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Abstract. A crucial part of verifying and validating models is the iden-
tification of inconsistencies. Inconsistencies can exist whenever models
overlap semantically. Such overlaps are predominant in model-driven en-
gineering, where the use of multiple viewpoints leads to a variety of in-
complete representations of one or more aspects of a system. While the
commonly employed rule-based approaches to identifying inconsistencies
can be effective, state of the art methods for inferring or determining
semantic overlaps are not. Techniques relying on unification algorithms
or a unifying ontology make strong assumptions, are error prone and can
be costly to maintain. In this paper, an alternative approach based on
Bayesian reasoning is proposed. We show how Bayesian inference com-
bined with pattern matching can be used to infer likely semantic overlaps
in models. The approach is illustrated and evaluated using the inference
of semantic equivalences as an example of inferring one type of semantic
overlap.
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1 Introduction

When designing and developing complex systems, one common practice in model-
driven engineering is for stakeholders to study the system from a variety of dif-
ferent viewpoints. Such viewpoints are defined by a number of factors, including
the context, level of abstraction and concerns of interest [1]. Concerns of interest
addressed from different viewpoints may overlap, leading to semantic relations
and, hence, semantic overlaps among the corresponding views and models. Re-
dundant definitions, for instance, imply semantic equivalence. Knowledge of such
relations is required when verifying and validating models, particularly because
violations of their intended semantics can lead to inconsistencies. While semantic
overlaps can certainly be minimized by separating concerns as much as possible,
a complete separation of concerns is rarely (if ever) possible.

Several methods for identifying semantic overlaps are proposed in the related
literature. However, the associated cost, the strong assumptions made, and the
fact that many of the techniques are error prone, renders them impractical for



most scenarios. For example, unification algorithms are typically based on name
or predicate matching and can fail whenever homonyms or synonyms are en-
countered. Rule- or logical inference based approaches rely on rule antecedents
to be matched completely. However, particularly when reasoning over incom-
plete information and knowledge, antecedents may not always (fully) match.
This can lead to results and conclusions that are unintuitive to a human but
logically correct [15]. In fact, there may be cases in which a human would have
considered a partial match to provide sufficient evidence to suggest that the
consequent of the rule should apply. Such behavior suggests that it is useful to
account for uncertainty in automated reasoning processes. In this paper, we use
this as a motivation for introducing a novel, Bayesian inference - based inexact
reasoning approach for constructing probabilistic arguments about model-based
information and knowledge, and apply the developed concepts to the problem
of identifying semantic overlaps.

The remainder of the paper is organized as follows: section 2 briefly introduces
the running example. Our conceptual approach is developed in section 3. A
corresponding algorithm is introduced and evaluated in sections 3.3 and 3.4.
Section 4 reviews similar approaches and compares them to our work. The paper
closes with a short discussion and conclusions in section 5.

2 Running Example: Inferring Semantic Equivalence

To illustrate our conceptual approach, we apply it to the problem of inferring
semantic overlaps. A semantic overlap implies the existence of a semantic re-
lationship between two or more utterances of one or more languages. There
are numerous kinds and types of semantic relationships. Some well-known re-
lationships from object-oriented modeling are meronomous (part-whole, has a),
hyponymous (“is a”, i.e., type-of), causal and instance-of relations [12]. Partic-
ularly in Model-Driven Engineering (MDE), Model-Based Systems Engineering
(MBSE), and generally multi-view and multi-paradigm software engineering, the
additional category of synonymy-related relationships – which includes semantic
equivalence – is of interest in identifying model correspondences and for the pur-
pose of defining model transformations. We say that two or more expressions are
semantically equivalent if they share a common semantic mapping (meaning).

