (the core)
of the IKBS classifications. As with forming an IKBS classification, forming the
core for the entire system is (in category-theory terms) a sum operation. Section
IV.C shows how the classification table for the system core is constructed from
the classification tables for the individual IKBSs. Again, we can form the initial
theory of the system using the techniques described in Section IV.A. Combin-
ing theories raises the threat of inconsistency, and we check for inconsistency
syntactically by determining whether, from the combined theory, we can derive
some formula and its negation or, equivalently, we can derive the empty sequent
〈∅, ∅〉. Consistency can also be defined semantically: see Section IV.B.

Designing a small satellite system is not just a matter of selecting the right
kinds of satellites, developing their theories, and combining their reports at the
knowledge level. One must also determine the overall situation, extended in both
space and time, that the system will perceive. And one must formulate policies for
how this overall situation will be divided into overlapping component situations
allocated as regions of responsibility to the different satellites; these are policies
for allocating sequences of overlapping situations to the various satellites. How



regions of responsibility should overlap depends both on what is monitored and
the capabilities and theories with which the satellites are endowed. Significant
overlap is expected when two satellites have complementary sensing modes or
perspectives on a target.

How a satellite is actually deployed may give rise to additional constraints
to be incorporated into its theory. And how several satellites are designed to
collaborate may affect how the system core is formed and thus the theory for
the system whole.

Once the satellite system is deployed, constraints will be added to the IKBSs,
and their theories as well as the theory of the system as a whole will evolve.
That is, new abstract situations will become apparent and could be added to
the appropriate classification tables. One can check that the resulting theory
remains consistent. One of the strengths of our approach is that, at any point
in the lifetime of the systems, new requirements can be checked for consistency
against current theories and, when consistent, used to augment those theories.
At any time, the various theories must meet their requirements that have been
collected over time. One way a theory can violate a requirement is by failing to
include it. The solution in that case is to add the requirement to the theory and
test for consistency. Another way a theory can violate a requirement is to be
inconsistent with it, in which case the theory must be adjusted.

3 Category Theory and Channel Theory Overview

This section provides background for formal addressing the aggregation and
flow of information in a small satellite system. The topics discussed here in-
clude category theory, channel theory, and the application of these theories to
computational systems.

3.1 Category Theory

A category C consists of a class of objects and a class of morphisms (or
arrows or maps) between the objects. Each morphism f has a unique source
object a and target object b; we writef : a → b. The composition of f : a → b
and g : b→ c is written as g ◦ f and is required to be associative: if in addition
h : c→ d, then h ◦ (g ◦ f) = (h ◦ g) ◦ f . It is also required that, for every object
x, there exists a morphism 1x : x→ x (the identity morphism for x) such that,
for every morphism f : a→ b, we have 1b ◦ f = f = f ◦ 1a. It follows from these
properties that there is exactly one identity morphism for every object.

A functor from one category to another is a structure-preserving mapping,
preserving the identity and composition of morphisms. More exactly, if C and D
are categories, then a functor F from C to D is a mapping that associates with
each object x ∈ C an object F (x) ∈ D and, with each morphism f : x→ y ∈ C, a
morphism F (f) : F (x)→ F (y) ∈ D. In addition, it requires that F (idx) = idFx
for every object x ∈ C, and F (g ◦ f) = F (g) ◦ F (f) for all morphisms f : x→ y
and g : y → z. In category theory, a commutative diagram is a diagram of objects



(as vertices) and morphisms (arrows between objects) such that all directed
paths in the diagram with the same start and end points lead to the same result
by composition.

The classic presentation of category theory is in [6]. Two reasonably com-
prehensive and rigorous texts that are accessible to most readers with classical
engineering mathematical backgrounds are [7] and [8]. A light introduction is
provided by [9], while [10] and [11] are category-theory texts addressed specif-
ically to computer scientists; [12] addresses category theory in the context of
software engineering.

