Towards a Base Model
for UML and OCL Verification*

Frank Hilken, Philipp Niemann, Robert Wille, and Martin Gogolla

University of Bremen, Computer Science Department
D-28359 Bremen, Germany
{fhilken,pniemann,rwille,gogolla}@informatik.uni-bremen.de

Abstract. Modelling languages such as UML and OCL are more and
more used in early stages of system design. These languages offer a huge
set of constructs. As a consequence, existing verification engines only
support a restricted subset of them. In this work, we propose an ap-
proach using model transformations to unify different description means
within a so called base model. In the course of this transformation, com-
plex language constructs are expressed with a small subset of so-called
core elements. This simplification enables to interface with a wide range
of verification engines with complementary strengths and weaknesses.
Our aim is that, guided by a structural analysis of the base model, the
developer can choose the most promising verification engine.

1 Introduction

In recent years Model-Driven Engineering (MDE), has become more and more
important. In this context, the Unified Modelling Language (UML) and the
Object Constraint Language (OCL) are de facto standards to describe systems
and their behaviour. Identifying errors early in the design of such systems using
validation and verification techniques is an important task, though finding the
right verification approach is not trivial, since most approaches concentrate on
only one UML diagram type and restrict the set of supported diagram types and
language constructs.

In this paper, we propose the idea of a so-called base model that, using model
transformations, combines the information of several UML diagram types into
a single diagram and reduces the set of language constructs to a minimum. The
language constructs are split into three categories: (1) core elements that are
directly used in the base model; (2) transformed elements that are represented
in the base model using only core elements, reducing the used amount of language
constructs; and (3) unsupported elements that are excluded because of their low
relevance or because of their infeasibility in the context of verification. The base
model can be seen as a substantially reduced version of UML with a strong focus
on compatibility to verification engines.

* This work was partially funded by the German Research Foundation (DFG) under
grants GO 454/19-1 and WI 3401/5-1 as well as within the Reinhart Koselleck project
DR 287/23-1.

On the basis of the base model, we perform a structural analysis separated
into several categories in order to identify the most promising verification en-
gine for the particular model under development. Once a verification engine is
chosen, further model transformations can remove remaining incompatibilities
in the same manner as from the source model to the base model. All previously
mentioned transformations are performed on the UML and OCL layer in order
to have a unified process for every verification engine.

The structure of the paper is as follows. In Sect. 2, the base model is discussed
including the process flow, definitions and transformations. Section 3 describes
the analysis of the base model and how a solver is chosen. Lastly, the transfor-
mations for the solving engine are shown in Sect. 4. In Sect. 5, we discuss related
work before concluding the paper in Sect. 6.

2 A Base Model for UML and OCL Verification

The base model provides an interface between arbitrary UML/OCL model de-
scriptions and validation and verification tools. The goal of the base model is
to represent a unified basis for model descriptions combining various UML dia-
gram types while retaining a maximum compatibility to the original model and
to solvers.

Figure 1 shows the process flow when using such a base model. The source
model description consists of various UML diagrams enhanced with OCL expres-
sions in order to specify the system and its behaviour. All diagrams conjoined are
transformed and combined into a base model. Using the base model, a structural
analysis can provide hints for an appropriate solver selection. Once the solver
is chosen, the base model is transformed into a solver-specific base model elimi-

R ~ Model Description]
I

I

i |
| | Class Diagram | | State Machine | | Activity Diagram | | Sequence Diagram LEI |
! 1

N e S S e e 7

CD [5M [AD el structural analysis
[SeqD [l..
Solver Hint

Solver Decision

Y
Solver-Specific Base Model
(in UML/OCL)

| Verification Engine |

Fig. 1. Process flow employing the base model

nating modelling constructs not explicitly supported by the solver and replacing
them with simpler representations. All transformations are automatic and do
not require manual interaction unless the user wants to choose a specific solving
engine. Finally, the solver specific base model serves as input for the verification
engine.

We define the basis of the source model description to be a class diagram
optionally enhanced with operations specifying model behaviour. Other diagram
types, such as state machines, activity diagrams and sequence diagrams, can
further define the system and its behaviour. The result of the model description
transformation is a class diagram with optionally employed operations using
pre- and postconditions to describe the system’s behaviour. The information of
the various diagram types is transformed into either class invariants or pre- and
postconditions of the operations. Additionally, the base model only features a
reduced set of UML and OCL features, the core elements. Elements that are
not part of these are transformed into simpler representations using only core
elements to increase compatibility to solving engines.

Ezxample 1. For instance, an aggregation from the source model is transformed
into an association plus an invariant, demonstrated in Fig. 2 with a simple mother
child relationship.