In our running example, we assume that a number of UML models are given.
As illustrated in figure 1a, some of these models contain classes with proper-
ties that have default values assigned. It is assumed that, across the different
models, some of these properties may be semantically equivalent, but knowl-
edge of their equivalence is not explicitly captured. The task is to find those
pairs of properties that are likely to be semantically equivalent. Because models
describing engineering systems (software and physical systems) are often hetero-
geneous in nature, and a great number of very different formalisms is typically
employed, we also assume the existence of a (bi-directional) mapping to some
common representational formalism for all models. For purposes of illustration
and mathematical elegance, and to build on previous work, directed, attributed



Fig. 1. Running example: (a) UML classes with properties that have default values
assigned; (b) automatically generated graph representation of SomeClass1 (extract).

(and typed) multi-graphs are used as a common representational formalism [9].
This is illustrated in figure 1b.

3 Bayesian Reasoning in Models Represented by Graphs

Bayesian reasoning is often considered similar to human reasoning [13]. Illus-
trative of this are situations in which humans are asked to classify objects.
Without any information about the object (other than its existence), a human’s
belief about the class that the object belongs to is his or her subjective belief,
which is typically formed on the basis of past experience. Once exposed to the
object, a human tends to look for certain features, each of which provides further
clues towards which class the object is likely to belong to. These features can
be identified by observing the object – a process that can be interpreted as the
collection of additional information (or evidence) that can be used to update a
belief to form a posterior belief. We argue that the same principles can be applied
to reasoning over model-based information and knowledge.

3.1 Bayesian Inference & Belief Networks

In Bayesian probability theory, beliefs are updated with new information by
applying Bayes’ theorem [2]. The belief to be updated is then also referred to as
the prior belief. Assuming that A, B and C are observed events, and given a prior
belief about A, the posterior belief about A can be updated with observations
B and C using Bayes’ theorem:

P (A | B,C) =
P (A,B,C)

P (B,C)
=
P (A) P (B,C | A)

P (B,C)
. (1)

Determining the joint probabilities required to compute equation 1 is non-
trivial. In part, this is due to values of joint probability distributions rarely being
readily accessible. Also, when determining the joint probabilities by means of



Fig. 2. Bayesian belief network for the running example – nodes denote random vari-
ables, arrows denote influences.

factorization, the number of terms required is (in general) very large, even for a
small number of random variables [11].

Bayesian belief networks address both the problem of representing the joint
probability distribution over a set of random variables and performing inference
with these. Formally, a Bayesian belief network is a tuple (G,P), where P is a
joint probability distribution over a set of random variables V and G is a directed
acyclic graph whose nodes are random variables in V . Directed edges are used to
indicate influence or causal relationships, which express local dependence among
random variables [11].

In addition to the DAG property, (G,P) must also satisfy the Markov con-
dition. The Markov condition states that each variable is (locally) conditionally
independent of its non-descendants given its parent variables. This condition,
along with information about the conditional dependence significantly reduces
the number of terms required to fully define the joint probability distribution P
represented by a Bayesian belief network. Therefore, to determine the joint prob-
ability through simple enumeration, the product of the conditional probabilities
of all random variables Xi ∈ V given values of their parents pa (Xi) (whenever
these conditional distributions exist) must be determined [11] (see equation 2):

P = P (X1 = x1,X2 = x2, ...) =
∏
i

P (Xi = xi | pa(Xi)) . (2)

This reduces the set of unknowns to only the conditional distributions of the
random variables in V given values of their parents in the Bayesian network.
These distributions are known as the parameters of a Bayesian network.

Figure 2 illustrates both the structure and the parameters of the Bayesian
network used for the running example. Note the use of the short hand notation
P (Xi = 0) = P (Xi) and P (Xi = 1) = P (¬Xi) for binary random variables Xi.
The network is assumed to be constructed by a human and encodes the assump-
tion that knowing whether or not a particular pair of properties has similar (or



dissimilar) names (N), compatible (or incompatible) types (T), and equal (or
unequal) values (V) is influenced by whether or not the pair of properties is se-
mantically equivalent (or different) (E). In addition, it is assumed that whether
or not names are similar influences the probability of types being compatible
which, in turn, influences the probability of values being equal. The parame-
ter values shown reflect the subjective beliefs of the same human. For example,
at the time of specifying the network parameters, the human believes that the
probability of any pair of properties being semantically equivalent is 0.1%.

