
Putting the Pieces Together –
Technical, Organisational and Social Aspects
of Language Integration for Complex Systems

H̊akan Burden

Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Gothenburg, Sweden
burden@cse.gu.se

Abstract. Dealing with heterogenuous systems is often described as a
technical challenge in scientific publications. We analysed data from 25
interviews from a study of Model-Driven Engineering at three companies
and found that while the technical aspects are important, they do not
encompass the full challenge – organizational and social factors also play
an important role in managing heterogenuous systems. This is true not
only for the development phase but also for enabling early validation of
interdependent systems, where processes and attitudes have an impact
on the outcome of the integration.

Keywords: Empirical and Exploratory Case Study, Model-Driven Engineering

1 Introduction

Complex systems, consisting of numerous and interdependent subsystems [15],
require a plethora of languages for efficient implementation [7]. From the as-
pect of Model-Driven Engineering (MDE), the challenges are often described
in technical terms [4] since heterogenuous languages imply different abstraction
levels, representations and aspects of software [8], but also since the languages
have their own domain-specific and platform-dependent constraints [11]. The
one-sided focus on technical aspects is surprising since Kent already in 2002
pointed out that if MDE is to be successful it needs to encompass also the or-
ganisational and social aspects of software engineering [10], a claim that has
since been reiterated [1, 9].

To explore to what extent language integration for comlex systems is a chal-
lenge in terms of technical, organisational and social aspects we analysed data
collected at three different companies, looking for evidence regarding the mo-
tivations and challenges of heterogenuous development of embedded systems.
Among the findings are that engineers tend to favour integration at the concrete
code level instead of at the more abstract model level, that management needs to
fit the right team with the right task and that which language you use identifies
you as a software engineer.



The following section will describe the context of the three companies as well
as how the data was collected and analysed. Section 3 structures the findings
according to technical, organizational and social aspects of language integration.
We then conclude and present our intentions to further investigate the interde-
pendency between the factors in Section 4.

2 Model-Driven Engineering at Three Companies

During 2013 we conducted a case study of MDE at three companies – Volvo Cars
Corporation, Ericsson AB and the Volvo Group. The respective organisations
had different experiences with MDE but were all transitioning towards a more
agile way of software development.

2.1 Heterogenuous Languages for Complex Systems

Electronic Propulsion Systems (EPS) is a relatively new unit at Volvo Cars with
the responsibility of developing software for electric and hybrid cars. MDE was
introduced in a step-wise manner as software development went from prototype
vehicles to mass-production. The overall system design is described using AU-
TOSAR1 while the software developed in-house at EPS is implemented using
Simulink2. Simulink is also used for validation and integration purposes. The
interfaces of the Simulink models are generated from the system-wide model.
Besides graphical modelling languages, C is used for low-level details while nu-
merous scripts help in everything from translating between different AUTOSAR-
standards encoded in XML to deploying software on hardware.

Radio-base stations at Ericsson AB has employed different MDE technologies
since the late 1980’s, primarily focusing on UML as a descriptive and prescriptive
modelling language including code generation. Besides using UML for design,
implementation and testing various other languages form the engineers’ tool box;
C is used for functionality relying on optimal hardware performance, Java has a
niche in functionality requiring GUIs, Erlang is regularly used for testing while
home-made domain-specific languages – DSLs [12] – are used for specification,
implementation and testing purposes.

Volvo Group Trucks Technology develops software for the Volvo Group’s
truck brands. While most of the software development is outsourced a few fea-
tures are developed in-house using C. The interfaces of the top-level software
components are automatically generated from the system model which is de-
scribed in a company-specific dialect of EAST-ADL3. The two Volvo companies
are independent in all aspects besides the name space which they share for his-
torical reasons.

1 http://www.autosar.org/
2 http://www.mathworks.se/products/simulink/
3 http://www.east-adl.info/



2.2 Data Collection and Analysis

The main source of data comes from 25 semi-structured interviews – 12 at Volvo
Cars, nine at Ericsson AB and four at Volvo Trucks. The reason for fewer re-
spondents at Volvo Trucks is that they entered the project later than the two
other companies and have fewer engineers involved in MDE tasks. The interviews
were audio-recorded and then transcribed. The interviews were complemented
by a combination of observations, informal interaction [5] as well as seminars
and regular meetings with representatives from the three companies.

The data has previously been analysed regarding the impact of tools on
MDE adoption [16] as well as for comparing and contrasting MDE at the three
companies [3]. For the purpose of this contribution we re-analysed the data
deductively [14] searching for evidence concerning the technical, organisational
and social aspects of heterogenuous systems and language integration across the
model-driven engineering activities at the three companies.

