
Towards Integrating Modeling and Programming
Languages: The Case of UML and Java?

Patrick Neubauer, Tanja Mayerhofer, and Gerti Kappel

Business Informatics Group, Vienna University of Technology, Austria
{neubauer, mayerhofer, gerti}@big.tuwien.ac.at

Abstract. Today, modeling and programming constitute separate activities car-
ried out using modeling respectively programming languages, which are neither
well integrated with each other nor have a one-to-one correspondence. As a con-
sequence, platform and implementation details, such as the usage of existing
software components and libraries, are usually introduced on code level only.
This impedes accurate model-level analyses that take platform-specific decisions
into account as well as the direct deployment of executable models on the target
platform. In this work we present an approach for integrating existing software
libraries with fUML models—an executable variant of UML models for which a
standardized virtual machine exists—not only at design time but also at runtime.
As a result of that, the modeler is empowered with the capabilities provided by
existing software libraries on model level. Our approach is evaluated based on
unit tests and initial case studies available in the ReMoDD repository that assess
the correctness, performance, and completeness of our implementation.

1 Introduction

Back in 1966, the first object-oriented programming language was born. Its name is
SIMULA and it combined modeling and programming in a unified approach, that is
one of the strengths provided by object-orientation [4]. Carrying this idea further, the
language BETA, which was developed based on SIMULA and DELTA, was designed
for supporting both designing and programming systems. It even provided besides a
textual syntax also a graphical notation for representing the same abstract syntax tree,
such that the user could switch between both forms of representation. This was possible,
since they had a one-to-one correspondence. Later, the graphical syntax of BETA was
replaced by UML and, therewith, the one-to-one correspondence was broken referred
to as impedance mismatch [4].

Today, the design of programming languages and modeling languages is largely
separated from each other as it is carried out by different communities. Likewise, in
today’s mainstream object-oriented software development, modeling and programming
are conceived as separate activities. This results in an impedance mismatch between
modeling languages and programming languages. For instance, there is no one-to-one

? This work is co-funded by the European Commission under the ICT Policy Support Pro-
gramme, grant no. 317859 and by the Austrian Federal Ministry of Transport, Innovation and
Technology (BMVIT) under the FFG BRIDGE program grant no. 832160.

correspondence between the modeling concepts provided by UML and the program-
ming concepts provided by Java.

In model driven engineering, this issue can be overcome by generative software
development approaches utilizing intelligent code generators that are able to bridge
the gap between modeling and programming languages for generating complete and
deployable program code from models. However, these code generators add platform
and implementation details, such as invocations of existing software components and
libraries, to the resulting code, which are not reflected in the models. Hence, in model-
level analyses targeted at validation, verification, or optimization, they cannot be con-
sidered. Therefore, platform and implementation details that are to be considered in
model-level analyses have to incorporated into the model. One approach to achieve this
is envisioned by Seidewitz [10] who proposes to avoid the “programming gap” at all, by
incorporating all implementation details into the model by utilizing UML’s action lan-
guage. While this allows to incorporate algorithmic details into UML models, platform
and implementation details concerning the usage of existing software components and
libraries cannot be incorporated into the model in this approach. For instance, it is not
possible to integrate an existing datastore available in terms of a software library into
a UML model. This impedes accurate model-level analyses taking into account the be-
havior of reused software components and libraries, as well as the direct deployment of
models on the target platform as envisioned by Seidewitz. The need for making existing
software available on model level was also highlighted by Selic [11]. He describes that
one way to accomplish this is by allowing direct calls to such existing software from
within the model.