3.2 Using Pattern Matching to Measure Random Variables

Using the information provided in the Bayesian network illustrated in figure 2,
as well as equations 1 and 2, a number of interesting diagnostic inferences can be
performed. For instance, consider an experiment where the random outcome ω ∈
Ω is a pair of properties from the space of all pairs of properties Ω. Say one can
determine (by observing the object) that the pair of properties (ω) has similar
names, unequal values and compatible types. Furthermore, say that, due to a lack
of available information and knowledge, we cannot be certain about the semantic
equivalence of the two properties. Taking all of this new information into account,
the probability of semantic equivalence for this particular pair of properties
(which, without the observations is only the belief of any pair of properties being
semantically equivalent: i.e., P (E)) can be updated. Mathematically, this equates
to determining P (E | N,¬V, T ). Note that P (E | N,¬V, T ) is a meaningful
statement about the probability of semantic equivalence of any pair of properties
for which it can be determined with certainty that their names are similar, types
compatible and values not equal.

By the earlier assumption that all models are represented by a graph, the
definition of the UML class properties considered in the running example must
also be represented by a graph (at least at some level of abstraction – see fig-
ure 1b). Determining whether or not any two properties represented by a graph
fulfill a certain condition (e.g., such as both properties having similar names)
can be done computationally by means of graph pattern matching. Therefore,
we argue that the process of collecting more information about, e.g., a particular
pair of UML class properties can be mapped to querying a graph pattern.

To illustrate this result more formally, let (Ω,F , P ) represent the probability
space over which all random variables Xi ∈ V in the Bayesian network are de-
fined. We define the sample space Ω as the set of all pairs of property definitions
NG,prop in the graph G representing models: Ω = NG,prop × NG,prop. Further-
more, we define the σ-algebra as F = 2Ω (where 2Ω denotes the power set).
By definition, a random variable is a mapping Xi : Ω → E from the sample
space to some measurable space E. Therefore, an e ∈ E must be measurable for
any ω ∈ Ω. By definition of the measurable preimage X−1i (e) ∈ F , an e ∈ E is
measured whenever an event f ∈ F is observed. To fully define the mapping, it
is sufficient to determine which pairs of properties are elements of the preimages
of a random variable. Per our definition of the random variable N, the preimage
of N−1(0) is the set of all pairs of properties with similar names, i.e., all ω ∈ Ω



Fig. 3. (a) Patterns used in running example; (b) graph representation of the pattern
associated with event N with example node variable bindings for a single match.

which have similar names. We argue that determining the pairs of properties
(i.e., the ωis) for which this is the case, is computationally possible by encoding
the necessary knowledge in an appropriate pattern.

Figure 3 illustrates the patterns used for the running example in a datalog-like
syntax. Variables are unique by name and are indicated by a ? as prefix. Graph
triples – i.e., two nodes (a subject and an object) connected by a directed edge
(a predicate) – are separated by brackets and are written in the form (subject

predicate object). Note that notEqual(x, y) and equal(x, y) are functors
that perform semantic equality checks on their arguments (for instance, 1 and
1.0 are considered semantically equal).

Note carefully that, per the definition of the probability space, every property
can and, in a state of perfect information and knowledge, must have a name, type
and value. This means that all pairs of properties must be a part of one of the
preimages X−1i (e). In demonstrating our approach, only binary random variables
were used. However, we recognize that multi-valued random variables may be
more appropriate in other cases. Also note that, in a state of incomplete or
inconsistent information, only a subset of the members of each of the preimages
of the random variables can be determined using only the knowledge encoded in a
pattern. Additional resources need to be committed to determine set membership
for the other pairs of properties. Committing additional resources may require
human intervention and the adding of additional information to the models.

