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Abstract. We present an infrastructure for the management of models of 
heterogeneous meta-models in model-based development environments. The 
infrastructure consists of a Global Model Management (GMM) modeling 
language, which allows the capture of the meta-models used in a modeling 
environment. Relations between meta-models and subsets of these meta-models 
can be  declared and interpreted during model evolution for automated global 
model management. The infrastructure is implemented in an Eclipse EMF 
based EDA (Electronic Design Automation) tool. Its use is demonstrated by the 
generation and synchronization of AADL and VHDL code targetting an FPGA 
to control a self-balancing toy car. 
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1 Introduction 

Model-based engineering makes use of many models of different kinds to capture all 
aspects of a system. As presented in [1], a significant proportion of design errors are 
due to inconsistencies between the heterogeneous models used to develop the evolv-
ing system. Mechanisms are required to ensure consistency of models is automatically 
maintained, and that proper traceability links can be established between models and 
maintained during model evolution. Such mechanisms should be at the heart of every 
model-based development tool, and it should be extensible so that modeling tools can 
be easily configured to target new domains making use of other modeling languages 
and types of relations between models. 

In this paper, we present a Global Model Management (GMM) infrastructure to 
solve these problems. It is inspired from state of the art research and from experience 
gained in developing the Kaolin EDA (Electronic Design Automation) tool [2], which 
makes use of several rich modeling languages such as AADL (Architecture Design 
and Analysis Language, [3]) and VHDL (VHSIC (Very High Speed Integrated Cir-
cuits) Hardware Description Language, [4]). The tool aims at simplifying the devel-
opment of electronic systems implemented on FPGAs (Field Programmable Gate 
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Arrays) by generating automatically the platform-specific models and VHDL imple-
mentation code from abstract functional AADL models. Our GMM language includes 
the concept of meta-model subset as introduced in [5], to declare sets of constraints 
restricting the use of complex and rich languages such as AADL and VHDL. Valida-
tion of subset constraints ensure given activities can be performed on models. In addi-
tion, automated model synchronization is provided through an extension of the core 
GMM language making use of an enhanced version of MoTE [6], which is based on 
Triple Graph Grammars (TGG) [7]. 

The rest of this paper is divided as follows: the next section introduces the GMM 
language and its interpretation semantics. Then, section 3 demonstrates the use of the 
GMM infrastructure through an example consisting of a self-balancing radio con-
trolled car whose implementation code is automatically generated using interpreted 
GMM relations. Related work is then presented in section 4, followed by the conclu-
sion and perspectives in section 5. 

2 The GMM Infrastructure 

2.1 The GMM Modeling Language 

Many approaches to GMM include the concept of mega-model, for which several 
definitions can be found. A unified definition is provided in [8], which has the advan-
tage of being free of implementation details, and can be extended to make use of spe-
cific transformation tools and other artifacts. Our core GMM language (Fig. 1) is 
inspired from this work. It includes the central concepts of model and relation. A 
model is defined as an element that contains models and relations between models. It 
is hierarchical, meaning that it can contain other models as children. This allows for 
better structuring of models. For instance, and as explained in [8], large languages 
such as UML would benefit from such structuring by having some of their model 
elements declared as models (e.g. class diagrams, sequence diagrams, etc.).  

Models need to be related to each other, so a mega-model must be able to contain 
relations between its contained models. A relation also owns an intention, which de-
scribes the intended use of the relation. Inspired from [9], we further distinguish be-
tween factual and obligation relations. A factual relation must be deleted as soon as 
its intention is not satisfied anymore. For example, if the intent of the relation is to 
provide traceability between two models, then if one model is deleted, the relation 
must be deleted because its intention is not satisfied anymore. On the opposite, an 
obligation relation defines that something should always hold but does not necessarily 
do so between the related models. Therefore, obligation relations should not be de-
leted when their intention does not hold, but provide means for (re-)establishing the 
validity of the relation. This is represented by the establish validity operation, which 
takes as input a modeling environment and an execution context. The modeling envi-
ronment provides all models concerned by the relation, so that they can be processed 
to (re-)establish validity. The execution context describes the context in which the 
validity of the relation should be established. It captures the type of operation that was 



performed on a source model of the modeling environment that was changed thus 
requiring validity to be re-established. Predefined types of operation follow the basic 
CRUD (Create, Read, Update and Delete) types used for database persistence. The 
establish validity operation returns a collection of models of the environment that 
have been updated as a consequence of (re-)establishing the validity of the relation. 