This paper is concerned with enabling the integration of existing software compo-
nents with UML models. This enables on the one hand to construct more accurate UML
models enabling model-level analyses closer to the target platform, and on the other
hand a direct deployment of models on the target platform. In this work, that emerged
from first ideas by Mayerhofer et al. [5, 6] and subsequent work in Neubauer’s mas-
ter’s thesis [7], we propose the integration of software libraries with executable UML
models developed with fUML—a subset of UML whose execution semantics was stan-
dardized by OMG in terms of a virtual machine (VM). More specifically, at design time,
the software library is reverse-engineered into a UML class model representing the li-
brary’s API structure, which is in the following used by the modeler to reference library
classes and operations. At runtime, these references are used by an Integration Layer to
locate, instantiate, and modify compiled stateful library components. As a result of this,
the modeler can take advantage of the full power provided by already existing libraries
as well as re-use existing software components. Thereby, we aimed at fulfilling the fol-
lowing requirements: (i) making it as natural to the modeler as possible to use existing
software libraries (i.e., the modeler does not need to touch any source code), (ii) mak-
ing the usage of libraries transparent to the modeler (i.e., the modeler can interact with
library components just like with any other natively defined fUML component), and
(iii) not extending the fUML metamodel or modifying the fUML VM as this would
break the conformance to the standard.

The remainder of this paper is organized as follows. First, we introduce fUML in
Section 2. Thereafter, we describe our approach for integrating software libraries with

fUML models in Section 3. In Section 4, we report on two initial case studies which we
carried out for evaluating our approach. Related work is discussed in Section 5. Finally,
Section 6 concludes the paper and provides an outlook on future work.

2 Foundational UML

fUML, introduced by OMG [8] in 2011, precisely defines the execution semantics of
a subset of UML in terms of a virtual machine capable of executing fUML compli-
ant UML models. Thereby, the UML subset considered by fUML includes UML class
diagrams to define the structural aspects of a software system and UML activity dia-
grams to define its behavioral aspects. With the introduction of fUML, UML can be
used as a programming language, that is nevertheless more abstract than existing third-
generation programming languages [12]. Therewith, it seeks to overcome the model-
code impedance mismatch by replacing source code entirely with fUML models.

However, fUML does neither provide nor foresees a functionality to provide access
to existing software libraries. Instead, it intends to build its own library called Foun-
dational Model Library. This library contains user-level elements, which can be refer-
enced in fUML models. However, it is only composed of packages that define primitive
types, such as Boolean, Integer, Real, and String, and a set of primitive functions for
those data types (e.g., a function to concatenate two String values). While the first ver-
sion of the fUML specification [8] already defines the Foundational Model Library,
the latest version of the specification V1.1 still does not further extend the library’s
capabilities. When comparing the Foundational Model Library with libraries found in
traditional third-generation programming languages, such as Java, the capabilities pro-
vided by, e.g., the Java Class Library (JCL) or any third-party library, are far beyond
those of the Foundational Model Library. By looking at functionality provided by JCL,
one can not only find features to build graphics and sound, access databases, and per-
form math operations, but also sophisticated abstractions on the underlying operating
system and hardware to provide access to resources like the network or file system.
While, from a technical standpoint, it is possible to extend the Foundational Model Li-
brary with the aforementioned functionalities, doing so is infeasible due to the required
effort of adding them by the still rather small community currently using fUML. Fur-
thermore, it is not only desirable to use JCL functionality in fUML models, but also
to re-use already existing software components in fUML models, i.e., to re-use any
existing software library.

3 Library Support for fUML

We presented the initial idea to integrate software libraries with fUML in [6]. In our
approach, required classes of existing software libraries are integrated into the fUML
model during design time by using reverse engineering techniques. During runtime, a
dedicated Integration Layer is employed, which handles calls to any specified software
library. Thus, the Integration Layer extends the fUML VM with the ability to handle
access to software libraries. For this, it makes use of the command and event API de-
veloped for fUML within the moliz project [5]. This command and event API allows the

fUML model
Output

10101001
11010101
01101010
10101011

Library

fUML Virtual
Machine

Integration
Layer

Reverse
Engineering
Framework

1 Preparation 2 Modeling 3 Execution

Trace

UML library
model
@external

references

invokes

observes integrates
results

Component Artifact In/output relation Dependency

Fig. 1: Library support for fUML at a glance

Integration Layer to detect calls to software libraries by fUML models during runtime,
and to re-integrate the result of the performed library call back into the fUML run-
time environment. For performing the actual call to the software library, the Integration
Layer makes use of reflection techniques.