3.3 Algorithm

By exploiting the structure of the Bayesian network, inference of probability
distributions can be performed quite efficiently, e.g., using the junction tree al-
gorithm [11]. Less trivial is the process of collecting information about a particu-
lar pair of properties – i.e., computationally determining which information and
knowledge should be taken into account when determining the probability of se-
mantic equivalence for a particular pair of properties. For instance, for a pair of



Algorithm 1: Infer propositions and associated probability distributions
given a set of changes to a graph and a Bayesian network.

Algorithm doInference(Graph G, Triples T, BayesianNetwork B)

for t ∈ T do
InfContext ←− observe(G, t, events(B), true) ;
for observations ∈ InfContext do

ObservedRVs ←− observations.getRandomVariables() ;
for rv ∈ (B.getRandomVariables() \ ObservedRVs) do

D ←− D ∪ B.inferDistribution(rv, ObservedRVs) ;

return D

Procedure observe(Graph G, Triple t, Events E, Boolean expand)
for e ∈ E do

p←− pattern(e) ;
TL ←− ∅ ;
if tripleMatchesPartOfPattern(p, t) then

while (m←− G.nextMatch(t, p)) 6= ∅ do
Bs ←− m.getBindingsToSharedVariables() ;
Obs[Bs] ←− Obs[Bs] ∪ (e, variableBindings(m)) ;
if expand then

for b ∈ Bs do
TL ←− TL ∪ G.findTriplesAbout(b) ;

for tl ∈ TL do
Obs ←− Obs ∪ observe(G, tl, E \ e, false) ;

return Obs

properties that has no values assigned, but similar types and names, P (E | N,T )
constitutes a meaningful, and, using the Bayesian network, inferable probability
of semantic equivalence, since it takes all of computationally determinable in-
formation into account – that is, all of information that can be extracted from
the graph solely using graph pattern matching. To determine the probability of
semantic equivalence for each individual pair of properties, a naive algorithm
would have to iterate over all pairs of properties and, for each pair, a number of
graph searches would need to be performed to determine matches to all patterns
associated with the random variables. In addition, a potentially large number of
inferences in the Bayesian network need to be performed.

Given the complexity of these operations, we propose an incremental algo-
rithm (see algorithm 1) which considers only the changes made to an input graph.
The changes are provided in the form of a set of graph triples. The incremental
behavior of the algorithm is valid for as long as the structure of the Bayesian net-
work does not change (note that a change in the parameters would only require a
re-computation of the posterior beliefs). Verbally, algorithm 1 attempts to mea-
sure all random variables within the context of a single triple by matching the



associated patterns, followed by performing inference in the Bayesian network.
This procedure is called iteratively over the set of added triples: first, the current
triple is compared to all patterns. If the triple can be matched against any part
of a pattern, a full pattern match in the graph is performed. For each match
to the pattern, the value of the random variable and a context defined by the
bindings to the common, shared pattern variables (in the running example: ?p1
and ?p2) is stored in a map. To find matches to the other patterns within one
variable binding context, a list of triples directly related to the nodes and edges
bound to the variables shared across patterns is compiled (i.e., triples with one
of the bound elements as a subject, predicate or object). The pattern matching
procedure is then repeated over this list.

3.4 Proof-of-Concept Implementation & Algorithm Evaluation

In previous work, we have developed a model-based reasoning framework called
ConSystent [9]. ConSystent uses the Resource Description Framework (RDF)
as an underlying formalism for representing models by graphs. RDF represen-
tations of models are automatically generated. This generated RDF data is col-
lected and stored in a central RDF store (Apache Fuseki).

For the purpose of demonstrating the technical feasibility of our approach,
and to test our algorithm, we have extended this existing infrastructure with
two additional components: firstly a simple Bayesian network library support-
ing inference with discrete random variables, and secondly a custom reasoning
engine which implements Apache Jena’s Reasoner interface. The expressiveness
for defining patterns using the Apache Jena datalog-like rule language is pre-
served by internally rewriting the patterns used for measuring random variables
as rules with empty rule headers.