 
Fig. 1. The core GMM language 

A model may be in an error state. For example, a model concerned by a relation 
may not be valid, and this information stored in the model can be processed by an 
obligation relation when re-establishing validity. In addition, the relation can itself 
update the error state on the models to indicate for example what prevents the validity 
of the relation to be established. This error information can then be displayed to users 
of the modeling tool, for instance through markers of the Eclipse environment. 

The models that are concerned by a GMM relation must be determined in some 
way. For this purpose, the relation policy class is introduced. Subclasses can provide 
specific ways of relating models, for example, by determining that two models of 
different meta-models are related only when the file names of their resources have the 
same base file name, with meta-models being identified by file extensions. 

A relation between models does not necessarily exist in isolation. Some relations 
may require other relations to hold. For example, a transformation chain can be seen 
as a set of chained obligation relations that must be executed one after the other to 
establish the validity of the chain of concerned models. For this reason, a GMM rela-
tion can declare chained relations. 

A meta-model (Fig. 2) represents a specific type of model to which a model can be 
related through a conformance relation. It is also a place where useful information can 
be stored to be used by tools processing models of the meta-model. For instance, 
model comparison, which often needs to be customized per meta-model, can be speci-
fied by attaching model comparison settings to a meta-model. 

Rich modeling languages such as UML or AADL often support a large number of 
activities (performance analysis, code generation, etc.). As pointed out in [5] for 



AADL, guidance on how a language should be used for a given set of activities to be 
performed is essential to ensure tools interoperability. The authors of [5] proposed a 
DSML to capture subsets of modeling languages, and a revised version of this DSML 
is integrated in our GMM language, which introduces the concept of meta-model 
subset (Fig. 2). It consists of a set of constraints expressed in terms of the cardinality 
of a set of model elements of a given model. Various ways can be provided to con-
struct sets of model elements, but this is still an ongoing work. The objective is to 
express subsets in a way that their constraints can be interpreted by tools without 
evaluation on a specific model, for customization according to a given subset. For 
example, the AADL graphical editor used in Kaolin can interpret a subset to automat-
ically hide any element of the palette whose classifier is forbidden by the subset. 

 
Fig. 2. The GMM concepts for meta-models and meta-model subsets 

Following [5], meta-model subsets can be related to each other according to four 
types of relationships (inclusion, incompatibility, equivalence and intersection). A 
subset can be composed of other subsets through inclusion relations. It can also be 
associated with a given set of activities, thus allowing the analysis of tools interopera-
bility according to their associated activities and subsets compatibility and equiva-
lence. 

A meta-model subset can be associated with a subsetted meta-model declared for a 
given meta-model. Models conformed to a subsetted meta-model are first validated 
against the meta-model, and then against the constraints provided by the associated 
meta-model subset. 

2.2 Extension for Model Synchronization.  

Model transformations are first class entities in model-based development. In 
GMM, they are represented as specific relations between models. Other types of op-
erations between models could also be represented such as merge and refactoring, but 
it remains to be explored. Most model transformations are unidirectional and work in 



a batch mode, i.e. from a set of input models they can only create an output model 
instead of updating an existing model. This is not sufficient since once generated, a 
model may need to be modified as it provides a different view of the system that may 
need to be updated by users. Hence, modifications must be reflected back in the 
source model to maintain consistency. Often this must be performed without re-
instantiating the source model, since it may contain information that is not represented 
in the target model. Incremental transformations, which update only parts of a model, 
are therefore required. This is called model synchronization. 

Only a few model transformation tools can currently satisfy these requirements. 
Among these tools, MoTE [6] can transform models in either directions using batch 
or synchronization mode. In addition, an enhanced version of MoTE has recently 
been developed [10], providing several improvements required for synchronize mod-
els of rich languages such as AADL. Being fully EMF-based, MoTE can be easily 
integrated into our GMM infrastructure in the form of a language extension (Fig. 3).  

 
Fig. 3. The GMM extension for model synchronization with MoTE 

The extension consists of a MoTE synchronization relation, which factually relates 
two models through their meta-models (binary meta-model related relation). At the 
same time, it is also an obligation relation establishing that the two related models 
must be maintained valid by ensuring their consistency. This is achieved by a MoTE 
TGG engine used by the MoTE synchronization relation. 