Person.allInstances() —forAll(p |
Motherhood Motherhood p.child—closure (child) —excludes (p))
hild hild ,/ ... additional Constraints
chi chi

<
mother mother

Fig. 2. Transformation of an aggregation into association plus constraint

A structural analysis on the base model is now able to determine the rel-
evance of certain criteria and can give hints about which solving engines are
most effective. This is described in more detail in Section 3. A developer can
combine these hints and their knowledge about the system to choose the most
appropriate solver. Alternatively, if the user interaction is not desired, the solv-
ing engine that the analysis has determined to be best can be chosen directly. In
the case that the solving engine does not support all features present in the base
model, these elements are further transformed into solver compatible elements,
resulting in the solver specific base model. Most likely, these transformations are
required to enable the usage of such verification engine anyway and therefore
does not influence the scalability. Additionally, note that all transformations are
performed on the UML and OCL layer and only have to be implemented once
instead of individually for each solving engine.

Table 1. UML elements in the base model (symbols: v' core element; o transformed
element (using only core elements); X unsupported element)

Class features Association features Operation features

v Class v Binary Association v Operation (non query)
o Abstract Class o N-ary Association v/ Parameter
o Inheritance o Aggregation X Return Value
o Multiple Inheritance o Composition v Pre-/Postcondition
v’ Attribute v Multiplicity x Nested Operation Call

o Initial Value o Association Class o Query Operation

o Derived Value o Qualified Association v Parameter
v/ Enumeration x Redefines, Subsets, Union| v Return Value
v’ Invariant X Recursion

2.1 Elements of the Base Model

To create a unified model representing the input model description with a maxi-
mum compatibility to verification engines, the base model has a reduced feature
set of UML and OCL elements. Table 1 shows the supported UML elements in
the base model and marks those elements that are transformed into a more ba-
sic representation. The supported elements form a basis to represent most UML
features either directly or using the available elements plus invariants and are
supported by the majority of solving engines. Many transformations of complex
model elements into the core elements are described in [7].

The essential elements of the base model are defined by the class and associa-
tion features. The core elements, representing the “atoms” of the base model, are
enumerations, classes with their attributes and invariants, and binary associa-
tions with their multiplicities. Most of these elements cannot be represented by
simpler description means. Other structural features, such as association classes
and aggregations, are transformed into representations using the core elements.
Very specific features, like redefines and subsets, are not supported for now.

The operation features define the behaviour of the base model using opera-
tions with optional parameters and pre- and postconditions. Return values are
not supported until nested operation calls are, which we can not handle currently.
Query operations are integrated into the expression they are used in, which is
also the reason why we do not support recursion for these.

As for OCL, we support a basic set of features to cover the majority of
OCL expressions. The data types Boolean and Integer are fully supported.
Strings are only represented by an ID, allowing for a comparison on an in-
stance level, but not on a character level. This also excludes string opera-
tions like concat. We also support the OCL collection types Set(T), Bag(T),
Sequence(T) and OrderedSet(T) with the essential collection operations, in-
cluding but not limited to: constructors and manipulation operations including
and excluding; membership tests includes and excludes; quantifiers forAll
and exists; count operations size, isEmpty and notEmpty; filters select and
reject; and closure.

The advantages of the transformation at this early stage are numerous. First
and foremost, the solving engines do not require an encoding for the different
UML elements. Instead, only the base elements have to be supported. The im-
plementation of the transformation of the complex elements is only required
once on the UML and OCL layer. Therefore, it is easier to provide support for
more solving engines and they are easier interchangeable. There might be cases,
in which a solving engine has a better encoding for a feature than the trans-
formation in the base model, but we expect the transformed elements (marked
with a o symbol) to be affected least. Also, the assignment of elements to their
respective category may change if case studies expose an advantage.

Secondly, the unification provides a solid baseline for the structural analysis
to give optimal hints. The unification also helps to break down the model into
the relevant categories like quantifiers and special OCL constructs, such as the
closure expression.

Reasons, why certain elements are not part of the base model at all, are
their incompatibility to be represented within the base elements and their high
complexity which is not supported by many solving engines, e.g. nested operation
calls. Also, elements depending on other unsupported elements are not part of
the base model, e.g. return values for non query operations which are only useful
if an operation invokes another operation to work with its return value. Note
the difference between the transformation of UML and OCL features in the base
model and the elimination of UML and OCL features in the solver specific base
model, whose sole reason is the compatibility to the solving engine.