A preliminary evaluation of the algorithm and its implementation was per-
formed using three sets of models. In each scenario, different quantities, kinds
(UML, Simulink) and sizes of models were used. Samples of the inference results
were drawn at random and inspected manually. Two important reflections have
been made: firstly, common inferences (such as pairs of properties, for which
the only observation is type inequality) can lead to a very large number of in-
ferences, even for small models. This indicates that patterns need to not only
be designed carefully, but heuristics may need to be employed to further define
which inferences are considered valuable. Such heuristics can then form a basis
for a classifier that decides which inferences to present to a modeler for further
consideration. Secondly, due to the algorithm iterating over the set of all triples,
some inferences are performed multiple times. However, this is not considered
an issue – rather, it is a likely indicator of a non-optimality of the algorithm.

4 Related Work

In the related literature, most approaches to reasoning over (model-based) infor-
mation and knowledge are based on logical inference. Inference of semantic over-
laps typically makes use of unification algorithms, which exploit representation



conventions. This includes predicate matching, of which the work by Finkelstein
et al. is an example [6]. Additionally, Triple Graph Grammars (TGG) and, more
generally, correspondence models have been used for similar purposes [7]. The
approaches are similar in that syntactic matching is performed. Rules are used to
define correspondences and transformations, which are typically based on struc-
tural semantics. In some instances, models are enhanced with stereotypes [14]
or elements from a common, shared ontology [8]. However, all of these methods
make a number of strong assumptions: for example, in name- or predicate-based
approaches, spelling mistakes or the use of synonyms can produce false negatives.
False positives may be produced as a result of homonyms. Common, shared on-
tologies can be criticized based on the argument that necessitating tagging of
models with elements of the ontology is highly labor intensive and agreement of
the ontology among stakeholders is difficult to achieve [15]. Secondly, unifying
ontologies can quickly grow unmanageably large at which point they become
expensive to maintain.

Approaches to inferring semantic overlaps that are based on similarity anal-
ysis can be considered complementary to our work. In [3, 5] probabilistic ap-
proaches to mediating database schemas are introduced. Probabilistic inference
has also been investigated in semantic web applications. For instance, in [10],
an extension to RDF was proposed to support uncertain inferences by associat-
ing probabilities with both implications and statements. PR-OWL, a proposed
probabilistic extension to the Web Ontology Language (OWL) to define Bayesian
networks, is introduced in [4]. The disadvantage to most of these approaches is
that they are either not Bayesian – which, by definition, does not provide a
suitable basis for admissible decision rules [2] – or are incomplete, or provide no
working implementation.

5 Discussion & Conclusions

In this paper, the use of Bayesian inference in combination with pattern matching
is demonstrated and applied to the problem of inferring (likely) semantically
equivalences. Identifying semantic overlaps – and generally reasoning over models
– is an essential part of identifying inconsistencies and, hence, indispensable to
verification and validation of models.

Logical inference can fail in scenarios where incomplete, underspecified and
inconsistent views of models are consolidated. Bayesian inference, on the other
hand, can always draw useful conclusions. Combining Bayesian inference and
pattern matching as described in this paper can be viewed as an extension to
the more commonly applied approach of using implications (or, generally, rules)
to perform logical inference, and model- and graph-transformations: any out-
come with probability 1 or 0 can be said to have been logically entailed by
the evidence considered. For these reasons, applications such as spam filtering
employ a similar combination of Bayesian inference and pattern matching to
improve the effectiveness of the reasoning task at hand.



To the best of knowledge of the authors, the combination of Bayesian in-
ference and graph pattern matching has, to the date of writing this paper, not
been used within the context of reasoning about properties of engineering mod-
els. However, we strongly believe that such an approach is promising, particu-
larly for large-scale model-driven development applications. This is supported
by the fact that Bayesian inference allows for rational assessment of important
properties, e.g., related to the state of consistency and validity, of incomplete,
underspecified and inconsistent models.
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