
Assessing the Quality of Meta-models

Jesús J. López-Fernández, Esther Guerra, and Juan de Lara

Universidad Autónoma de Madrid (Spain)
{Jesusj.Lopez, Esther.Guerra, Juan.deLara}@uam.es

Abstract. Meta-models play a pivotal role in Model-Driven Engineer-
ing (MDE), as they define the abstract syntax of domain-specific lan-
guages, and hence, the structure of models. However, while they play a
crucial role for the success of MDE projects, the community still lacks
tools to check meta-model quality criteria, like design errors or adherence
to naming conventions and best practices.
In this paper, we present a language (mmSpec) and a tool (metaBest) to
specify and check properties on meta-models and visualise the problem-
atic elements. Then, we use them to evaluate over 295 meta-models of
the ATL zoo by provisioning a library of 30 meta-model quality issues.
Finally, from this evaluation, we draw recommendations for both MDE
practitioners and meta-model tool builders.

1 Introduction

Model-Driven Engineering (MDE) considers models as the main assets in soft-
ware development. Frequently, such models are not built using general-purpose
modelling languages, like UML, but with Domain-Specific Languages (DSLs).
Recent surveys on the use of MDE in industry [8] observe that nearly 40% of
respondents use in-house DSLs, likely developed using meta-models. Hence, a
critical factor in the success of MDE projects is the quality of the meta-models.
However, the MDE community still lacks flexible tools permitting the specifica-
tion, evaluation and user-friendly report of desired properties of meta-models.

A meta-model is considered of quality if it serves its purpose (contains all
needed abstractions of the domain), and is technically built using sound prin-
ciples (e.g., there are no repeated attributes among all sibling classes) [5]. The
first concern is related to meta-model validation (“are we building the right meta-
model?”) while the second refers to verification (“are we building the meta-model
right?”).

In this paper, we present the language mmSpec and its supporting tool
(metaBest), directed to the specification of desired meta-model properties, their
evaluation, and the visualization of non-conforming parts of meta-models. We
have used this tool to define a reusable library of 30 meta-model quality proper-
ties coming from quality criteria of conceptual schemas [2], naming guidelines [3],
or from our experience. The properties have been classified in four categories
depending on their relevance and nature. Moreover, we have evaluated the prop-
erties over 295 meta-models from the ATL zoo1. The ATL zoo is an open source

1 http://www.emn.fr/z-info/atlanmod/index.php/Ecore.



repository to which any author can contribute, being the authorship of its meta-
models attributed to a wide range of MDE community members. From the results
of this study, we provide suggestions for MDE practitioners and meta-modelling
tool builders.

This paper extends [9] (a tool demo paper) by presenting a library of quality
properties that is evaluated over a repository of meta-models.

The remaining of this paper is organized as follows. First, Section 2 introduces
the mmSpec language and tool, and overviews the library of quality properties.
Section 3 presents the evaluation of the library over the meta-models of the
ATL zoo. Section 4 compares with related research, and Section 5 ends with the
conclusions and future work.

2 Specification of meta-model properties with mmSpec

We have developed a domain-specific language, named mmSpec, to specify meta-
model properties and automate their evaluation on meta-models. In the following
two subsections, we first introduce the main constructs of our language, and then
we describe its use to construct a generic library of quality properties which can
be applied on meta-models to assess their quality in an automatic way.

2.1 Definition and evaluation of meta-model properties

mmSpec allows expressing meta-model properties in a concise, intensional, declar-
ative, platform-independent way. It provides high-level primitives that simplify
the definition of meta-model properties, like first-order qualifiers for the length
of navigation paths or collectors of the composed cardinality in navigation paths.
Moreover, it is integrated with WordNet [11], which allows testing the nature of
words (i.e., nouns and verbs) and synonymy.

The aim of this language and its companion tool (metaBest [9]) is providing
a sound framework for expressing and evaluating quality issues and structural
properties of meta-models. To favour simplicity, mmSpec properties follow a
select-filter-check style that includes:

– A selector of the type (class, attribute, reference or path) and amount (a quanti-
fier like every, some, none or an interval) of elements that should satisfy a given
condition.

– An optional filter over the elements in the selector.

– A condition that is checked over the filtered elements.