2.2 Incorporation of Various Diagram Types

The various diagram types of UML provide different information about the
model. A class diagram defines the data structure and operations of a system.
State machines, for example, are able to further restrict operation invocations in
addition to the operation preconditions. They can also define additional effects
of operations as well as state invariants for object states. Activity diagrams pro-
vide operation behaviour in form of an implementation. Sequence diagrams again
restrict the operation execution order on a different layer than state machines.

Most verification engines specialize on one of these diagram types or require
a specific combination of them to be able to accept the system definition. We
want to combine the information of the various diagram types into one base
model using model transformations, accumulating all information. This way, the
requirements for the verification engine are kept minimal and the selection of
solvers increases.

In a first step, we plan to incorporate the information of protocol state ma-
chines — without events — into the base model, thereby combining class diagrams
with operations and state machines.

Ezample 2. An example model specifying a Toll Collect! system is defined in
Fig. 3. It consists of a class diagram (Fig. 3a) and a state machine (Fig. 3b).

! www.toll-collect.de/en/home.html

E State machine ... nzﬂ E

Truck:TruckLife {protocol})

!

Class diagram nr‘ ﬂ' E (I J
Truck [(self.current = null)}
num : String
Connection trips : Sequence(Point) enter{entry : Point)/
" south deby [iegen mave(target : Point)f
Point * north init(@Num : String) pay(amnu;wt Integer)/f

name : String enter(entry : Point) exit(y
init(@Name : String) move(target : Point)
northConnect(aNorth : Point) Current pay(amount : Integer) debt
southConnect(aSouth : Point) 0.lcurrent *truck exit() [SRR

(a) Class diagram with operations (b) State machine

Fig. 3. Toll Collect example system

The system features a network of points on which trucks can enter and move
around. For each visited point the debt of a truck increases. To leave the network,
a truck has to pay its debt. The state machine ensures that the truck can only
enter the network when it is not currently in it and only move around and exit
the network when it is inside. The state invariants of the state machine further
enforce these properties.

To transform the state machine into the class diagram, the states are rep-
resented as an enumeration. An additional attribute sm_trucklife is added to
the corresponding class to save the current state. These changes are illustrated
and highlighted in the class diagram in Fig. 4. Using the enumeration attribute,
the state invariants can be represented as class invariants that only trigger if
the object is in the required state. Constraints given by the transitions of the
state machine, including guards and postconditions, are transformed into pre-
and postconditions of the operation definitions in the class diagram, as shown
on the right in Fig. 4.

3 Solver Selection

So far, various approaches for the verification of UML and OCL models have been
presented [2,4,13]. The main idea of these approaches is to encode verification
problems in a language that can be passed to a dedicated solving engine and
interpret the results at the level of UML and OCL.

In this context, a large variety of languages and solving engines has been
suggested. Approaches using theorem provers like Isabelle [2], reformulating the
problem as a Constraint Satisfaction Problem (CSP) [4], using intermediate lan-
guages like Alloy or Kodkod [1,13] though finally resulting in an instance of

E Class diagram I:w ﬁl E

-- state invariant noDebt

enumeration . .
T"ruck TruckL\l); Truck context Truck inv:
noDebt num : String sm_trucklife = #noDebt
trips : Sequence(Point, . .
debt Connection FIsEETLIERELG, implies current = null
debt : Integer
south (S truckife - Truck TruckLl Truck £ 0
Point * north init(aNum : String) -- op. Truck::exit
name : String enter(entry : Point) pre: sm_trucklife = #debt
init(aName : String) move(target : Point) s =
. ost: sm_trucklife =
northConnect({aNorth : Point) Current - pay(amount : Integer) P
southConnect(aSouth : Point) 0.1 current truck exit() #noDebt

Fig. 4. State machine information integrated into class diagram

Boolean Satisfiability (SAT), or using a direct encoding in the more general lan-
guage of Satisfiability Modulo Theories (SMT) [12] have been proposed.

All these solving engines rely on different abstractions and accordingly em-
ploy complementary solving schemes. Hence, it is important to choose an appro-
priate solver for a given UML and OCL description and verification problem.
For instance, Kodkod and Alloy have been designed for problems of relational
logic. They support set theory including transitive closure, and are, thus, es-
pecially suitable for OCL constraints expressing relations between model ele-
ments. In contrast, SMT offers theories for the efficient handling of bit-vectors
(Integers) and corresponding arithmetic operations, while CSP particularly sup-
ports abstract data types (e.g., collections/lists). Beyond that, there are different
approaches to cope with quantifiers (existential and universal) like Quantified
Boolean Formulas (QBF) [6] or integration of quantifiers into bit-vector logic in
the SMT-solver Z3 [5].