3.2 Channel Theory and the Flow of Information

Barwise and Seligman [3] presented a framework for the “flow of informa-
tion” in (generally implicit) category-theoretic terms. They address the question,
“How is it that information about any component of a system carries information
about other components of the system?” For classifications A and C, an info-
morphism f from A to C is a pair of functions (f∧, f∨), f∧ : typ(A) → typ(C),
and f∨ : tok(C) → tok(A) , satisfying, for all tokens c ∈ tok(C) and all types
α ∈ typ(A), f∨(c) |=A α iff c |=C f∧(α). In category theoretic terms, an in-
formorphism is a kind of Galois connection. A contravariant Galois connection
between (tok(A), typ(A), |=A) and (tok(B), typ(B), |=B) will be a pair (ϕ,ψ) of
mappings ϕ : tok(A) −→ typ(B), ψ : tok(B) −→ typ(A) satisfying a |=A ψ(b)
if and only if b |=B ϕ(a). An infomorphism between (tok(A), typ(A), |=A) and
(tok(B), typ(B), |=B) however is a covariant Galois connection. It is a contravari-
ant Galois connection between (tok(A), typ(A), |=A) and (typ(B), tok(B), |=−1B )
where |=−1B ⊆ typ(B)× tok(B) with (β, b) ∈|=−1B if and only if (b, β) ∈|=B.

Components of the system may be distant from one another in time and
space, and the system can be made up of heterogeneous components. The system
is ”distributed” in this sense and not necessarily in the classical sense used in
computer science. For example, the students, classrooms, scheduling system,
and attendance records together form a distributed system related to students’
attendance at a certain university.

An information channel is a family of infomorphisms with a common codomain,
called the core. Essentially, a channel consists of a set A1, ...,An of classifications
that represent the parts of the distributed system, a classification C (the core)
that represents the system as a whole, and a set of infomorphisms f1, ..., fn from
each of the parts onto C. Tokens in C are the connections of the system: a given
token c in C connects the tokens it is related to by means of f1, ..., fn. Parts
A1, ...,An carry information about each other as long as they all are parts of
C. Intuitively, an information channel is a part to whole Ai-to-C informational
relationship. Categorically, the core is a cocone in the category of classifications
(objects are classifications and morphisms are informorphisms).

A distributed system D is a collection of elements that carry information
about each other. Formally, D consists of an indexed class cla(D) of classifi-
cations together with a class of infomorphisms, inf(D), whose domains and



codomains are all in cla(D). An information channel C covers distributed sys-
tem D if and only if cla(D) are the classifications of the channel and, for every
infomorphism f ∈ inf(D), there are infomorphisms from both the domain and
codomain of f to the core of C such that these three infomorphisms are commu-
tative in there interrelation. Basically, all classifications in D are “informational
parts” of the core whose channel covers D.

Turning to regularities in a classification’s types, let A be a classification and
Γ and ∆ be subsets of types in A. Recall (from Section I) that a token a of A
satisfies the sequent Γ ` ∆ provided that, if a is a token of every type in Γ , then
it is of some type in ∆. If every token of A satisfies Γ ` ∆, then Γ is said to entail
∆ and Γ ` ∆ is called a constraint supported by A. The set of all constraints
supported by A is called the complete theory of A, denoted by Th(A). These
constraints are systematic regularities, and it is by virtue of regularities among
connections that information about certain component of a distributed system
can be carried by other components into diverse parts of the system. Barwise and
Seligman’s summary statement of their analysis of information flow, restricted
to the simple case of a system with two components, is as follows. “Suppose that
the token a is of type α. Then a’s being of type α carries the information that
b is of type β, relative to channel C, if a and b are connected in C and if the
translation β′ of β entails the translation α′ of α in the theory Th(C), where C
is the core of C” ( [3], p.35).

3.3 Category Theory and Channel Theory for Computational
Systems

Channel theory and category theory in general have had a significant im-
pact in computer science, especially those aspects related to complex systems.
Schorlemmer and Kalfoglou and their colleagues have applied channel theory in
addressing semantic interoperability of federated databases [13] as well as the
similar problem of ontology alignment [14] . Kent’s Information Flow Framework
(IFF) [15] also uses channel theory; IFF is being developed by the IEEE Standard
Upper Ontology working group as a meta-level foundation for the development
of upper ontologies. Spivak [16] presents a simple database definition language
based on categories and functors and shows how to translate instances from one
database schema to the other in canonical ways; Spivak and Kent [17] have also
defined a category-theoretic model, OLOG, for knowledge representation. Fi-
nally, Diskin and Maibaum [18] support the claim that category theory provides
a toolbox of design patterns and structural principles of real practical value for
model driven software engineering. These research programs are generally at the
knowledge level and as such fit well with the work reported here.

