
Daniel Balasubramanian, Christophe Jacquet,
Sahar Kokaly, Tamás Mészáros and Pieter Van Gorp, editors

Proceedings

8th International Workshop on

Multi-Paradigm Modeling

MPM 2014

co-located with Models 2014

Valencia, Spain, 30 September 2014

Copyright c© 2014 for the individual papers by the papers’ authors.
Copying permitted for private and academic purposes.
This volume is published and copyrighted by its editors.

To contact the editors:

Daniel Balasubramanian
Institute for Software Integrated Systems
Vanderbilt University
1025 16th Ave. S, Suite 102
Nashville, TN 37212, USA
daniel@isis.vanderbilt.edu

Christophe Jacquet
Department of Computer Science
Supélec Systems Sciences (E3S)
3 rue Joliot-Curie
91192 Gif-Sur-Yvette cedex, France
Christophe.Jacquet@supelec.fr

Sahar Kokaly
Department of Computing and Software
McMaster University
1280 Main Street West
Hamilton, Ontario, L8S 4L8, Canada
kokalys@mcmaster.ca

Tamás Mészáros
Department of Automation and Applied Informatics
Budapest University of Technology and Economy (BUTE)
Budapest 1117, Magyar tudósok krt. 2. Hungary
Meszaros.Tamas@aut.bme.hu

Pieter Van Gorp
School of Industrial Engineering
Eindhoven University of Technology (TU/e)
De Lismortel 2, 5612AR Eindhoven, The Netherlands
p.m.e.v.gorp@tue.nl

Contents

Preface . v

Viktor Steiner, Gergely Mezei
Integrating System Modeling and Cost Models Using
Meta-Modeling Techniques . 1

Daniel Chaves Café, Cécile Hardebolle,
Christophe Jacquet, Filipe Vinci Dos Santos, Frédéric Boulanger

Discrete-Continuous Semantic Adaptations for Simulating SysML Models
in VHDL-AMS . 11

Romuald Deshayes, Bart Meyers, Tom Mens, Hans Vangheluwe
ProMoBox in Practice:
A Case Study on the GISMO Domain-Specific Modelling Language 21

Robert Bill, Simon Steyskal, Manuel Wimmer, Gerti Kappel
On Synergies between Model Transformations
and Semantic Web Technologies . 31

Miklós Maróti, Tamás Kecskés, Róbert Kereskényi, Brian Broll,
Péter Völgyesi, László Jurácz, Tihamér Levendovszky, Ákos Lédeczi

Next Generation (Meta)Modeling:
Web- and Cloud-based Collaborative Tool Infrastructure 41

Sebastian Herzig, Benjamin Kruse, Federico Ciccozzi,
Joachim Denil, Rick Salay, Dániel Varró

Towards an Approach for Orchestrating Design Space Exploration Problems
to Fix Multi-Paradigm Inconsistencies . 61

Daniel Balasubramanian, Tihamer Levendovszky, Abhishek Dubey, Gábor Karsai
Taming Multi-Paradigm Integration in a
Software Architecture Description Language 67

Bruno Barroca, Thomas Kühne, Hans Vangheluwe
Integrating Language and Ontology Engineering 77

Preface
The MPM workshop series brings together researchers and practitioners interested
in using explicit and heterogeneous models throughout the design of a system.
The 8th edition will take place on 30 September 2014 and will be co-located with
MODELS’14 in Valencia, Spain.

Out of the 9 papers submitted and reviewed by at least four members of the
program committee, 8 were selected for oral presentation. The average reviewer
score for the accepted papers was +0.48 on a scale of −3 to +3.

In addition to the presentation of the selected papers from the technical program,
MPM’14 will feature an invited presentation by Akos Ledeczi on WebGME.

This volume contains versions of the selected papers that the authors had the
opportunity to enhance by taking into account reviewers’ comments.