In order to benefit from these particular, complementary strengths, we sug-
gest a structural analysis of the model, especially of the OCL expressions, with
respect to collection types (e.g., Set(T) and Sequence(T)), arithmetic com-
ponents (4, —, *, /), relational components (e.g., size() and closure()) and
quantifiers (forAll and exists). This analysis shall provide hints which solver
might be most adequate for the verification of the given base model. As ade-
quateness can hardly be quantified in terms of absolute scores, the results shall
be presented to the developer in an interactive procedure. First, the above crite-
ria are listed together with their relevance for the given model (high, moderate,
low or none) as determined by the structural analysis. These values may then
be adjusted by the developer in order to incorporate her own rating. In a sec-
ond step, a recommendation is given which solvers are most appropriate for the
given problem based on how their strengths and weaknesses fit to the profile of
relevance derived in the first step. This feedback shall also contain information
about model elements that are not directly supported by the solvers (e.g. Reals,
Strings, or certain OCL constructs) and will be ignored or transformed into sim-
pler means. Assisted by this advice, the developer can finally decide on which
solving paradigm might be most appropriate to use. Alternatively, the developer
may also let this decision be made by the framework automatically.

4 Solver-Specific Base Model

Though many different solving technologies are available, basically all approaches
do not cover the complete OCL language. They rather restrict themselves to a
subset for which an encoding exists, i.e. a model transformation to the solver
level. Consequently, before passing the base model to the chosen solver, unsup-
ported model elements have to be transformed.

Ezxample 3. Consider the collection type Sequence (Point), as contained in the
Toll Collect example model from earlier (c.f. Fig. 3a). If the chosen solver tech-
nology does support sequences (e.g. Kodkod, Alloy, or CSP) no transformation is
necessary at this step and the base model is passed to the verification engine un-
changed. However, if the chosen solver does not support sequences, these are to
be transformed. This can be done by introducing two new classes PointSequence
and PointSequenceElement, organized as a linked list with references to the be-
ginning and the end of the sequence, shown in Fig. 5. The resulting solver-specific
base model is then passed to the verification engine and finally to the solver.

Class diagram

Truck
nurmn : String
debt : Integer truck trips PointSeguence
initlahum - String) 0.1 1|first : PointSequenceElemnent
enter[entn-,f' Paint) Trips last : PointSequenceElement
moveltarget : Point) appendlaFPaoint : Paoint)
paylamount : Integer)
byel) : Integer previous)
01 List
PointSequenceElement o1
data : Point et

Fig. 5. Replacing OCL collection type Sequence by introducing a new UML class

UML and OCL are rich languages with many facets which makes it hard
to (1) determine an encoding for each component (e.g. the encoding of collec-
tions in SMT [11]) and (2) requires a large effort to realize these encodings
in (prototypic) implementations. Addressing this issue, the transformation to a
solver-specific base model can also help to lower the threshold for incorporat-
ing new solving engines. More precisely, by providing a whitelist of supported
UML and OCL components, the range of tractable model elements can be en-
larged by OCL transformations (e.g. using select to express reject or using
COL—size()=0 for COL—isEmpty()) or by more substantial, structural modifi-
cations (e.g. transforming the collection type Sequence(T) to separate classes).

Though these transformations are performed automatically, the developer shall
be able to access which kind of transformation is performed. This allows for a
judgement whether they may interfere with the addressed verification task or
whether they are applied to secondary components of the model only.

5 Related Work

There are several contributions that can be related to our present work. The
fundamental idea of a base model within a generic verification methodology for
system descriptions expressed in terms of UML and OCL has been presented
in [14]. Verification of other description means than class diagrams has been
addressed by many approaches, e.g. [8], while using OCL in order to express
complex UML class diagram properties by simpler means, has been discussed
in [7]. Validation and verification of such model transformations, e.g. using the
ATLAS Transformation language (ATL) [3], is an active field of research. A
comparison of such verification techniques has been presented in [9]. Also to the
solver end, a similar, but more quantitative comparison between different solving
paradigms has been conducted [10]. The results indicate a predominance of SMT,
especially for large benchmarks. However, this comparison only considers a single
class of models of the same type which are only varied in size, and a further
comparison is needed for models of other types.

6 Conclusion and Future Work

In this work, we presented a model transformation of heterogeneous model de-
scriptions to a unified base model, which enables to consider more comprehensive
descriptions for verification. In the course of this transformation, a small set of
core elements is used to express a large and rich set of UML and OCL constructs.
In doing so and excluding several language constructs due to their minor rele-
vance or general infeasibility with respect to verification, we expect to improve
compatibility to verification engines without significantly restricting model sup-
port. We have exemplarily shown the incorporation of state machines into the
base model by means of an example. Details of this transformation as well as
the transformation of other diagram types are left for future work.

