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Abstract. Model-driven software development and systems engineer-
ing rely on modeling languages that provide efficient, domain-specific
abstractions for design, analysis, and implementation. Models are essen-
tial for communicating ideas across the engineering team, but also key
to the analysis of the system. No single model or modeling language
can cover all aspects of a system, and even for particular aspects mul-
tiple modeling languages are used in the same system. Thus engineers
face the dilemma of either defining a unifying semantics for all models,
or finding a solution to the model integration problem. The talk will
elaborate these problems, and show two, potential solutions: one using
a model integration language (for the engineering design domain) and
another one using explicit and executable semantics (for the domain of
distributed reactive controllers).

The problem

Engineered systems are increasingly built using model-driven techniques, where
models are used in all phases of the system’s lifecycle, from concept development
to product to operation. Models are built for everything: from the smallest part
to the entire system, and models are used for all sorts engineering activities:
from design to analysis and verification, to implementation and manufacturing.
Engineering models are often based on domain-specific abstractions of reality;
for example a finite-element model represents a 3D shape and an engineering
assembly drawing represents how those shapes need to be joined together by
some manufacturing steps to form an assembly. While there is a multitude of
domain-specific models used in the design of a complex system, somehow these
models have to ’fit together’ because (1) they are describing the same, single
system, and (2) they need to be combined to allow cross-domain, system-level
analysis of the design. Models created in (domain-specific) isolation are necessary
and very useful, but insufficient when the larger system is considered - in the
larger systems subsystems and their components interact, and these interactions
have to be expressed as well.



Obviously, the same applies to software systems: multiple, often domain-
specific models are used to describe a complex system. Somewhat differently
from conventional engineering, where a multiple, (physical) domain modeling
tools are used, in software we tend to use multiple domain-specific modeling
languages. Arguably, every modeling tool has a ’language’ (explicitly defined or
not) and a modeling language without a supporting tool is only partially useful;
hence in this paper we will focus on the issue of the modeling languages and their
semantics. Semantics is a central question in language engineering: how do we
specify what ’sentences’ of an artificial, engineered language mean? Fortunately,
in the theory of computer languages there has been many decades of research
that produced techniques for specifying semantics of languages. However, these
specifications rarely span multiple, potentially different languages.

The problem at hand is stated as follows: How can we integrate heteroge-
neous, domain-specific modeling languages so that the instance models can be
linked together and system-level analysis can be performed on these models?
It is easy to see that this problem has multiple facets. Naturally, one problem
is that of semantics: how do we ’integrate the semantics’ of multiple modeling
languages? Say, if we have a model My, (A) of a subsystem A in a modeling lan-
guage L1, and another model M, (A) of the same A in a modeling language Lo,
what does the composition My, (A) x My, (A) mean (if it is meaningful at all)?
Similarly, what if we compose the models of two different components, say A and
B, and ask the same question about My, (4) x My, (B) ? Clearly, the semantics
of composition has to be defined. Another problem is more operational: how
do we manage complex 'model repositories’ where the models of the system (or
systems) are being kept? If changes are made in one model, what is the impact
of these changes on the dependent and related models? Building and managing
such model repositories brings up many deep technical and pragmatic problems.

The problem stated above has a close relationship to systems engineering.
One of the main tasks in systems engineering is to discover, understand, and
manage cross-domain and cross-system interactions that make the engineering
of complex so difficult. Solutions, like SysML are certainly a good step in the
right direction, but they are rather limited as far as semantics is concerned, and
more research is needed to place them on a solid theoretical foundation.

Unification or Integration?

There seem to be (at least) two approaches to solving the problem. One can be
called as ’unification’, where we design a universal modeling language that mag-
ically unifies all existing modeling languages. Domain-specific models will then
be translated into this unified modeling language, and analysis and verification
will happen on the unified models. The semantics of all domain-specific mod-
eling languages would have to be re-expressed in the unified language (i.e. in a
common semantic domain). However, this approach seems very unrealistic: the
domain-specific languages are typically rich, so coming up with a language that
unifies them all is extremely difficult, their semantics sometimes does not align



well, and creating a grand unified language does not seem feasible. Additionally,
the set of languages to be integrated is changing from project to project, so a
unified language will have to be extremely large. Arguably, the only 'language’
that is common across domain-specific modeling is that of mathematics but this
on such a high level that it is not pragmatic due to the loss of domain-specificity.