September 8, 2014 Daniel Balasubramanian
Christophe Jacquet
Sahar Kokaly
Tamás Mészáros
Pieter Van Gorp

Steering Committee
Mosterman, Pieter J., The Mathworks, Inc., USA
Vangheluwe, Hans, University of Antwerp, Belgium

McGill University, Canada
Karsai, Gábor, Vanderbilt University, USA
Levendovszky, Tihamér, Vanderbilt University, USA
Amaral, Vasco, Universidade Nova de Lisboa, Portugal
Lengyel, László, Budapest University of Technology and Economics, Hungary

Program Committee
Alferez, Maurício, INRIA, France
Barroca, Bruno, Universidade Nova de Lisboa, Portugal
Bellman, Kirstie, The Aerospace Corporation, USA
Boulanger, Frédéric, Supélec, France
Buchs, Didier, University of Geneva, Switzerland
Combemale, Benoit, INRIA, University of Rennes 1, France
Denil, Joachim, McGill University, Canada
Deridder, Dirk, Smals, Belgium
Feng, Thomas Huining, LinkedIn Corp., USA
Giese, Holger, Hasso-Plattner-Institut, Germany
Guerra, Esther, Universidad Autónoma de Madrid, Spain
Heckel, Reiko, University of Leicester, United Kingdom
Kühne, Thomas, Victoria University of Wellington, New Zealand
Lucio, Levi, McGill University, Canada
Meyers, Bart, University of Antwerp, Belgium
Mezei, Gergely, Budapest University of Technology and Economics, Hungary
Minas, Mark, University of the Federal Armed Forces, Germany
Pantel, Marc, IRIT, University of Toulouse, France
Paredis, Chris, Georgia Tech, Atlanta, Georgia, USA
Risco Martín, José Luis, Universidad Complutense de Madrid, Spain
Sarjoughian, Hessam, Arizona State University, USA
Toerngren, Martin, KTH Royal Institute of Technology, Sweden
Van Baelen, Stefan, iMinds, Belgium
Voeten, Jeroen, Eindhoven University of Technology, The Netherlands
Westfechtel, Bernhard, University of Bayreuth, Germany

Integrating System Modeling and Cost Models Using

Meta-Modeling Techniques

Viktor Steiner

Evopro Innovation Ltd.

Budapest, Hungary

steiner.viktor@evopro.hu

Gergely Mezei

BUTE DAAI

Budapest, Hungary

gmezei@aut.bme.hu

Abstract. The precise estimation of time and resource consumption plays a piv-

otal role in planning software development projects at their earliest development

phase. Since cost parameters are mostly determined by the architecture, a possi-

ble approach is to design a platform independent architectural model of the pro-

spective software and estimate the cost based on it.

In this paper, we introduce a method, which produces a cost estimate by pro-

cessing the architectural model of the software being designed. The provided

method analyzes the architectural models, and utilizes a modified version of

Function Point Analysis to determine the probable cost based on the analysis.

The paper also presents a preliminary verification process to evaluate the accu-

racy of the cost estimation method. The main achievement of the introduced

method is that it estimates cost in platform independent units, which can be re-

fined to give accurate cost estimation for different platform implementations.

Keywords: Meta-modeling, Cost Estimation, Function Point Analysis

1 Introduction

Cost estimation is a major challenge in software industry. It is hard to find features that

can precisely predict the expected cost of the complete development process. Since

architecture has the greatest impact on development costs, architectural models can

provide a basis for the estimation. In this paper, we provide a method, which analyzes

the architectural models created in the design phase and estimates the expected cost of

the software to build.

Our solution is unique among cost modeling methods, since it applies Multi-Para-

digm Modeling techniques to achieve its goal. Compared to other existing cost estima-

tion techniques, our approach does not require creating a separate cost model manually.

Instead, we analyze architectural models and generate the cost model from them. Our

method maps model elements of the software architecture domain to the concepts of

the cost modeling domain. Since we use a platform independent architectural and cost

modeling domain, our results can be applied early in the development process, before

deciding which technology to use for the implementation. This also means that our

method is also useful for facilitating the decision between possible implementation

Proceedings of MPM 2014 1

technologies, because the cost estimation result can be refined into estimations on dif-

ferent platforms and compare the cost predictions.

The paper is organized as follows: In Section 2, we give a short summary of the state

of the art in the field of cost estimation approaches. Section 3 introduces the Visual

Modeling and Transformation System [1], which we used to implement the cost esti-

mation method. In Sections 4 and 5, our cost estimation method is presented. The

method is a modified version of Function Point Analysis [2], adapted to SysML [3]

models. Section 6 introduces a verification process, which is used to test the accuracy

of the results provided by the cost estimation method. Finally, Section 7 concludes the

outcome of our work and gives main directions of future work.