Beyond that, we have identified and suggested categories of modelling con-
structs that may affect the performance of verification engines, if these are ap-
plied to models that contain a considerable amount of those constructs. However,
their actual impact on solving times and performance has not been examined
thoroughly so far and remains open for further research.

Finally, by providing further transformations of the base model, we are able
to obtain solver-specific base models employing only language constructs that are
supported by the addressed solver. Instead of leaving the implementation of these
transformations to the verification engines, they are performed transparently at
a higher level of abstraction. This allows us to interface with a wider range of
solvers, potentially at the price of a little overhead and loss of performance.

Overall, the base model framework provides us with a generic interface between
heterogeneous model descriptions and verification engines.

References

1.

10.

11.

12.

13.

14.

Anastasakis, K., Bordbar, B., Georg, G., Ray, I.. UML2Alloy: A challenging model
transformation. In: Model Driven Engineering Languages and Systems, pp. 436—
450. Springer (2007)

Brucker, A.D., Wolff, B.: The HOL-OCL book. Tech. Rep. 525, ETH Zurich (2006)
Biittner, F., Cabot, J., Gogolla, M.: On validation of ATL transformation rules
by transformation models. In: Proceedings of the 8th International Workshop on
Model-Driven Engineering, Verification and Validation. p. 9. ACM (2011)

Cabot, J., Clariso, R., Riera, D.: Verification of UML/OCL class diagrams using
constraint programming. In: Software Testing Verification and Validation Work-
shop, 2008. ICSTW’08. IEEE International Conference on. pp. 73-80. IEEE (2008)
De Moura, L., Bjgrner, N.: Z3: An Efficient SMT Solver. In: Proceedings of
the Theory and Practice of Software, 14th International Conference on Tools
and Algorithms for the Coustruction and Analysis of Systems. pp. 337-340.
TACAS’08/ETAPS’08, Springer-Verlag, Berlin, Heidelberg (2008)

Giunchiglia, E., Narizzano, M., Tacchella, A.: Qube: A system for deciding quan-
tified boolean formulas satisfiability. In: Automated Reasoning, pp. 364-369.
Springer (2001)

Gogolla, M., Richters, M.: Expressing UML Class Diagrams Properties with OCL.
In: Clark, T., Warmer, J. (eds.) Advances in Object Modelling with the OCL, pp.
86-115. Springer, Berlin, LNCS 2263 (2001)

Kaufmann, P., Kronegger, M., Pfandler, A., Seidl, M., Widl, M.: Global State
Checker: Towards SAT-Based Reachability Analysis of Communicating State Ma-
chines. In: Boulanger, F., Famelis, M., Ratiu, D. (eds.) MoDeVVa@MoDELS.
CEUR Workshop Proceedings, vol. 1069, pp. 31-40. CEUR-WS.org (2013)

Lano, K., Kolahdouz-Rahimi, S., Clark, T.: Comparing verification techniques for
model transformations. In: Proceedings of the Workshop on Model-Driven Engi-
neering, Verification and Validation. pp. 23-28. ACM (2012)

Saadatpanah, P., Famelis, M., Gorzny, J., Robinson, N., Chechik, M., Salay, R.:
Comparing the effectiveness of reasoning formalisms for partial models. In: Pro-
ceedings of the Workshop on Model-Driven Engineering, Verification and Valida-
tion. pp. 41-46. ACM (2012)

Soeken, M., Wille, R., Drechsler, R.: Encoding OCL Data Types for SAT-Based
Verification of UML/OCL Models. In: Gogolla, M., Wolff, B. (eds.) TAP. Lecture
Notes in Computer Science, vol. 6706, pp. 152-170. Springer (2011)

Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.: Verifying UM-
L/OCL Models Using Boolean Satisfiability. In: DATE. pp. 1341-1344. IEEE
(2010)

Straeten, R.V.D., Puissant, J.P., Mens, T.: Assessing the Kodkod Model Finder
for Resolving Model Inconsistencies. In: France, R.B., Kiister, J.M., Bordbar, B.,
Paige, R.F. (eds.) ECMFA. Lecture Notes in Computer Science, vol. 6698, pp.
69-84. Springer (2011)

Wille, R., Gogolla, M., Soeken, M., Kuhlmann, M., Drechsler, R.: Towards a
Generic Verification Methodology for System Models. In: Macii, E. (ed.) DATE.
pp- 1193-1196. EDA Consortium San Jose, CA, USA / ACM DL (2013)