Filters and conditions consist of qualifiers which can be negated, combined
through and/or connectives, and point to new selectors, enabling recursive checks.
The main qualifiers allow expressing conditions on the existence of elements, their
name (nature, synonymy, prefix, suffix, camel-phrase), abstractness, multiplicity,
type, length of navigation paths, inheritance relationships, depth and width of
hierarchies and trees of containment relationships, collectors of the composed



Fig. 1. Defining and evaluating a meta-model property.

cardinality in navigation paths, reachability from/to classes, and (a)cyclicity.
Altogether, mmSpec promotes first-class primitives for elements (like paths or
inheritance hierarchies) that need to be checked in meta-models frequently.

To evaluate a property on a meta-model, our Java-coded evaluator gathers
the meta-model elements that match the property filter (or all of them, if there
is no filter), verifies which ones meet the condition, and checks whether the size
of the resulting subset is consistent with the selector’s quantifier.

The bottom left of Fig. 1 shows a property using mmSpec. It states that
every class (selector) that is abstract (filter) should have some concrete child class
(condition), or as it is expressed, be super to some class that is not abstract. If
an abstract class does not fulfil this condition, it is useless because it cannot be
instantiated. The meta-model in Fig. 1 (taken from the zoo) does not satisfy the
property, as class BusinessEntityPropertySet is abstract with no children.

Each property can be assigned a description of its intention, which gets shown
in the Test Result view (see right of Fig. 1). While this view summarizes the
results of all evaluated properties, the Property Assessment view highlights the
relevant elements that did (green-coloured) or did not (red-coloured) fulfil a
particular property. In this case, the class BusinessEntityPropertySet is displayed
in red when we double-click on the property in the Test Result view.

The language offers abstraction mechanisms to package properties into func-
tions with parameters. When the functions are called, it is possible to include
a set of elements in place of a parameter. For example, fun(every class{!abstract})
evaluates property fun for all concrete classes in the meta-model.

Finally, metaBest supports batch evaluation of a set of properties over a set
of meta-models, generating a CSV file with the results. In this way, we have
managed to deliver the results of evaluating a library of meta-model quality
issues for a large number of meta-models, as we explain in the following sections.



Code Description
Design

D01 An attribute is not repeated among all specific classes of a hierarchy.
D02 There are no isolated classes (i.e., not involved in any association or hierarchy).
D03 No abstract class is super to only one class (it nullifies the usefulness of the abstract class).
D04 There are no composition cycles.
D05 There are no irrelevant classes (i.e., abstract and subclass of a concrete class).
D06 No binary association is composite in both member ends.
D07 There are no overridden, inherited attributes.
D08 Every feature has a maximum multiplicity greater than 0.
D09 No class can be contained in two classes, when it is compulsorily in one of them.
D10 No class contains one of its superclasses, with cardinality 1 in the composition end (this is

not finitely satisfiable).
Best practices

BP01 There are no redundant generalization paths.
BP02 There are no uninstantiable classes (i.e., abstract without concrete children).
BP03 There is a root class that contains all others (best practice in EMF).
BP04 No class can be contained in two classes (weaker version of property D09).
BP05 A concrete top class with subclasses is not involved in any association (the class should be

probably abstract).
BP06 Two classes do not refer to each other with non-opposite references (they are likely opposite).

Naming conventions
N01 Attributes are not named after their feature class (e.g., an attribute paperID in class Paper).
N02 Attributes are not potential associations. If the attribute name is equal to a class, it is likely

that what the designer intends to model is an association.
N03 Every binary association is named with a verb phrase.
N04 Every class is named in pascal-case, with a singular-head noun phrase.
N05 Element names are not too complex to process (i.e., too long).
N06 Every feature is named in camel-case.
N07 Every non-boolean attribute has a noun-phrase name.
N08 Every boolean attribute has a verb-phrase (e.g., isUnique).
N09 No class is named with a synonym to another class name.

Metrics
M01 No class is overloaded with attributes (10-max by default).
M02 No class refers to too many others (5-max by default) – a.k.a. efferent couplings (Ce).
M03 No class is referred from too many others (5-max by default) – a.k.a. afferent couplings (Ca).
M04 No hierarchy is too deep (5-level max by default) – a.k.a. depth of inheritance tree (DIT).
M05 No class has too many direct children (10-max by default) - a.k.a. number of children (NOC).

Table 1. Library of meta-model quality properties.