2 Related Work

Existing cost estimation methods typically do not use existing resources such as re-

quirements, specification, or architectural models for calculating the probable cost, they

use their own cost model, which must be prepared separately. This is problematic for

various reasons, e.g. (i) It takes extra time and effort to estimate probable development

cost. (ii) Cost estimation becomes a mostly manual task, since the cost model does not

rely explicitly on existing resources. Manual steps increase the probability of errors in

the estimation. (iii) A cost modeling expert is always needed, who prepares and ana-

lyzes the cost model. These issues arise in most of the existing cost estimation methods,

for example, in COCOMO II [4].

However, there are some methods, which use resources from the development pro-

cess. An estimation technique that measures development effort based on use cases [5]

and another that uses requirements as a basis [5] can be mentioned here. Although these

methods use available development resources, they still need too many manual steps to

produce the estimation. This is because both requirements and use cases are high level

concepts, which can hardly be formalized, which could enable programmatic analysis.

On the other hand, use cases and requirements are available very early in the develop-

ment process, therefore the estimation can be performed earlier compared to our

method. However, performing the analysis on architectural models can be much more

accurate, since more formalized data is available. Since these two approaches can both

be performed during the development process, they can complement each other, by

giving a vague initial estimation, and then later calculate a refined, more accurate esti-

mation.

Although we had not found methods that estimate development cost from architec-

tural models, there are some methods that are based on similar concepts, of which [6]

is the most closely related. The method uses architectural models to predict perfor-

mance, and to facilitate architectural design decisions. The latter is among our goals as

well, as our method can be used to compare and evaluate different architectural versions

based on their estimated costs.

Proceedings of MPM 2014 2

Integrating System Modeling and Cost Models Using Meta-Modeling Techniques

3 The modeling environment

A cost estimating algorithm requires a modeling environment, in which architectural

system models can be created, models can be processed and analyzed programmati-

cally. We had chosen SysML [3] to model the architecture. The main reason behind

this decision was that SysML is a widely used and accepted general purpose systems

modeling language, and we used it in several projects previously in Evopro Innovation

Ltd. However, our method is only partially specific to SysML, it can be applied with

other architecture modeling languages as well.

The selected modeling tool, in which the SysML language environment was created, is

the Visual Modeling and Transformation System [1]. In VMTS, any modeling language

can be defined by creating its metamodel. The framework offers a highly customizable

workbench to edit the models visually and the models can be processed programmati-

cally using the VMTS Domain Specific Language API.

Our SysML dialect was defined by a meta-model based on the OMG SysML and the

related parts of the UML specification. Creating the whole meta-model of the UML and

SysML languages was not our goal, we intended to calculate our cost estimation in the

architectural design, thus, we focused on those parts of the UML/SysML meta-models

that describe the architecture. As described later, in sections 4 and 5, we identified the

following aspects of SysML as required: (i) the Block Definition Diagram, (ii) the In-

ternal Block Diagram, (iii) the Requirement Diagram, (iv) the Use Case Diagram and

(v) the Sequence Diagram. As the first step of our work, we created these languages

and customized their visual appearance and behavior according to the SysML standard.

4 Cost estimation

In the past decades, different methods were developed for software cost estimation. Our

goal was to find the best suitable method among these for our purposes. The selected

method had to be: (i) current, (ii) used in software industry (to ensure that it predicts

the development cost correctly) and (iii) publicly documented to avoid copyright issues.

Moreover, we have decided to focus on solutions capable of estimating the size of sys-

tems created with object oriented principles. Finally, we have chosen the method de-

scribed in [7]. [7] describes a collection of methods, each usable in different phases of

software development projects. We only needed the ones that deal with calculating the

size of the software, since the size has the greatest impact on development costs, and it

can be measured in the architectural design phase. In our method, the cost is estimated

based on the software size, which is typically measured in two ways: (i) Source Line of

Code (SLOC) and (ii) Function Points. In case of SLOC, the number of source lines

required to implement the software in a particular language is measured. In contrast,

function point measuring methods quantify the functionality of software in an abstract,

platform independent unit. We selected the later one, since it is platform and technology

independent. Moreover, function points, despite they are abstract measurement units,

can be converted to an estimated number of source lines, based on past development

experiences.