The implementation of our Integration Layer1 originating from Neubauer’s mas-
ter’s thesis [7] currently supports the integration of Java libraries in fUML models.
However, it is also possible to support other programming languages which provide re-
flection capabilities. The primary goal of the prototype is to provide the modeler with
the possibility to instantiate Java library classes using CreateObjectActions of fUML,
to modify Java library class instances using AddStructuralFeatureValueActions, and to
call operations upon them via CallOperationActions. Additionally, the result of a library
call, such as the return value of an operation call, is translated from Java to fUML and
integrated into the fUML runtime environment.

Dynamic Class Loading and Reflection. The two major capabilities required by
the Integration Layer to fulfill its goals are dynamic class loading and the reflection
technique. The former ability builds upon the Java classloader that is part of the Java
runtime environment and enables to dynamically load Java classes into the Java virtual
machine. The reflection technique enables meta programming and hence allows the
Integration Layer to instantiate and modify Java classes during runtime.

Figure 1 visualizes the entire approach in three steps from making libraries available
to be referenced in the fUML model at design time to the point where the fUML model
is executed. In the following, these steps are described in more detail.

Step 1: Preparation. In the Preparation step, the Java library to be used is prepared
for being integrated with fUML models. Therefore, the structural information about the
Java library’s API is reverse-engineered into a UML class model (depicated as “UML
library model” in Figure 1) either from the source code or a compiled JAR file using,
e.g., the Eclipse plug-ins MoDisco2 or Jar2UML3. To reference Java library classes and
operations inside an fUML model, references from the fUML model to the obtained

1
https://github.com/patrickneubauer/fuml-library-support

2
http://www.eclipse.org/MoDisco

3
http://soft.vub.ac.be/soft/research/mdd/jar2uml

https://github.com/patrickneubauer/fuml-library-support
http://www.eclipse.org/MoDisco
http://soft.vub.ac.be/soft/research/mdd/jar2uml

UML library model may be created. Hence, the modeler can use the Java library in a
natural way by referencing the reverse-engineered UML library model and does not
need to deal with source code. To make the Java library usable at runtime, the UML
library model is extended with UML comments indicating library classes as well as the
location of the library’s compiled JAR file.

Step 2: Modeling. Having obtained a UML library model from the Java library that
is annotated with the location of the compiled JAR file, the library can be used in the
development of an fUML model in the Modeling step. For this, any Eclipse-based UML
editor like, e.g., the Eclipse UML Model Editor or the Papyrus UML Model Editor4 can
be used. Whenever the fUML model has to access the Java library, references from the
fUML model to the UML library model are created. In more detail, to create an instance
of a Java library class, a CreateObjectAction may be used having the classifier reference
set to the UML class representing the respective Java class in the UML library model.
Using an output pin, the created object can, e.g., be provided to the target input pin of a
CallOperationAction. Such a CallOperationAction can be defined to call an operation on
the Java library object. For this, the operation reference of the CallOperationAction has
to be set to the respective UML operation representing the Java class’ operation in the
UML library model. To specify the value of an existing Java object’s member field, an
AddStructuralFeatureValueAction can be used referring to the respective UML attribute
in the library model via its structuralFeature reference.