2.3 GMM Model Interpretation 

Our GMM language and its interpreter are deployed in the Eclipse Integrated Devel-
opment Environment (IDE) as depicted in Fig. 4. A mega-model declaring the meta-
models, their subsets and their relations is stored in the workbench configuration di-
rectory. A GMM controller listens for model change or read events (e.g. editor open-
ing) sent by the Eclipse platform. For a given model source of a received event, the 
controller instantiates a modeling environment containing the models in the work-
space and an execution context whose operation type reflects the type of the event. It 
then calls the GMM engine that interprets all relations declared in the mega-model 
that concern the models of the modeling environment. Obligation relation is currently 
the only type of relations interpreted in our GMM language. The GMM engine calls 
the establish validity operation passing the created modeling environment and execu-



tion context objects. For a MoTE synchronization relation, the operation consists of 
calling the appropriate operation on the associated MoTE TGG engine according to 
the specified execution context and for each target model of the modeling environ-
ment. For an execution context with a read operation, this means that the model 
loaded in memory may be updated in a next operation. If the model corresponding to 
the source model does not exist, the relation calls the engine to perform a batch trans-
formation to create the model. Otherwise, a check consistency operation on the TGG 
engine is performed. Both of these operations cause a TGG correspondence model to 
be created between the models and stored in the TGG engine’s memory. Later on, 
when the model is updated, a resource change event is sent to the GMM controller, 
which is translated into an execution context of type Update sent to the GMM engine. 
The MoTE relation then calls the TGG engine to synchronize the target models of the 
modeling environment. When a model is deleted, the corresponding model may be 
deleted or not, as specified by the relation‘s deletion properties. 

 
Fig. 4. The GMM infrastructure integrated in the Eclipse platform 

The MoTE synchronization relation also takes care of creating appropriate errors 
carried by the models in case inconsistencies are detected during the creation of the 
TGG correspondence model. Model objects that are not mapped by the correspon-
dence model are inspected according to a model elements coverage policy associated 
with the relation, which determines if unmapped elements should have been mapped 
or not. In the former case, this indicates that the models are inconsistent, and appro-
priate errors are set for the model elements. The MoTE relation will not process mod-
els until the inconsistencies are resolved through manual update of the models. The 
relation makes use of a cache of the model objects, which are linked by the corres-
pondence models stored in the TGG engine memory. Changes made by any tool to a 
model are first merged into the cache, which preserves the object instances, thus en-
suring the links of the correspondence model used to synchronize the models remain 
valid. The merge layer is implemented with EMF Compare [11], using comparison 
settings defined per meta-model declared in the mega-model. 

3 Example 

This section presents an example illustrating the use of the GMM infrastructure, 
where many details are omitted due to lack of space. It consists of an electronic sys-



tem implemented on an FPGA to control a self-balancing toy car (hereafter RC Car) 
from a smart phone (lower left part of Fig. 5). AADL is used to specify PIM and PSM 
models for the system. From the AADL PSM, a VHDL model is generated, which can 
be taken as input by FPGA vendor tools for synthesizing the circuit in the FGPA. 

AADL is a component-based language for modeling both the software and hard-
ware parts of embedded systems. It supports the specification of systems as an assem-
bly of software and hardware components divided into categories. Software categories 
are thread, thread group, data, process and subprogram. Hardware categories are pro-
cessor, virtual processor, memory, device, bus and virtual bus. Hardware and software 
component classifiers can be declared in libraries or hierarchically organized in sys-
tems for reuse. AADL components interact through features (interaction points) and 
connections, which together model data or control flows between components. 

The first step to design a system in Kaolin is to create an AADL functional model 
independent of any execution platform (diagram of Fig. 5). It is then transformed into 
an AADL PSM, which describes the FPGA chosen by the user and the synthesized 
functions taking into account execution platform-specific details. The GMM language 
is used to specify the AADL and VHDL meta-models, including three subsetted meta-
models for the AADL PIM and PSM, and for a subset of VHDL that can be handled 
by FPGA synthesis tools (synthesizable VHDL). 

 
Fig. 5. The self balancing toy car and an AADL functional diagram for its control system 

The objective of the AADL functional subset is to ensure AADL is used correctly 
for PIMs to be transformed into AADL PSMs, The functional subset includes a first 
subset that restricts the AADL language to its software part, which consists of forbid-
ding the use of hardware constructs (processor, virtual processor, memory, bus, de-
vice and bus access). Additional constraints are then added to the functional subset to 
ensure only AADL threads and data subcomponents are used and contained in a sin-
gle AADL process (Fig. 5).  