Proceedings of MPM 2014 3

Integrating System Modeling and Cost Models Using Meta-Modeling Techniques

4.1 Function Point Analysis

Function point measuring methods are collectively referred to as Function Point Anal-

ysis (FPA) methods. FPA has no official standard, several different implementations

exist. In our solution, we used the approach described in [7], and a more detailed version

of the same method in [2]. As we mentioned before, FPA measures the size of software

based on its functionality. In FPA’s interpretation, functions of a software are always

transactions, which are executed on some kind of data set. Therefore, function point

count is determined by logically related data sets, and by the transactions associated to

them. The basic terms of FPA can be seen on Fig. 1.

Fig. 1. Overview of the basic terms of Function Point Analysis

We modified the original Function Point Analysis to adapt it to SysML architectural

models. Firstly, we examined, which of the basic FPA terms are necessary in order to

implement the method properly:

 Application Boundary: It specifies the communication interface between the system

and the outside world.

 Internal Logical File (ILF): Logically related set of data, maintained by the appli-

cation.

 Transaction: An elementary process, which obtains data through the application

boundary. There are three different kinds of transactions we distinguish:

─ External Input (EI): A transaction obtaining data from the environment

─ External Output (EO): A transaction submitting data to the outside environment.

─ External Inquiry (EQ): A transaction, which gets data from inside of the appli-

cation, through the application boundary. The data is queried according to query

parameters. The requested data cannot be derived (calculated) data.

We discovered that the above terms are necessary to implement the method, and can be

matched to SysML concepts, as described in section 4. However, the remaining terms

from Fig. 1. are not needed for the implementation. External Interface File (EIF) is an

ILF, maintained by another application. It is not part of our model, because it is not an

Object Oriented Programming concept and our focus was on estimating the cost based

on OOP software models. Transformation & Transition: A transformation is a sequence

Proceedings of MPM 2014 4

Integrating System Modeling and Cost Models Using Meta-Modeling Techniques

of mathematical calculations transforming the input data into the required form. A tran-

sition is an event, which changes the state of the application. These concepts can clarify

the results of the estimation, but they are not elaborated in the architectural design

phase.

5 Mapping Function Point Analysis to SysML

In this section, we present how we managed to map the basic FPA terms into SysML

concepts, and calculate function points by analyzing SysML models.

5.1 Application boundary

The first step of FPA is to define the application boundary. Here we have to analyze

the data used by the application, and determine whether it is maintained by the appli-

cation. If it is, then the data resides inside the application boundary, otherwise it belongs

to the outside environment. When we design the architecture of software in SysML, the

first step is the definition of the application boundary, however, it is not displayed ex-

plicitly as a model item: The first step of software modeling is usually the definition of

functionality, in the form of Use Case diagrams. In Use Case diagrams, actors belong

to the environment, and the highest level use cases, which they are associated with, are

matched to FPA transactions that obtain data through the application boundary.

5.2 Data types

The second step of FPA is to identify and rate the data sets maintained by the applica-

tion. These data sets always appear as an ILF. An ILF is a user identifiable group of

logically related data that resides entirely within the application boundary, and is main-

tained by External Inputs. An ILF has an inherent meaning, it is internally maintained,

it has some logical structure and it is stored in a file, as defined in section 9 of [2].

According to this definition, ILFs are almost identical to persistent entities of an OOP

application, whose structure and connections can be modeled on an Entity Relationship

diagram, or in our case, on a SysML Block Definition diagram. However, this data

model must be programmatically distinguishable from the other system elements that

are also modeled on Block Definition diagrams. This can be achieved by performing a

small modification on the original SysML meta-model and adding an attribute – a flag

– to the Package meta element. FPA analyzer can decide whether to search for the data

model elements in those Packages, or not.

After identifying ILFs, the next step is to evaluate their complexity and rate them.

Complexity analysis is based on two concepts: (i) A Record Element Type (RET) is a

user recognizable sub group of data elements within an ILF. (ii) A Data Element Type

(DET) is a unique, user recognizable, non-recursive (non-repetitive) and dynamic field

in a RET. Additionally, a DET can invoke transactions or can act as additional infor-

mation regarding transactions. During the evaluation process, Record Element Types

and Data Element Types within an ILF are counted.