Goguen and Burstall’s theory of institutions [19] is a categorical abstract
model theory that formalizes the intuitive notion of a logical system, including
syntax, semantics, and the satisfaction relation between them, which relates a
semantic model to syntactically well-formed formulas that can be interpreted as
true given the model. The meaning of the satisfaction condition of institutions is
that truth is invariant under change of notation. Goguen has used institutions as



a basis for unifying and generalizing several approaches to information, including
channel theory, Formal Concept Analysis, and Sowa’s lattice of theories (ordered
by inclusion on sets of derivable formulas) used for knowledge representation
[20]. The work reported here gains impact by fitting into the general framework
provided by the theory of institutions.

4 Amalgamating Classifications, Deriving Theories, and
Checking Consistency

Figure 1 depicts the aspect of the RFD process presented here. On the left-
hand side of the top, we have a specification in a natural language, Ln, from
which classification tables in the logical language Ll are encoded. From these
tables, one generates a set of sequents (or constraints) using the algorithm pre-
sented in this section. The deductive closure of this set is the IKBS theory. Note
that a theory is inconsistent if and only if one can derive the empty sequent, ∅ ` ∅
from it. On the right-hand side of Figure 1, we have a requirement expressed in
natural language Ln. This is encoded as a sequent in Ll. One then tests whether
the sequent is entailed by the theory, is inconsistent with the theory (i.e., the
theory with the sequent added is inconsistent), or neither. If it is entailed by the
theory, we have increased confidence in both the theory and the requirement. If
the requirement is inconsistent with the theory, then both the requirement and
the theory could be suspect. If the requirement survives scrutiny, one redesigns
the theory. Redesign in this approach focuses on the encoding and the correct-
ness of the original Ln statements. If the sequent that encodes the requirement
is not entailed by nor inconsistent with the theory, then one adds the sequent to
the set of sequents whose deductive closure forms the theory.

Fig. 1. RFD process as presented here.



If A = (tok(A), typ(A), |=A) is a classification, we define

α′ = {a ∈ tok(A)|a |=A α} (2)

Γ∩ = Γ ′ = {x ∈ tok(A)|∀α ∈ Γ, x |=A α} =
⋂
α∈Γ

α′ (3)

Γ∪ = {x ∈ tok(A)|∃α ∈ Γ, x |=A α} =
⋃
α∈Γ

α′ (4)

It is straightforward that a token x satisfies the sequent 〈Γ,∆〉 if x ∈ Γ∩ ⇒ x ∈
∆∪. Thus,〈Γ,∆〉 is a constraint of A if and only if Γ∩ ⊆ ∆∪. An implication
Γ → ∆ between types in A is a is sequent 〈Γ,∆〉 where ∆ is non-empty. A subset
T ⊆ typ(A) respects an implication Γ → ∆ if Γ * T or ∆ ⊆ T . An implication
Γ → ∆ holds in A if and only if every subset of typ(A) respects Γ → ∆ and
so,if and only if Γ∩ ⊆ ∆∩

The Duquenne–Guigues [21] theorem provides a way to form a canonical basis
of implications from sets of types that are pseudo-closed with respect to a closure
operator of a classification A. A set Γ of types is pseudo-closed with respect to
a closure operator of a classification A if Γ 6= (Γ ′)′ and (∆′)′ ⊂ Γ for every
pseudo-closed ∆ ⊂ Γ . Note that in mathematics, a closure operator on a set S is
a function cl : P (S) −→ P (S) from the power set of S to itself which satisfies the
following conditions for all sets X,Y ⊆ S, X ⊆ cl(X), X ⊆ Y ⇒ cl(X) ⊆ cl(Y )
and cl(cl(X)) = cl(X) As a base case for this definition, all minimal non-closed
sets are pseudo-closed.

Algorithm 1 computes a basis of the theory of a given classification. The the-
ory is the deductive closure of its basis. We use the Duquenne–Guigues theorem
to compute part of the set of the constraints, namely, those that are implications.
Note that in Algorithm 1 a sequent
Gama ` ∆ where ∆ = ∅ is handled separately.