The other approach can be called as ’integration’ where the focus is on inte-
grating models: a model integration language (MIL) with ’sparse’ semantics is
used. The semantics of the model integration language is for capturing the cross-
domain interactions in terms of the structure of the system. This model inte-
gration language is lightweight and (potentially) evolvable, so that new domain-
specific modeling languages can be added to the suite as necessitated by the
development, project. In this approach domain-specific models ’stay’ in their
own modeling tools, and the integration models are reflections of these domain
models. The integration models thus capture the interfaces of the domain models
relevant for analyzing the interactions.The interfaces of the component (or sub-
system) models in the MIL are ’rich’ in the sense that they are multi-domain and
their connectivity will allow the analysis of interactions throughout the system.

An example for a Model Integration Language

In one of our research projects', we have built a model-integration language to
support the design of complex cyber-physical systems (CPS). CPS are defined
as engineered systems that integrate physical and cyber components where rel-
evant functions are realized through the interactions between the physical and
cyber parts. Examples include highly automated vehicles, smart energy distri-
bution systems, automated manufacturing systems, intelligent medical devices,
etc. The design of such systems involves the design of the physical, the cyber
(computational and communicational), and the cyber-physical components of
the system and their integration. There are a number of complex engineering
tools that solve parts of the problem, e.g. CAD tools for mechanical design,
Finite Element Analysis (FEA) tools for determining stresses on structural ele-
ments, simulation tools for the analyzing the dynamics of the system, modeling
and synthesis tools for the design and implementation of the (cyber) hardware
and software, thermal analysis tools for verifying thermal behavior of the sys-
tem, and so on; but they are used in isolation, by domain engineers. Purely
understood cross-domain interactions lead to expensive design iterations.

We have designed and implemented a MIL called 'Cyber-Physical Modeling
Language’ (CyPhyML) [1] that allows the representation of cyber-physical com-
ponents and the design CPS through composition. The language is primarily
structural (i.e. composition-oriented), but components (and subsystems) have
rich, typed interfaces, with four categories: parametric and property interfaces
(for parametrization and configuration), signal interfaces (for cyber interactions),
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power interfaces (for physical interactions representing the dynamics), and struc-
tural interfaces (for geometric alignment of the physical components). In Cy-
PhyML one can represent the design of an entire CPS, but the native models
of the components and subsystem are stored in the domain-specific tools - Cy-
PhyML merely describes how they are composed. Cross-domain analysis is sup-
ported by model interpreters that assemble complex model analysis campaigns
from the CyPhyML models, possibly involving multiple analysis tools.

An example for Interaction Modeling

In another research project? we worked on the problem of semantic integration
of models representing reactive controllers. The motivating example came from
a system of systems: a spacecraft and a launch vehicle, where both systems have
a reactive controller that interacts with its counterpart in the other system.
Two major issues were posed: (1) each reactive controller was modeled in a
different variant of the Statechart notation (Stateflow and UML State machines,
specifically), and (2) the controllers were exchanging messages that influenced
their behavior. The goal was to verify the concrete, integrated system (where
the controller models and the message exchanges were given) through model
checking.

The first problem was solved by developing a framework, called Polyglot[2],
to specify the semantics of Statechart variants in an executable form. The frame-
work is built as a set of Java classes that can be specialized according to the
semantic variant yielding an ’interpreter’ that receives events and produces reac-
tions to events, but whose behavior is determined by the specific model, acting
as the ’program’ being interpreted. The 'model’ is stored as a data structure
in the interpreter. We have verified the correctness of the model interpreter(s)
using numerous tests exercising the various features of the modeling language.
The model interpreter produced the same output sequences from the same input
sequences as the code generated by the Stateflow and Rational Rose code gen-
erators, respectively. Note that the interpreter (as well as the generated code) is
purely sequential: it is executed upon the arrival of input events and produces
output events upon each invocation.

The second problem was addressed by providing a framework, implemented
again in Java, for representing (1) how a reactive controller is wrapped into a
looping process that uses some (blocking or non-blocking) ’receive’ and ’send’
operations to interact with its environment, and (2) how two (or more) reactive
processes interact with each other via some message exchange protocol. Note that
the processes are concurrent, i.e. arbitrary interleaving of the process executions
is possible, hence the system has a built-in non-determinism. The main idea here
was to model the interactions (thus the integration) via modeling the ’glue’: the
scheduling of processes and the interaction protocols. In other words, we have
created a (potentially non-deterministic) scheduler that modeled the behavior of
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the composed system. For the analysis of the composed system we have relied
on the Java Path Finder tool (from NASA) that allows the byte-code based
verification of Java programs, permitting non-deterministic behavior.

Lessons Learned

The main lesson we have learned was that one should focus on problem-driven
integration of models, and not on some grand unification. Models are built for
a purpose and when a larger system needs to be analyzed, synthesized, imple-
mented, verified, tested, operated, or maintained one has to be very pragmatic
and concentrate on what the models are for, and consider integration accord-
ingly. Hence, one should pay attention to how effectively such model integration
can be supported by tools.
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