Proceedings of MPM 2014 5

Integrating System Modeling and Cost Models Using Meta-Modeling Techniques

By definition, an ILF itself is also a user recognizable group of data elements, there-

fore it always consists of at least one RET. ILFs consist of more than one RET, if they

contain multiple logically related sub groups of data, which have no meaning on their

own and can only be interpreted inside the ILF. The RET concept can be illustrated

using the following two cases:

 There are two logically related sets of data (A and B), which have a common subset,

a key field, by which they are connected to each other. Both A and B can be inter-

preted on their own, thus they are both considered a separate ILF.

 There are two sets of data (A and B), where B is a subset of A. In this case, B cannot

be interpreted on its own. Therefore, it cannot be an ILF, it can only be considered a

RET inside A. An example for this case is a music CD that contains songs. Both the

CD and the songs have attributes, but the songs cannot be interpreted on their own,

without the data contained by the CD.

When interpreting the RET concept on SysML models, we assumed that the data

model of the designed application is available in the form of SysML Block Definition

diagrams. The persistent entities of the data model can be interpreted as ILFs or RETs,

as it was mentioned above. According to the definition, a data set can only be consid-

ered a RET if it is a real subset of an ILF. This means that an entity in the data model

can only be considered a RET if it has only one parent, and its children are RETs. If the

above condition is satisfied, an entity is considered a RET, if not, it is considered an

ILF. Note the parent-child relation here means the usual one-to-many relation used in

Entity-Relationship diagrams.

The Data Element Type concept can be easily mapped to SysML models. According

to the definition, a DET is very similar to a data field of a persistent entity. Since we

have already identified ILFs and RETs, the only remaining task is to count the data

fields for each identified RET, and the evaluation of the data model is complete. The

actual weight of an ILF can be read out from the corresponding cell of the table defined

in Section 9 of [2].

5.3 Transactions

The third step of Function Point Analysis consists of the identification and evaluation

of transactions. Our method is based on Use Case diagrams of the system at this step.

As it was pointed out previously, top level use cases – which are directly connected to

actors – represent transactions, thus their automatic identification is easy. On the other

hand, programmatic determination of the transaction kind (External Input, External

Output or External Inquiry) is not possible. This is mainly because if we want to distin-

guish between the types, we need to

 Determine the main direction of the data flow. This would distinguish input trans-

actions (EI) from output transactions (EO and EQ). Here we use the term “main

direction” instead of simply using “direction” because according to FPA definition,

all three transaction types can send data in both directions. For example, an input

transaction can send back a status code, which indicates whether the transaction is

Proceedings of MPM 2014 6

Integrating System Modeling and Cost Models Using Meta-Modeling Techniques

successful or not. In SysML, however, we can only show the direction(s) in which

data flows, there is no such concept as main direction.

 Check whether the output data is derived or not. This would distinguish between

output transaction types (EO and EQ). Based on FPA definition, derived data is the

result of some kind of calculation. In case of SysML models, the only indicator of

data derivation is that data type changes during the execution of a transaction. This,

however, is not an accurate conclusion, because it is possible that no calculation is

performed, the data is just transformed into another form. For example, an array of

items is transformed into a linked list of the same items. In this case, type of the data

is changed, but the actual information remains the same.

Consequently, in case of SysML models, we cannot distinguish FPA transaction types

from each other. Because of this, we decided to give up the idea of fully automated cost

analysis, and add some additional information to the SysML meta-model, which helps

identifying transaction types. As mentioned before transactions are mapped to top level

Use Cases in SysML models. Therefore, we decided that the most optimal solution is

to add an attribute to the Use Case meta-element, which marks the transaction type.

After setting this attribute, the evaluation of transactions can be performed automati-

cally. The process consists of two steps: counting of (i) data element types and (ii)

referenced file types.