Step 3: Execution. To start the execution of an fUML model in the Execution step,
the Integration Layer passes the fUML model to the fUML VM. Furthermore, using
the command and event API provided by the moliz project [5], it registers itself as a
listener to the fUML VM. Hence, the Integration Layer is notified about any event oc-
curring during the execution of the fUML model and acts upon any required library
access. For example, if the execution of a CreateObjectAction is completed, an activity
node exit event referring to the CreateObjectAction is received. In case the action refers
to a UML class contained by the UML library model, the Integration Layer detects
that it has to instantiate the respective Java class. Similarly, modifications of existing
Java objects via AddStructuralFeatureValueActions and Java operation calls via Call-
OperationActions are detected by the Integration Layer. The result of the library access,
such as the instantiated Java object or the return value of an operation call, is integrated
back into the fUML runtime environment by translating it from Java to fUML and pro-
viding it to the fUML VM. Thus, resulting values can be further processed during the
fUML model execution. This means that an Java object instantiated by the fUML model
via a CreateObjectAction may be modified by the model using AddStructuralFeature-
ValueActions and CallOperationActions. Thus, the Integration Layer makes state full
Java objects accessible at runtime. As an example, we describe the handling of Create-
ObjectActions to instantiate Java classes in more detail. A detailed description of han-
dling AddStructuralFeatureValueActions and CallOperationActions can be found in [7].

Handling a CreateObjectAction. When the Integration Layer receives an activity
node exit event concerning a CreateObjectAction referring to a library class, it interrupts
the model execution and performs the following steps.

4
http://www.eclipse.org/modeling/mdt

http://www.eclipse.org/modeling/mdt

1. fUML Placeholder Object Retrieval. As a result of executing the CreateObject-
Action, the fUML VM created an fUML object of the referenced UML class, which
is contained by the UML library model. This fUML object represents a stub or
placeholder object of the Java object to be instantiated.

2. Java Object Creation. The Java class to be instantiated is determined by exam-
ining the classifier reference of the CreateObjectAction referring to the UML class
that represents the Java class in the UML library model. While the namespace and
name of this UML class uniquely identify the Java class, the location of the JAR
file containing the Java class is captured in a UML comment owned by that UML
class. Being supplied with both the unique identification and location of the Java
class, the Integration Layer uses the reflection technique to create an instance of
that exact Java class.

3. fUML Object Creation. To integrate the instantiated Java object into the fUML
runtime environment, it is first transformed into an fUML object. For this, a new
fUML object is created and its feature values are set according to the Java object’s
member field values. For example, in case the Java member field is of type int, a cor-
responding fUML IntegerValue is assigned to the fUML object. After translation,
the fUML placeholder object retrieved in the first step is replaced by the translated
fUML object.

4. CreateObjectAction Result Assignment. Finally, the fUML object created in the
previous step is assigned to the CreateObjectAction’s result output pin in form of an
object token containing a reference to this fUML object.

5. Object Bookkeeping. In order to use the instantiated Java object in later stages of
the fUML model execution (e.g., by using a CallOperationAction to call a library
operation upon this object), both the Java object and the fUML object are added to
a dedicated map data structure.

4 Critical Discussion

Succeeding the development of the prototype, we carried out initial case studies that
are available in the ReMoDD repository5. Two of them are presented in this section.
Additional case studies are discussed in [7]. The main research questions we aimed to
answer through these case studies are as follows:

– Correctness. Is the developed prototype correct? In particular, does the prototype
work as expected? If not, what causes the malfunction?

– Performance. How is the performance of executing an fUML model accessing a
software library compared to executing a similar plain Java application? How much
overhead is imposed by the prototype on top of the fUML VM performance?

– Completeness. Can every library be used? What are the limitations?

Mail Case Study. In this case study, we built an fUML model that uses a soft-
ware library to compose and send an e-mail to an existing e-mail address. The library

5
http://www.cs.colostate.edu/remodd/v1/sites/default/files/fuml-extlib-examples.
zip

http://www.cs.colostate.edu/remodd/v1/sites/default/files/fuml-extlib-examples.zip
http://www.cs.colostate.edu/remodd/v1/sites/default/files/fuml-extlib-examples.zip

used in this case is Apache’s Common Email library6. Used fUML action types in-
clude ValueSpecificationAction, CreateObjectAction, and CallOperationAction. Within
the fUML model, a SimpleEmail object is created and multiple calls upon it are made
to specify various e-mail parameters, such as its subject and receiver. The parameter
values itself are specified through multiple ValueSpecificationActions. At the end, the
last operation call finally transmits the created e-mail to the specified recipient.