3 Findings

As seen in the previous section, a variety of languages is used across the software.
The variation comes both in terms of adapting languages depending on the
nature of the included subsystems, but also due to where in the lifecycle the
language is to be applied.

3.1 Technical Aspects of Language Integration

From the interviews a recurring theme is that the tool used for encoding a
solution is just a means for producing low-level code. The following quote is
from Ericsson, “I don’t see Rose RT or another modeling tool as a language. It’s
what they produce that is the language, and mostly it’s always been C++ for us.
So I don’t think – I can consider, for example, Rose RT as a tool like Eclipse
or something. Lets you develop code.” A similar experience was encountered
at Volvo Cars when one interviewee was asked about the impact of changing
implementation language from C to Simulink, “You still have C code.”

The emphasis on the generated language is also dominant in how multiple
languages are to be integrated. Where academic research is focused on compos-
ing modeling languages on a meta-level [4, 7], industrial practitioners prefer to
integrate at the code level. At Ericsson where multiple languages are used in
various combinations, integration is mainly done at the code level through the
build environment. This coincides with our findings from a previous study on
the integration of a graphical modelling language and a textual DSL conducted
within another organisation at Ericsson [2].

Due to the number of suppliers and sub-contractors both Volvo companies
rely on being able to integrate their subsystems in the form of binaries, so that
merging on a meta-level is impossible. However, having access to the source
would still be beneficial but for debugging purposes, not for merging the partial
solutions.



One of the few examples where two languages are integrated in the same
development environment comes from Ericsson where a DSL for testing was
developed internally, “The reason for it being that it could often take quite long
time to compile some of our models [. . . ] from a few minutes up to a few hours,
depending on how big the model was.” The answer was to define their own testing
language on top of the modeling language and the interviewee was told that the
DSL was developed during all the hours the team sat waiting for the model
compiler to terminate.

3.2 Organisational Aspects of Language Integration

An engineer at Ericsson expressed the need for management to assign tasks
according to the skills of the developers. “In the big systems, we have different
languages. Yes, and that is complex. And that’s a problem. It’s hard to expect
that the software designer or verifier is equally good in all languages. And we’ve
had to handle that in our team.”

While one engineer at Ericsson saw the need for different languages accord-
ing to domain and platform constraints – “so you have all these levels and you
have very different requirements for different parts of this product. It’s so big
that I don’t even think that one solution fits all. You should be able to use sev-
eral approaches” – there is still an organisational wish to limit the number of
languages to limit accidental complexity “you shouldn’t do it without a need. So
you shouldn’t – if you try to solve the same problem, I think you should try to
use similar language or similar ways of working.”

Stable interfaces in the decomposition of complex systems is desirable [4] but
not always possible to obtain due to changing requirements or underspecification
of new and ground-breaking features [6]. In these cases an agile organisation that
lets developers work at both ends of the interface can be a way forward even if
this demands that the developers master more than one language. But as one
engineer at Ericsson said, “using a new language is probably the smaller problem
compared to learning the product and the domain and everything”.

3.3 Social Aspects of Language Integration

“If you go to a different language, like, I don’t know, whatever language, it will
say that the for loop looks like this, but the functionality of it is the same. It
doesn’t matter how you put it in the words. Instead of ’for’, you put like an ’f ’
or whatever. It’s the same functionality. So when you know the base, you don’t
need to learn, like really study the new ones. You only adapt to them. From my
point of view.” The quote is from an engineer at Volvo Cars who explains his
perception of using different languages for similar tasks.

However, not all engineers are interested in learning new languages. One
interviewee from Ericsson described his experiences from developing a customer
interface with a team located in a different town in the following way, “an option
was to do it in C++ because that’s the most cost effective way. And the owner



said something like ’I don’t think that’s a good idea because the organization
we’re from, people are working there because they want to do Java’.”

At Volvo Trucks a similar sentiment was aired as the topic of introducing a
new modelling language was raised, “we have a lot of people that like to write C
code and they like script languages. And they always do scripts for something.
And they are pretty comfortable. They like writing a code with a blank page just
writing C code.”