From a functional AADL model, an AADL PSM is generated, conformed to an ex-
ecution platform subsetted meta-model ensuring execution platform models are prop-
erly defined to be transformed into synthesizable VHDL code. Similar to the PIM 
subset, the PSM subset includes a subset restricting the constructs to hardware AADL 



elements. Then, another subset describing how FPGAs must be modeled with AADL 
is provided, following an AADL extension developed to model FPGAs [12]. It in-
cludes the AADL hardware subset. Finally, the last required subset is Synthesizable 
VHDL, which cannot be described here due to the lack of space. Other VHDL subsets 
ensuring simulatability, testability and reusability, and as implemented by tools such 
as the Leda RTL checker [13] could also be modeled with our GMM language. 

Once the required subsetted meta-models have been created, relations between 
models conformed to these subsetted meta-models can be declared to transform / 
synchronize the models. These relations are implemented as MoTE synchronization 
relations, allowing to maintain the consistency of models as they are updated, but also 
to check their consistency. The most complex relation is the functional to FPGA ex-
ecution platform relation, which generates from an AADL PIM (Fig. 5) an AADL 
PSM  (Fig. 6) describing the content of the synthesizable component of the specific 
FPGA platform selected by the user. 

 
Fig. 6. An AADL execution platform model generated from the RC Car functional model 

Each thread of the functional model is transformed into a processor subcomponent, 
which exhibits execution platform details such as clock and reset signals. The gener-
ated AADL FPGA component extends a template for the selected FPGA target. Grey 



elements on the diagram are inherited from the template, which in this case includes a 
clock. Green elements on the diagram have been added after the transformation to 
take into account requirements for the specific FPGA. In this case, 2 UART (Univer-
sal Asynchronous Receiver/Transmitter) controllers (in green) have been added to fix 
communication incompatibility between the brain controller and FPGA ports pre-
defined in the template. Adding these controllers is currently performed by a Java 
procedure called at the end of the transformation, but the intent is to implement this as 
a GMM relation. In this way, new refinement relations can be integrated in the mega-
model to target other execution platform specific needs. 

4 Related Work 

Several approaches have been proposed for GMM, most of them making use of mega-
models. A summary is presented in [8], with our GMM language derived from the 
proposed unified definition. In [9], dynamical traceability management is proposed 
through the categorization of relations into factual and obligation types, which was 
also introduced in our language. In [14], another infrastructure for GMM is proposed 
and implemented in Eclipse, which combines mega-models with model weaving. 
However, it only supports basic functionality such as model navigation through tra-
ceability links. Automated production of the links and model synchronization are not 
supported. Our work enhances these approaches with meta-model subsets and model 
synchronization based on automated traceability link production. Our approach is also 
extensible so that new relations and tools can be integrated as needed. 

A difficulty in GMM is to identify the relationships that are needed between mod-
els. The GEMOC initiative [15] proposes an initial categorization of relations in three 
different forms: interoperability, collaboration, and composition. Interoperability 
supports the exchange of information across models with minimum coupling between 
the models. It seems similar to model weaving proposed in [14]. Collaboration rela-
tionships support coupled development of models, where the development of a model 
directly influences the form of other models. This is similar to our synchronization 
relation, which influences the form of the associated models by maintaining their 
consistency during model evolution. Finally, composition relationships combine in-
formation from several models to create new forms of models. This is similar to EMF 
views [16], where several meta-models can be combined to provide new views on 
models, similar to database views. 

5 Conclusion and Perspectives 

Our experiment in using GMM for our EDA tool shows that several benefits can be 
obtained through explicit representation of the used meta-models and subsets, along 
with relations between models. Interpretation of relations ensures models are properly 
managed during their evolution to prevent errors introduced early in the development 
process. We think every model-based IDE should include a GMM infrastructure. One 
advantage of our GMM is that it was developed using rich and realistic modeling 



languages, which revealed important needs such as meta-model subsets and improved 
automated model synchronization.  

However, many aspects of our infrastructure require improvements. Despite our 
enhancements, the TGG language would benefit from a complete review to improve 
aspects such as reuse of TGG elements across several TGGs. The study of other types 
of relations as proposed in [15] is also of interest, and in particular the integration of 
EMF views in GMM implementing meta-model composition relations. Finally, model 
to meta-model conformance could be enforced during meta-model evolution, 
represented as a conformance relation of obligation type, making use of frameworks 
such as Edapt [17]. 
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