Petstore Case Study. In the Petstore case study, we developed a model that cre-
ates, stores, and retrieves objects through the Google App Engine datastore. To realize
the access to the datastore, the Objectify API7 was used. The fUML model created for
the Petstore case study behaves as follows. Initially, domain entities, such as Customer,
Address, and Order, are registered through the Objectify service. Then, for testing pur-
poses, the datastore is setup to run on the local machine rather than in the cloud. Next,
both a Customer and Address object are created and multiple of their features (e.g.,
first name, last name, and city) are specified. While all of those features are simple
Strings, assigning the created Address instance to the Customer requires handling a
CallOperationAction receiving a complex input parameter. Afterwards, the created Cus-
tomer instance is saved in the datastore. In order to verify the success of the previous
operation, the same Customer is looked up in the same datastore.

Correctness Results. To ensure the correctness of the prototype, we built unit tests
for the individual prototype components. The correctness was also confirmed by the
case studies. For the case studies, we built a Java application that implements the same
functionality as the respective fUML model, and compared the results obtained by ex-
ecuting both. On one hand, in the Mail case study, the composed e-mail was correctly
sent and received by the specified recipient. On the other hand, in the Petstore case
study, both the instance of the Customer and Address were created, the Address was
added as a complex field to the Customer, and the Customer was populated to the lo-
cal datastore. Finally, the same Customer was retrieved from the datastore showing the
Integration Layer’s correct treatment of the Petstore case study. Hence, the developed
prototype successfully obtains the desired result in both case studies.

Performance Results. Since the performance of the Mail case study heavily de-
pends on the current state of the network, the performance has been evaluated with the
Petstore case study, in which the datastore is placed on the local machine and, hence, is
not liable to network interference. Table 1 shows the performance results of executing
both the fUML model and a corresponding Java implementation. Every benchmark has
been performed five times and the visualized results represent the median of all exe-
cutions. When looking at both execution time and memory one can see that executing
the fUML model takes up a considerable longer time and larger amount of memory.
However, the Integration Layer implementation only imposes a very small additional
overhead on top of the fUML VM. In case of 50 consecutive executions, the measured
overhead amounts to approximately 3% in terms of execution time and less than 1 MB
in terms of memory (not depicted in the table) constituting less than 1% in overall mem-
ory overhead. The remainder of the overhead is imposed by the model execution, i.e.,
the fUML VM itself resulting from the fact that the fUML VM is not yet as optimized

6
http://commons.apache.org/proper/commons-email

7
https://code.google.com/p/objectify-appengine

http://commons.apache.org/proper/commons-email
https://code.google.com/p/objectify-appengine

as the Java virtual machine. For example, while the fUML standard foresees concurrent
threading of the execution, the Java implementation of the fUML VM does not (yet)
provide such capabilities.

Completeness. The implemented prototype currently supports only a subset of
fUML’s actions. In detail, the following fUML actions have been taken into consid-
eration during the development of the prototype: CreateObjectAction, CallOperation-
Action, and AddStructuralFeatureValueAction. While the prototype supports all kinds of
primitive data structures offered by the fUML standard, complex data types are only
supported in a subset of possible use cases. Moreover, for example, the Java reflection
library as well as Java libraries making use of dependency injection cannot be directly
used as there are no corresponding concepts in the fUML standard. Additionally, static
field and static operations are not supported. A list of explored limitations can be found
in [7].

of Executions Time
(Java)

Time
(fUML)

fUML
Overhead

Integration
Layer
Overhead

Memory
(Java)