Algorithm 1 Constraint extraction procedure

1: Input: Classification A
2: Th(A) = ∅
3: For Γ ⊆ typ(A)
4: Compute Γ∪

5: If Γ∪ = tok(A) then Γ ` ∅ ∈ Th(A)
6: If Γ ` ∆ is in a Duquenne–Guigues basis of A then Γ ` ∆ ∈ Th(A)
7: End for
8: Output Th(A)



4.1 Logic of a classification

The formulas in the logic of a classification are sequents on the set of types.
One can define a pseudo-negation and a pseudo-disjointion on the sequents.

A derivation or proof within this theory is as usual a sequence of sequents,
where each of the sequents in the sequence is either a premise (element of the
theory) or is deduced from previous sequents appearing in the sequence using
one of Amstrong’s rules [22], [23], described below:

Reflexivity If Γ ⊆ ∆ then Γ ` ∆
Γ ⊆ ∆
Γ ` ∆

Augmentation If Γ ` ∆, then Γ ∩ Γ ′ ` ∆ ∪ Γ ′
Γ ` ∆

Γ ∩ Γ ′ ` ∆ ∪ Γ ′

Transitivity If 〈Γ,Σ〉 and 〈Σ,∆〉 then Γ ` ∆
Γ ` Σ,Σ ` ∆

Γ ` ∆

4.2 Consistency within a Classification Context

Consider the example classification given in Table below. We implemented
Algorithm 1 in Python 2.7.5 and applied it to this classification, giving the basis
of a theory as shown below.

�A α β γ σ
a1 1 1 1 0
a2 0 1 1 1
a3 0 0 1 1

Th(A)
{α, σ} ` ∅ r1
{α, γ} ` {β} r2
∅ ` {γ} r3

Assume that a requirement of this system is expressed by the constraint
{α, γ} ` {β, σ}. We prove that this constraint is derivable from Th(A).

1. {α, γ} ` β ........................r2, premise
2. β ` {β, σ}〉 ........................ Reflexivity
3. {α, γ} ` {β, σ}〉 .................1, 2, Transitivity

The proof is not always as short and easy as this. Generally, one would use an
automatic or semi-automatic theorem prover such as PVS [24]. The derivability
can also be shown semantically. Semantically, a sequent is valid in a classification
A if each token of A satisfies the sequent. For a sequent Γ ` ∆, this is equivalent
to the inclusion Γ∩ ⊆ ∆∪. For example, for the sequent {α, γ} ` {β, σ}, we have
{α, γ}∩ = {a1} ⊆ {a1, a2, a3} = {β, σ}∪. In classical deductive logic, a consistent
theory is one that does not contain a contradiction. The lack of contradiction
can be defined in either semantic or syntactic terms. Here a model is taken to be
a classification. The semantic definition states that a theory is consistent if and



only if it has a model, i.e., there exists an interpretation under which all formulas
in the theory are true. This is the same sense used in traditional Aristotelian
logic, although, in contemporary mathematical logic, the term “satisfiable” is
used instead of “true”. The syntactic definition states that a theory is consistent
if and only if there is no formula p such that both p and its negation are provable
from the axioms of the theory under the associated deductive system.

4.3 Sum of Classifications (Channel Core)

We introduced the notion of the core of an information channel in Section
II.B, and we have viewed it as the whole that provides the amalgamation of the
classifications of the parts. The core is formed as the category-theoretic sum of
the classifications of the parts. Here we illustrate the sum of three classifications
A1, A2, and A3, which is the core of the information channel containing the
classifications. The sum A1 +A2 +A3 is the classification defined as follows:

1. The set tok(A1 +A2 +A3) of tokens is the Cartesian product of tok(A1),
tok(A2) and tok(A3). Thus, the tokens of A1 + A2 + A3 are triples (a1, a2, a3)
of tokens, a1 ∈ tok(A1), a2 ∈ tok(A2) and a3 ∈ tok(A3).
2. The set typ(A1 +A2 +A3) of types is the disjoint union of typ(A1), typ(A2)
and typ(A3). For concreteness, the types of A1 +A2 +A3 are pairs 〈i, α〉, where
i = 1 and α ∈ typ(A1) or i = 2 and α ∈ typ(A2) or i = 3 and α ∈ typ(A3).
3. The classification relation �A1+A2+A3

of A1 +A2 +A3 is defined by
(a1, a2, a3) �A1+A2+A3

〈i, α〉 if and only if ai �Ai
α,∀i ∈ {1, 2, 3}.