2.2 A library of quality properties for meta-models

In order to test the quality of meta-models, we have built an mmSpec library
covering typical mistakes (some of them from [2]) that designers tend to commit,
as well as others that may jeopardize a basic level of meta-model quality. The
library has four categories of issues, depending on their nature and relevance:

Design. Properties signalling a faulty design (an error).
Best practices. Basic design quality guidelines (a warning).
Naming conventions. For example, use of verbs, nouns or pascal/camel case.
Metrics. Measurements of meta-model elements and their threshold value, like

the maximum number of attributes a class should reasonably define. Most
metrics are adapted from the area of object-oriented design [6].

Table 1 lists the properties from these categories. To illustrate mmSpec’s
expressiveness, next we show the formulation of a property from each category:

– D02: There are no isolated classes. The encoding of this property is:



no class => and { sub−to no class, super−to no class,
reach no class, reached−from no class }.

The aim is to check the absence of classes that are not involved in any associ-
ation or hierarchy. Thus, we use the no class selector, and check the following
conditions: the class is orphan (qualifier sub-to with selector no class), childless
(qualifier super-to with selector no class), contains no reference (qualifier reach

with selector no class), and is not pointed by any other (qualifier reached-from

with selector no class).

– BP03: There is a root class that contains all others. This is a common best-
practice in EMF, where meta-models define a class from which all other classes
can be reached through composition relations. Its encoding is:

strictly 1 class {cont−root {absolute}} => exists.

A class satisfying cont-root is the root of a containment tree; if the root is
absolute, then it contains all classes. This illustrates how mmSpec provides
primitives that simplify the definition and checking of meta-model properties.

– N04: Every class is named in pascal-case, with a singular-head noun phrase.
To obtain intuitive class names, these should be composed by a sequence of
words starting with capital letters, and with a singular noun as the last word
[3]. For instance, WashingMachine is a good class name, but Washing Machine

and MachineWashing are not. The connection of mmSpec with WordNet enables
checking whether a word is a singular noun.

every class => name = pascal−phrase{end{noun{singular}}}.

– M01: No class is overloaded with attributes. Even in large meta-models, classes
with too many attributes often evidence a questionable design. While some
entities in certain domains might carry a vast load of information, commonly,
this data can be split into smaller entities that are arranged using inheritance
or composition. Thus, the following property states that every class should have
a maximum of 10 non-inherited (!inh) attributes.

every class => with {!inh} [0, 10] attribute.

3 Assessing the quality of existing meta-models

To evaluate our tool and have a measure of the quality of current meta-modelling
practice, we have applied our library of quality properties to the Atlan Ecore
zoo of 295 meta-models. We have chosen this repository as it is representative of
the meta-models that MDE practitioners build in practice. The size of the meta-
models varies from tiny ones with just one class, to meta-models of medium size,
the largest one having 699 classes. This is interesting as one of our goals is to
detect whether the kind of quality issues depends on the meta-model size, and
whether big meta-models are faultier (even if in average) than smaller ones.

Fig. 2 shows the number of quality issues detected in the analysed meta-
models. Interestingly, only 5 meta-models have no issue, while no meta-model
contains more than 22. The average number of issues per meta-model is 7.26.



0

5

10

15

20

25

30

35

40

0 5 10 15 20

Quality issues 

N
u

m
b

e
r 

o
f 

m
e

ta
-m

o
d

e
ls

 

Fig. 2. Number of quality issues in meta-models.

Regarding the distribu-
tion of issues according to
their kind, Fig. 3 shows how
many meta-models fail each
property from Table 1. De-
sign is the most relevant cate-
gory of properties, as it gath-
ers errors that may poten-
tially lead to a faulty design.
In this sense, the results for
the properties in this category
are good in average, as they have low rate of failure. Indeed, there are two design
properties that every meta-model fulfils: D01 and D02. D01 checks the absence of
repeated attributes in a hierarchy (see D01 in Fig. 4 for a faulty example), while
D02 checks that the upper bound of features is not 0. However, 110 meta-models
fail property D09 (37% of analysed meta-models). This error consists in making
a class to be contained in two other classes, with minimum source multiplicity
1 in one of the containment relationships, as shown in Fig. 4. This is an error
because, at the instance level, an instance of A could never be contained in an
instance of C, as it must be mandatorily contained in an instance of B.

Surprisingly for a set of EMF meta-models, the top unmet property is BP03,
an EMF best practice that states the need for a root class whose instances may
contain the whole model tree. Fig. 4 shows an example meta-model that fulfils
this property, and an example that does not. In BP03 (+), A contains B and
C, and hence D (as it is subclass of B), so A acts as absolute root class. On the
contrary, BP03 (-) does not meet the property because A does not contain D.