Memory
(fUML)

1 583 ms 830 ms 42.37% 2.08% 5 MB 75 MB
10 936 ms 1260 ms 34.62% 4.03% 2 MB 77 MB
50 1199 ms 2541 ms 111.93% 2.75% 2 MB 88 MB

Table 1: Performance Results

5 Related Work

As discussed in Section 2, fUML defines its own library called Foundational Model
Library. With this library, fUML provides primitive data types and associated primitive
behaviors. Furthermore, this library can be extended by implementing for each data type
or function to be added, a dedicated interface and registering this implementation at the
fUML VM. Considering the vast amount of existing software libraries, which have to
be added to the Foundational Model Library, in order to enable the development of
fUML models executable on the target platform, and the still rather small community
using fUML, this approach is currently infeasible from a practical point of view. Fur-
thermore, re-using existing software components would require considerable additional
implementation effort in this approach.

Nevertheless, some extensions of the Foundational Model Library exist. The Alf
standard [9] provides a textual notation for fUML models and extends fUML with an
additional library that provides further data types (e.g., Natural and Collection types)
and corresponding functions (e.g., Collection functions). Cuccuru et al. [1] propose
an extension of Alf with the Value Specification Language (VSL). VSL is a language
standardized by the OMG for defining the values of non-functional properties of real-
time and embedded systems in UML models. As part of this extension, additional data
types and functions for these data types were added to Alf’s library.

The Cameo Simulation Toolkit provided by No Magic, Inc. constitutes a commer-
cial implementation of fUML. In this tool, it is possible to access software libraries in
fUML models by embedding Java source code in the body of fUML OpaqueActions.
This approach fundamentally differs from our approach as it requires the modeler to
write actual source code. Furthermore, the result of executing source code embedded
in the fUML model can only be accessed by source code embedded in another part of
the fUML model. However, it is not possible to further process the result using (other)
native fUML actions, such as the AddStructuralFeatureValueAction. A similar approach
as the one implemented by the Cameo Simulation Toolkit is also provided by the com-
mercial UML tools IBM Rational Rhapsody, IBM Rational Software Architect, and
Enterprise Architect. While they do not fully conform to fUML, they support embed-
ding source code in UML actions and thus enable access to software libraries.

A different approach is taken by the UML execution and debugging tool Pópulo [3].
In this tool, the supported action language can be extended using UML profiles. There-
fore, the execution semantics of the introduced stereotypes have to be implemented by
Java classes inheriting from dedicated classes of Pópulo’s API. This approach is very
similar to the approach of extending the fUML Foundational Model Library.

Another related approach we want to mention is Umple [2], which is a model-
oriented programming language provided with a user interface that allows both graph-
ical and textual modeling as well as programming in parallel. For modeling, Umple
supports many UML modeling concepts used in UML class diagrams and UML state
machines. Imperative code to be added to the model, such as code for class operation
bodies, is written in one of the target programming languages supported by Umple,
such as Java and PHP. In a code generation step, code for the respective target language
may be generated. This approach differs from our approach in that it creates code from
models which is then compiled and executed, while in our approach executable models
are directly interpreted by the fUML VM.

6 Conclusion

In this work, we have presented an approach to integrate software libraries with UML
models. In this approach, an existing software library can be integrated with fUML
compliant UML models at design time, as well as at runtime during model execution.
Therefore, the library to be used is reverse-engineered into a UML library model that
represents the library’s API structure. This UML library model can be referenced by
an fUML compliant UML model through CreateObjectActions for creating stateful in-
stances of library classes, AddStructuralFeatureValueActions for modifying these in-
stances, and CallOperationActions for calling operations on these instances. During the
fUML model execution, a dedicated Integration Layer operating on top of the fUML
VM handles accesses to compiled stateful library class instances using the reflection
technique and dynamic class loading.