To make this example concrete, suppose that classifications A1, A2 and A3

are given by the classification tables in following Table . Note that each abstract
situation (row) is labeled. Then the first six rows classification table for A1 +

A2 +A3 are shown below.

�A1 α β δ γ
a1 1 0 1 0
a2 0 1 1 0
a3 0 1 0 0

�A2 α β ρ
a4 1 0 0
a5 1 1 1
a6 0 1 0

�A3
α ρ σ τ

a7 0 1 0 1
a8 0 1 1 0

�A1+A2+A3
〈1, α〉 〈1, β〉 〈1, δ〉 〈1, γ〉 〈2, α〉 〈2, β〉 〈2, ρ〉 〈3, α〉 〈3, ρ〉 〈3, σ〉 〈1, τ〉

(a1, a4, a7) 1 0 1 0 1 0 0 0 1 0 1
(a1, a4, a8) 1 0 1 0 1 0 0 0 1 1 0
(a1, a5, a7) 1 0 1 0 1 1 1 0 1 0 1
(a1, a5, a8) 1 0 1 0 1 1 1 0 1 1 0
(a1, a6, a7) 1 0 1 0 0 1 0 0 1 0 1
(a1, a6, a8) 1 0 1 0 0 1 0 0 1 1 0



4.4 Small Satellite Example

As an example, consider a system of three small satellites, S1, S2, and S3,
whose goal is to image the auroral ovals that exist around both magnetic poles of
Earth and thereby study the impact of the solar wind on the magnetosphere. S1

measures the intensity of the auroral brightness; if this is over a given threshold,
then S1 measures the magnetic disturbance density and sends a message to S2

and S3 to begin imaging. S2 and S3 do the same thing from different perspectives,
viz., take an image of the auroral oval to determine its extent.

For types for S1, we distinguish auroral brightness below the threshold (LAB,
”Low Auroral Brightness”) and at or above the threshold (HAB, ”High Auro-
ral Brightness”). We arbitrarily partition the magnetic density measurement, a
continuous magnitude, into a small number (viz., three) of ranges for simplicity,
giving types LMD (”Low Magnetic Density”), MMD (”Medium”), and HMD
(”high”). For S2, we arbitrarily partition the auroral extent, a continuous mag-
nitude, into three ranges: LAE2 (”Low Auroral Extent”), MAE2 (”Medium”),
and HAE2 (”High”). We recognize the same types for S3 but use subscript ”3”
in place of ”2”: LAE3, MAE3, and HAE3.

The classification table for S1 is shown below. Some of the constraints derived
from this table are the following, where (1) indicates that, if the auroral bright-
ness is high, then there is a magnetic density measurement of high, medium, or
low, and (2) indicates that the auroral brightness is (unconditionally) high or
low.

1. HAB ` LMD,MMD,HMD
2. ∅ ` {HAB,LAB}

The classification table for S2 is shown below. The obvious constraints here
are that there must be a measured auroral extent, low, medium, or high (∅ `
{LAE2,MAE2, HAE2}), and it cannot be, for example, low and medium at the
same time ({LAE2,MAE2} ` ∅). The classification table for S3 is identical to
that for S2 but for the subscripts.

SAT1 HAB LAB LMD MMD HMD
1a 0 1 0 0 0
1b 1 0 1 0 0
1c 1 0 0 1 0
1d 1 0 0 0 1

SAT2 LAE2 MAE2 HAE2

2a 1 0 0
2b 0 1 0
2c 0 0 1

The classification table for the core will be analogous to the core classification
produced in the previous example but will induce some constraints that cross
system parts. At this point, it is convenient to enlarge our system to include a
classification for the ”part” that is observed by the satellites, namely, the magne-
tosphere and solar wind as well as the auroral oval produced by their interaction.
The real situations classified with the types we have picked out so far certainly
include these aspects of the environment and various types that characterize
them. We consider here only four types that relate to this environmental part.
Let AL indicate that the magnetosphere and solar wind are aligned (within some



level of tolerance), and let NAL indicate that they are not aligned. Let COND
indicate that this part is in a state where ionospheric conductivity could be ex-
ceptional, and let NCOND indicate the denial of this. If we were to construct
a classification table relating these types to types for the other three ”parts”
of the system (i.e., the satellite classifications), we could use our techniques to
derive the following (and many more) constraints.