The next two properties not satisfied by more meta-models are N03 and
N04, which are naming conventions. N03 demands the verbalization of binary
association names (e.g., reaches). N04 checks the conventions for class names, as
explained in Section 2.2.

Fig. 3. Number of meta-models that contain issues of a certain type.



Fig. 4. Some quality issues of the library.

Fig. 5. Percentage of non-fulfilled issues in each category, w.r.t. meta-model size.

Regarding the error rate evolution of each category of issues with respect to
the meta-model size (measured in number of classes), Fig. 5 shows that all cat-
egories present an upward error trend as meta-models enlarge. The vertical axis
in this diagram corresponds to the percentage of issues in the category that were
not met by some meta-model. The growth ratio is higher in small/medium size
meta-models (up to 100 classes). Then, the error growth is steadier, particularly
on the design category, which remains around 20% even at the largest meta-
model size. The issues of type metrics grow as the meta-model size increases,
peaking 100% (i.e., all issues of the category fail in large meta-models). This
might be comprehensible, since a greater number of classes usually demands a
greater number of features and relationships. However, properties such as M01,
M02 or M03 might be considered independent from the meta-model size, as they
take care of the class feature overpopulation, which is a bad practice despite
the meta-model size. More worrisome is the evolution of the best practice cate-
gory. This category reflects less severe concerns than design, but they still are
bad modelling practices. It is worth noting that most meta-models present a 40
to 65% error rate, which together with the design’s - almost permanent - 20%,
denote an average design quality that may be improved.

Fig. 6 shows the distribution of meta-model sizes where each issue type
tends to occur. For most properties, faulty meta-models have between 1 and 200
classes. However, properties M04, BP06, D07 tend to fail in large meta-models.
This is natural in some cases, e.g., D07 checks the presence of overridden at-



Fig. 6. Meta-model size dispersion by property.

tributes in inheritance hierarchies. Instead, properties D06, D09, D10, BP04, N03

tend to occur in small meta-models. The fact that 3 important design properties
fail in small meta-models might mean that such meta-models were built by more
unexperienced designers, compared to large ones. As a matter of fact, properties
with a greater number of failure occurrences (as seen in Fig. 3: D09, BP03, BP04,
N03, N04, N07, M02, M03) mainly appear in really small meta-models.

Finally, if we look at the average number of quality issues per class, we
find that the most frequent categories of issues are best practices and naming
conventions (0.18 issue occurrences per class in both cases). Design (0.07 issues
per class) and metrics (0.05 issues per class) are less frequent; nonetheless, if
they are considered together, the error rate seems worrisome at least.

3.1 Discussion

From the analysis of the meta-model repository, we realize that a way to improve
the quality of meta-models is the inclusion of these quality checks in the meta-
modelling tools, for example, to discover problems like D09. Actually, for some
of these problems (like the ones related to metrics) the tool could trigger some
refactoring suggestions. Regarding naming conventions, we noticed the usefulness



of having integrated “smart” spell checkers (i.e., to check correctness of names
in camel-case).

It is worth mentioning that mmSpec is integrated with metaBup [10], a tool
for the example-based construction of meta-models. This means that the meta-
model builder can check these quality issues during meta-model construction.

4 Related work

We could use OCL instead of mmSpec. However, OCL expressions tend to be
more complex, as OCL lacks primitives (for gathering paths or inheritance hier-
archies) which are part of mmSpec and have been designed to express properties
on meta-models. Moreover, mmSpec supports the visualization of problematic
elements (i.e., properties do not report just true/false). A comparison of OCL
and mmSpec is available at: http://www.miso.es/tools/metaBest.html.

In [7], quality properties are defined as QVT-Relations transformations which
produce a model with the problems in a meta-model. They define a catalog of
problems for MOF-based meta-models, categorized into: syntactic (i.e., well-
formedness constraints), semantic (i.e., poor design choices), and convention.
Interestingly, mmSpec fulfils the features that [7] demands from any automated
model verification approach: it is declarative, generic, flexible (though not stan-
dard), direct, and it has easy-to-inspect reporting facilities. Some of its prim-
itives are specific for meta-model verification and would be difficult to specify
with QVT-Relation patterns.