The first step is to calculate the data element types. Parameter and return values get

into and out of the application through the application boundary. In case of OO appli-

cations, the boundary is usually an interface, whose operations start the execution of

transactions. In SysML, this concept can be modeled as Use Case and Sequence Dia-

grams, where there is a Sequence Diagram associated to each use case shown on the

Use Case Diagrams. The Sequence Diagrams show the order of operations that imple-

ment the particular use case. Here we only analyze the first operation of a sequence,

which is the interaction point between the application and the environment. The param-

eter and return types of that operation are used to calculate the complexity of the trans-

action being analyzed, therefore, these are the types that have to be counted. Note that

there are transactions that cannot be analyzed this way. For example, take a transaction,

which queries the database for some data, and displays the results on the GUI. The

operation that triggers the transaction does not give back a return value, it just updates

some part of the GUI, but it is clear that data gets through the application boundary. We

solved this problem by creating a new descendant of the Operation element in the

SysML meta-model, called GUIOperation. On this kind of operation, the modeler can

set the properties that it updates, thus, the complexity of the function can be fine-tuned.

The second step is to count the file type references that are (by definition) unique

ILFs that a transaction references during its execution. To count them, the prerequisites

are the same as they were in the previous step. Namely, each top level use case should

have a corresponding Sequence Diagram, which shows the order of operations imple-

menting the particular use case. When the necessary diagrams are ready, processing

them to find referenced file types is an easy task. We only need to analyze the opera-

tions of a transaction, and count their parameter and return types. Each type is counted

only once, because file type references are unique by definition.

Proceedings of MPM 2014 7

Integrating System Modeling and Cost Models Using Meta-Modeling Techniques

By now we identified the transactions, and determined their types. We have counted

the referenced file types and data element types, thus the evaluation process of transac-

tions is complete. The actual weights of the transactions can be read out from the cor-

responding cells of the tables in Sections 5, 6 and 7 of [2].

5.4 Evaluation

The last step of FPA is to calculate the Function Point count, by using the following

formula [2]:

𝐹𝑃 = ∑ 𝐼𝐿𝐹𝑖
𝑚
𝑖=1 + ∑ 𝐸𝐼𝑖

𝑛
𝑖=1 + ∑ 𝐸𝑂𝑖

𝑜
𝑖=1 + ∑ 𝐸𝑄𝑖

𝑝
𝑖=1 , (1)

where ILFi, EIi, EOi and EQi are the weights of the files and transactions that were

calculated according to the methods defined in earlier sections. The resulting value is a

platform independent quantity that not only measures software functionality, but it can

be converted to platform specific source code estimations as well. For the conversion,

a table is used, which is maintained and updated by Quantitative Software Management

Inc. [8] The table contains factors to convert Function Points into SLOC estimation on

different programming languages. The conversion factors are based on historical data

from completed software projects (currently 2192 different projects). The converted

SLOC values provide a basis for comparing source code estimations on different plat-

forms, and selecting the most suitable platform.

Note that the original FPA method uses a Value Adjustment Factor to fine tune the

Function Point count, based on non-functional requirements. This adjustment can be

done with our result as well, as described in Sections 11 and 13 of [2].

6 Verification

In order to check that our method produces correct results, a verification method was

implemented. Our original plan was to apply the method from the beginning of a new

project and validate its results after completing the project. We realized that this would

require months to apply and we had difficulties in convincing the project management.

We had strict time constraints in the current projects and the project management also

wanted to have a preliminary validation of the results before introducing the proposed

method in real development. We have decided to use a simpler but not as precise

method: we generated SysML models from the source code of projects already com-

pleted. We used the source code to generate an architectural model from a complete

software and run the cost estimation method on it, thereby verifying its accuracy. We

were aware that the accuracy in this case depends on how precisely the generated model

complies with the source code, and how much the generated models differ from the

architectural models created in the design phase. We made assumptions (e.g. the archi-

tecture does not change in a large extent during the development) keeping in mind that

the verification method is only preliminary and it is necessary to prove the correctness

of our method, which can be fine-tuned later, once it is used in production scenarios.

Proceedings of MPM 2014 8

Integrating System Modeling and Cost Models Using Meta-Modeling Techniques

As the subject project, we used an mCPS system developed by Evopro Innovation

Ltd. [9] The system consists of the following components: (i) database, (ii) server, (iii)

a thick administrator client and a (iv) mobile client. The first three components were

using Microsoft technologies (Microsoft Azure, .NET WCF and WPF), while mobile

client applications were implemented on every significant mobile platform (Android,

iOS, Windows Phone, Windows 8). We parsed the source code mainly by the open

source tool, NRefactory [10] which produced an AST. From the AST, we generated the

architectural model by using the DSL API of VMTS. Note that the method used here is

not specific to this case study, it can be applied on any projects written mainly in C#.