1. COND ` AL
2. {MMD,HAE2, HAE3} ` AL
3. {HMD,HAE2,MAE3} ` COND

Constraint (1) indicates that, if the situation is such that ionospheric conduc-
tivity could be exceptional, then the magnetosphere and solar wind are aligned.
Constraint (2) indicates that, if the magnetic density is medium and the auroral
extent is high from the perspective of both S2 and S3, then the magnetosphere
and solar wind are aligned. And (3) indicates that, if the magnetic density is
high and the auroral extent is high from the perspective of S2 but medium from
the perspective of S3, then ionospheric conductivity could be exceptional.

5 Maintaining and Communicating Information on Real
Situations

Consider now the situation table with the information an IKBS has on various
real situations. We contrast the situation table with the classification table of a
satellite, which is where design starts. The classification table has a column for
each type relevant to the satellites sensing capability and the behavior of the
monitored region. The rows indicate the combinations of types (columns) that
may occur together in an observed situation. That is, the rows specify all the
realizable abstract situations by indicating the types realized in them.

In contrast, the situation table has a row for each real situation observed. Like
a classification table, a situation table has a column for each observable type, but
the situation table needs information on more types. An IKBS has information
on a situation not only by observation but also by virtue of utterance situations
and by inferring information from information it already has. The descriptive
content of an utterance may involve types observable by any satellite in the
system, so the situation table must have columns for all these types. The IKBS
has its own theory for inferring new information, but, since the IKBS is part of a
distributed system, the theory of the whole, or core, is relevant as well for filling
out entries in the situation table. Since the ”whole” or core does not correspond
to a physical entity over and above the ”parts” (satellites), inferencing done with
the theory of the core must be delegated to these parts. The easiest approach
is to assume that all IKBSs have, besides their own theories, the theory of the
core.

The general picture, then, has an IKBS, on observing a real situation, make
an entry for it in its situation table, indicating what types were observed. When
the descriptive content of an utterance relates to this situation, its table entry



may be filled by checking further types. It is also possible that observation may
fill in an entry over an extended period. As information on the situation becomes
available, various sequents of the local or core theory may allow further infor-
mation to be inferred and recorded in the entry for the situation. A variation of
this picture has the IKBS first finding out about the real situation in question
via another’s utterance. Note that issues we avoid in this paper include how
real situations are denoted, how they are related as parts and wholes, and to
what extent something true in a part is also true of the whole. These issues are
addressed in the standard literature cited, and the part-whole relation has been
extensively studied in terms of lattice structures [25].

The conditions for filling in an entry of the situation table because of a
relevant utterance needs to be addressed in more detail since the IKBS may fail
to interpret an utterance or the content of what is uttered may be inconsistent
with the information the IKBS has. The descriptive content of what may be
considered a normal utterance is what we call an utterance proposition, of the
form a : ∆, where a is a token and ∆ is a set of types and type placeholders. For
each type, we assume there is a corresponding placeholder ?α. If α ∈ ∆, then
part of what the utterance asserts is a �A α, while if neither α ∈ ∆ nor ?α ∈ ∆,
part of what it asserts is a a 2A α; we cannot have both α ∈ ∆ and ?α ∈ ∆. If
?α ∈ ∆, then the utterance says nothing about a being of type α. If the content
of an utterance is consistent with an IKBS’s theory (as discussed in Section
IV.B), then it is included in the IKBS’s situation table unless it is inconsistent
with an entry already in that table. The situation table also includes results of
observations, and it contains at most one entry for a given real situation (i.e.,
token). (As an IKBS’s classification table constitutes in large part its semantic
memory, its situation table constitutes its episodic memory.) We say that an
utterance proposition a : ∆ is in the situation table if the situation table has an
entry for situation a and that entry records types and type placeholders as per
∆. If the situation table includes the utterance proposition a : ∆1 and the IKBS
perceives an utterance whose descriptive content is a : ∆2 with the same token a,
then the utterance proposition for a in the situation table can be updated with
the information a : ∆2 as long as, for all types α of the IKBS classification, α is
not in one of ∆1 or ∆2 but not the other. Violation of this condition indicates
that the two utterance propositions are inconsistent. It may be the case, though,
that α is in one but ?α is in the other, or α is not in one but ?α is in the other.
Then the situation table entry for a, a : ∆1, is updated by replacing any ?α ∈ ∆1