4 Conclusions and Future Work

From a technical aspect of heterogenuous language integration there is a dif-
ference between the emphasis of academic contributions and industrial praxis
in that while the former focus on merging languages on a source or meta-level
the latter successfully integrating the target representations. This pragmatic
approach is supported by proven techniques developed for integrating third gen-
eration programming languages. Organisationally the challenge seems to be for
management to assign the right team – with the right skills – to the right task, a
parallel challenge to the challenge of applying the right tools to the right prob-
lem [16]. Finally, from a social aspect it is not just enough that the engineers
have the right skills – they also need to be open for using new languages. This is
due to the fact that learning a new language is not a major obstacle but which
language(s) you use is part of your identity as as software engineer and not all
engineers are willing to redefine their competencies. In relation to Kent’s critique
of MDA [10], it seems that while the technical aspects of language integration
have an important role to play in the development of complex systems, the pos-
sibilities for improved development and product quality can only be realised if
the organisational and social aspects are seen as equally important.

In the case of setting up a simulation environment at Volvo Cars the chal-
lenge is not just to integrate different modelling languages but also agreeing on
the same version of Simulink since different versions imply different properties
in the generated code. Here, the challenge is organisational due to the fact that
the developers want the newest features which enable new solutions while man-
agement responsible for integration need to know that the new version is stable
before updating. Updating legacy models to comply with the newer versions can
be both a time consuming and an error-prone task. With external organisations
submitting their intellectual property in the form of human-readable models or
code the question also becomes an issue of trust – not a technical factor of how
to best compose two or more languages. How to organise an ecosystem [13] of
simulation environments for continuous integration is still an open question we
hope to address in future work by exploring how technical, organizational and
social factors coincode in language integration.

References

1. Ameller, D.: Considering Non-Functional Requirements in Model-Driven Engineer-
ing. Master’s thesis, Universitat Politcnica de Catalunya (June 2009)



2. Burden, H., Heldal, R., Lundqvist, M.: Industrial Experiences from Multi-
Paradigmatic Modelling of Signal Processing. In: 6th International Workshop on
Multi-Paradigm Modeling MPM’12. ACM, Innsbruck, Austria (October 2012)

3. Burden, H., Heldal, R., Whittle, J.: Comparing and Contrasting Model-Driven En-
gineering at Three Large Companies. In: ESEM 2014, 8th International Symposium
on Empirical Software Engineering and Measurement. Torino, Italy (September
2014)

4. Combemale, B., Deantoni, J., France, R., Boulanger, F., Mosser, S., Pantel, M.,
Rumpe, B., Salay, R., Schindler, M.: First Workshop On the Globalization of Mod-
eling Languages (GEMOC 2013). In: CEUR-WS (ed.) GEMOC - 1st International
Workshop On the Globalization of Modeling Languages. pp. 3–13. Benoit Combe-
male, Julien DeAntoni, Robert France (September 2013)

5. Davis, K.: Methods for studying informal communication. Journal of Communica-
tion 28(1), 112–116 (1978)

6. Eliasson, U., Burden, H.: Extending Agile Practices in Automotive MDE. In: XM
2013, Extreme Modeling Workshop. Miami, USA (October 2013)

7. Hardebolle, C., Boulanger, F.: Exploring Multi-Paradigm Modeling Techniques.
Simulation 85(11-12), 688–708 (November 2009)

8. Hardebolle, C., Syriani, E., Sprinkle, J., Mészáros, T.: Summary of the 6th In-
ternational Workshop on Multi-Paradigm Modeling. In: Proceedings of the 6th
International Workshop on Multi-Paradigm Modeling. pp. 5–6. MPM ’12, ACM,
New York, NY, USA (2012)

9. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assess-
ment of MDE in industry. In: Proceedings of the 33rd International Conference on
Software Engineering. pp. 471–480. ICSE ’11, ACM, New York, NY, USA (2011)

10. Kent, S.: Model Driven Engineering. In: Proceedings of the Third International
Conference on Integrated Formal Methods. pp. 286–298. IFM ’02, Springer-Verlag,
London, UK (2002)

11. Mellor, S.J., Kendall, S., Uhl, A., Weise, D.: MDA Distilled. Addison Wesley Long-
man Publishing Co., Inc., Redwood City, CA, USA (2004)

12. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM computing surveys (CSUR) 37(4), 316–344 (2005)

13. Messerschmitt, D.G., Szyperski, C.: Software Ecosystem: Understanding an Indis-
pensable Technology and Industry. MIT Press Books 1 (2005)

14. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples. Wiley (2012)

15. Simon, H.: The Sciences of the Artificial. Karl Taylor Compton lectures, MIT Press
(1996)

16. Whittle, J., Hutchinson, J., Rouncefield, M., Burden, H., Heldal, R.: Industrial
Adoption of Model-Driven Engineering: Are the Tools Really the Problem? In:
Moreira, A., Schaetz, B. (eds.) MODELS 2013, 16th International Conference on
Model Driven Engineering Languages and Systems. Miami, USA (October 2013)