In [2, 4], quality properties of conceptual schemas are formalised in terms
of quality issues, which are conditions that should not happen. Our approach
also aims at detecting errors or bad smells; however, we focus on meta-models
(not schemas). Thus, our library considers all issues in [2] that are meaningful in
meta-modelling, as well as others specific to meta-models (like the existence of
a root for EMF meta-models). While in [2], the method is evaluated on schemas
developed by students, our library is applied to a public repository of meta-
models built by developers. The same authors propose guidelines for naming
UML schemas in [3], for which they provide a tool [1]. Interestingly, [3] presents
a study on the effectiveness of current UML modelling environments for building
schemas (not meta-models), and concludes that by including more quality issues
in the IDEs, the quality of the developed schemas increases.

Some works aim at characterizing meta-model quality. For example, in [5],
the authors adapt the ISO/IEC 9126 for meta-models, proposing concepts like
completeness, conciseness, detailedness or complexity. However, there is no con-
crete proposal on how to measure such properties.

Few works analyse the quality of real meta-models. In [13], the authors take
some basic size metrics (e.g., number of classes) over meta-models from different
repositories (including the ATL zoo). In the same line, [12] correlates meta-model
metrics, like the usage of inheritance w.r.t. meta-model size. Instead, we focus
on detecting patterns that may indicate flaws in meta-models.



5 Conclusions and future work

In this paper, we have introduced mmSpec, a language directed to the speci-
fication of properties to be checked on meta-models, and metaBest, a tool to
visualize and report the problematic elements. We have used both to build a
catalog with 30 meta-model quality properties, which has been evaluated over
295 meta-models. The obtained results show that most meta-models contain
some issue; hence, the community would benefit from integrated tool support
(like metaBest) for checking quality properties during meta-model construction.

In the future, we plan to analyse correlations between meta-model flaws, pro-
vide a catalog of quick fixes and recommendations, and support the creation of
user-defined categories for properties. We also plan to develop a further language
for meta-model testing based on constraint solving.
Acknowledgements. This work has been funded by the Spanish Ministry of
Economy and Competitivity with project “Go Lite” (TIN2011-24139).

References

1. D. Aguilera, R. Garćıa-Ranea, C. Gómez, and A. Olivé. An eclipse plugin for
validating names in UML conceptual schemas. In ER Workshops, volume 6999 of
LNCS, pages 323–327. Springer, 2011.

2. D. Aguilera, C. Gómez, and A. Olivé. A method for the definition and treatment of
conceptual schema quality issues. In ER’12, volume 7532 of LNCS, pages 501–514.
Springer, 2012. See also http://helios.lsi.upc.edu/phd/catalog/issues.php.

3. D. Aguilera, C. Gómez, and A. Olivé. A complete set of guidelines for naming
UML conceptual schema elements. Data Knowl. Eng., 88:60–74, 2013.

4. D. Aguilera, C. Gómez, and A. Olivé. Enforcement of conceptual schema quality
issues in current integrated development environments. In CAiSE, volume 7908 of
LNCS, pages 626–640. Springer, 2013.

5. M. F. Bertoa and A. Vallecillo. Quality attributes for software metamodels. In
QAOOSE’10, 2010.

6. S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.
IEEE Trans. Software Eng., 20(6):476–493, 1994.

7. M. Elaasar, L. C. Briand, and Y. Labiche. Domain-specific model verification with
QVT. In ECMFA, volume 6698 of LNCS, pages 282–298. Springer, 2011.

8. J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen. Empirical assess-
ment of MDE in industry. In ICSE, pages 471–480. ACM, 2011.

9. J. J. López-Fernández, E. Guerra, and J. de Lara. Meta-model validation and
verification with MetaBest. In ASE, pages 1–4 (to appear). ACM, 2014.

10. J. J. López-Fernández, J. Sánchez Cuadrado, E. Guerra, and J. de Lara. Example-
driven meta-model development. SoSyM, in press, 2014, see also http://www.

miso.es/tools/metaBUP.html.
11. G. A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38(11):39–

41, 1995.
12. J. D. Rocco, D. D. Ruscio, L. Iovino, and A. Pierantonio. Mining metrics for

understanding metamodel characteristics. In MiSE, pages 55–60. ACM, 2014.
13. J. R. Williams, A. Zolotas, N. D. Matragkas, L. M. Rose, D. S. Kolovos, R. F.

Paige, and F. A. C. Polack. What do metamodels really look like? In EESS-
MOD@MoDELS, volume 1078 of CEUR, pages 55–60, 2013.