with α if α ∈ ∆2 and by removing any ?α ∈ ∆1 if α /∈ ∆2. If an IKBS succeeds
in incorporating an utterance proposition into its situation table, we say that it
has interpreted that utterance proposition.

In addition to the utterances just addressed, whose descriptive contents are
utterance propositions, we allow utterances whose contents are partial utterance
propositions; we call such utterances p-utterances and their descriptive content
p-propositions. A p-proposition is again of the form a : ∆, but now, for any type
α, if α /∈ ∆, then a 2A α is not being asserted; rather, the p-proposition has
nothing to say about a being of type α. A p-utterance presents an occasion for



an IKBS to infer (using its theory) additional types for tokens, as illustrated by
the paradigmatic case of inferring fire from smoke. A p-utterance could be used
as a query, when one IKBS utters a p-utterance, and another utters a (normal)
utterance in reply, providing missing types if they in fact are uniquely deter-
mined by the theory. A p-proposition a : ∆1 is inconsistent with an utterance
proposition a : ∆2 in the situation table if there is at least one type α such that
α ∈ ∆1 but α /∈ ∆2. If the p-proposition is not inconsistent with any utterance
proposition in the IKBS’s situation table, then we say that the IKBS interprets
that p-proposition; this is the case whether or not it is able to uniquely determine
additional types for the token.

There are several ways an IKBS may fail to interpret the descriptive content
of an utterance proposition or a p-proposition and hence fail to interpret the
utterance or p-utterance itself. We say that an IKBS is acquainted with a token
a if there is an utterance proposition a : ∆ in its situation table, and we say
that it is acquainted with a type α if α is among the types labeling the columns
of its situation table. If an IKBS is unacquainted with a type, it is normally
because that type is new and not yet incorporated into the IKBS’s computational
structures. An IKBS cannot interpret an utterance proposition or p-proposition
a : ∆ if there is a type α ∈ ∆ with which it is not acquainted, and it cannot
interpret a p-proposition a : ∆ if it is not acquainted with token a. Failure of
interpretation due to lack of acquaintance amounts to a failure to understand.
The other way interpretation can fail arises from inconsistency with content of
the situation table, as described above.

6 Conclusion

As part of our engineering methodology for small satellite systems that is
reliable, formal and results in a ”correct-by-construction” design, we presented
in this paper a knowledge-based design framework for ensuring that (1) each
satellite has a consistent theory it can use to infer new information from in-
formation it perceives and (2) the theory for the entire system is consistent so
that a satellite can infer new information from information communicated to
it, and it can assess purported information from fellow satellites. The point of
departure for our framework, from the previous RFD process, is Barwise’s chan-
nel theory, founded on category theory, and allied work on situation semantics
and situation theory. Each small satellite is viewed as an intelligent knowledge
base system (IKBS) consisting of classifications in the sense of channel theory.
A classification consists of tokens (e.g., observed situations) and types (e.g., fea-
tures of a situation, such as a certain kind of event) as well as a binary relation
that classifies tokens with types. Each IKBS has a semantic part, namely, the
classifications with which it is endowed, and a syntactic part, which is a logic or
theory of classification that allows each satellite to infer new information from
observed and communicated situations. Communication (as per situation seman-
tics) is viewed in terms of utterances; the descriptive content of an utterance is
an assertion that a given token is of a given set of types. The core of a system of



classifications, as explained in this paper, is a category-theoretic construct that
amalgamates the several classifications; the core and the individual classifica-
tions essentially form the ”whole” and the ”parts” of what is termed a channel.
We show how to derive the theory for an IKBS and for the system core, and we
show how to check whether a given requirement is derivable from or consistent
with a theory.
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