The conducted initial case studies evaluated the feasibility of the approach partic-
ularly focusing on correctness, performance, and completeness. The correctness of the
prototype has been successfully evaluated by unit tests and confirmed by the case stud-
ies. Regarding performance, we found that the total overhead caused by the Integration

Layer sums up to approximately 3% in execution time and less than 1% in memory. The
remaining overhead is caused by the fUML VM, which suggests an optimization of the
fUML VM. In terms of completeness, it was found that the implementation supports a
subset of available fUML actions and libraries. As future work we plan to increase the
set of supported fUML actions in the prototype, to conduct new case studies eventually
discovering further limitations, and to revise the implementation for overcoming these
limitations.

With our approach, fUML is enhanced with the rich power of existing software
libraries. In particular, it enhances fUML with further capabilities, such as accessing
operating system functionality as well as reusing existing software components. Thus,
it allows to build more accurate models that are closer to the target platform and, hence,
enables more accurate model-level analyses for validation, verification, or optimiza-
tion purposes. Furthermore, our approach enables to develop fUML models that are
executable on the target platform, such that the compilation of models to source code
through code generation becomes obsolete.

References

1. Cuccuru, A., Gérard, S., Terrier, F.: Defining MARTE’s VSL as an Extension of Alf. In:
Proc. of 14th Int. Conference on Model Driven Engineering Languages and Systems (MOD-
ELS’11), LNCS, vol. 6981, pp. 699–713. Springer (2011)

2. Forward, A., Badreddin, O., Lethbridge, T.C., Solano, J.: Model-Driven Rapid Prototyping
with Umple. Software: Practice and Experience 42(7), 781–797 (2012)

3. Fuentes, L., Manrique, J., Sánchez, P.: Pópulo: A Tool for Debugging UML Models. In:
Companion of 30th Int. Conference on Software Engineering (ICSE’08). pp. 955–956. ACM
(2008)

4. Madsen, O.L., Møller-Pedersen, B.: A Unified Approach to Modeling and Programming.
In: Proc. of 13th Int. Conference on Model Driven Engineering Languages and Systems
(MODELS’10), LNCS, vol. 6394, pp. 1–15. Springer (2010)

5. Mayerhofer, T., Langer, P., Kappel, G.: A Runtime Model for fUML. In: Proc. of 7th Int.
Workshop on Models@run.time (MRT’12). ACM (2012)

6. Mayerhofer, T., Langer, P., Wimmer, M.: Towards xMOF: Executable DSMLs based on
fUML. In: Proc. of 12th Workshop on Domain-Specific Modeling (DSM’12). ACM (2012)

7. Neubauer, P.: Integration of External Libraries into the Foundational Subset of UML. Mas-
ter’s thesis, Vienna University of Technology (2014), http://publik.tuwien.ac.
at/files/PubDat_227306.pdf

8. Object Management Group: Semantics of a Foundational Subset for Executable UML Mod-
els (fUML), Version 1.0 (2011)

9. Object Management Group: Action Language for Foundational UML (ALF), Version 1.0.1
(2013)

10. Seidewitz, E.: UML: Once More with Meaning (2013), http://www.slideshare.
net/seidewitz/uml-once-more-with-meaning

11. Selic, B.: The Pragmatics of Model-Driven Development. IEEE software 20(5), 19–25
(2003)

12. Selic, B.: The Less Well Known UML - A Short User Guide. In: Proc. of 12th Int. School
on Formal Methods for the Design of Computer, Communication, and Software Systems
(SFM’12). LNCS, vol. 7320, pp. 1–20. Springer (2012)

http://publik.tuwien.ac.at/files/PubDat_227306.pdf
http://publik.tuwien.ac.at/files/PubDat_227306.pdf
http://www.slideshare.net/seidewitz/uml-once-more-with-meaning
http://www.slideshare.net/seidewitz/uml-once-more-with-meaning

	Towards Integrating Modeling and Programming Languages: The Case of UML and Java