We created two test cases, i.e. a combination of components that build up the test

system, on which the verification process is performed. We have defined the following

two test cases: (i) Database + server: here, the application boundary is an API, since the

database and the server does not have any graphical user interface. (ii) Database +

server + admin client: in this case, the application boundary is the user interface of the

admin client. After performing the verification process, we compared the real and the

estimated source lines of code (SLOC). We calculated estimated SLOC values from

function points based on the previously mentioned table [8]. However, there is no way

to convert a fraction of a FP value to an SLOC estimation in language 1 and the remain-

der to language 2. This affects the accuracy of the estimation, because the tested appli-

cation is not a pure C# application in either test case, there are some T-SQL and XAML

language parts in the components as well. The estimated SLOC values, however, are

probabilistic values (most likely, minimum and maximum values), which compensates

the above inaccuracy of the conversion factors.

In test case 1 (Database + server), we identified 421 Function Points, which is trans-

lated to 12209 – 29470 (most likely 22734) lines of C# code. The real application con-

sisted 19696 lines of C# and 3055 lines of T-SQL code (22751 in all). In test case 2

(Database + server + admin client), the result of the estimation was 699 Function Points,

which is converted to 20271 – 48930 (most likely 37746) lines of C# code. The actual

SLOC values were 38365 lines of C#, 3055 lines of T-SQL and 5056 lines of XAML

code (46476 in all).

As it is shown above, the first estimation is almost exactly the same as the most

likely estimation value. The difference is less than 0,1%! The second estimation is not

that accurate, but the estimation is between the limits. After analyzing the verification

results, we discovered that the cause of the relative inaccuracy in the second test case

was the amount of XAML code, since a high percentage of the code was duplicated.

This indicates that the verification algorithm should be enhanced with the capability of

detecting code duplication. Apart from this, the results were convincing, the project

management decided that the method is ready to be tested in production environment.

7 Conclusion

We designed and implemented a method that analyzes architectural models, and pro-

vides a cost estimation based on it. We did so because we discovered that nowadays,

there is a great need for a cost estimation method that produces results automatically

Proceedings of MPM 2014 9

Integrating System Modeling and Cost Models Using Meta-Modeling Techniques

based on already available resources. Our technique is implemented using VMTS [1],

a meta-modeling tool capable of creating and processing architectural models in the

SysML language [3]. The advantage of the solution is that it does not need separate cost

models, information is extracted from the architectural models automatically. Note that

although we rely on an extended version of SysML, the extensions are used to create a

more precise architecture model and they are not only used by cost estimation.

By automatizing the cost estimation, there is no need for extra time and effort allo-

cated to the cost estimation. Another benefit is that the method uses a modified version

of Function Point Analysis [2], which produces a platform independent result. In this

way, the estimation process can be performed before even deciding, on which platform

the software should be implemented. The result of the estimation can also be refined

into source code estimations on different platforms. In this way, possible implementa-

tions using different technologies can be compared and the best can be selected. Besides

presenting the method, we elaborated a basic, preliminary verification method and dis-

cussed the results. Although the verification was not based on real production process,

its promising results show that the method is worth to examine further. In the future,

we plan to test the method on several production scenarios and use it in real develop-

ment environments and add support for estimating the cost of mixed platform projects.

8 Acknowledgement

This work was partially supported by the European Union and the European Social

Fund through project FuturICT.hu (grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-

0013) organized by VIKING Zrt. Balatonfüred.

9 References

1. Visual Modeling and Transformation System (VMTS):

https://www.aut.bme.hu/en/Pages/Research/VMTS/Introduction

2. David Longstreet: Function Point Training and Analysis Manual:

http://www.softwaremetrics.com/Function%20Point%20Training%20Booklet%20New.pdf

3. OMG SysML 1.3: http://www.omg.org/spec/SysML/1.3/

4. Constructive Cost Model II (COCOMO II): http://csse.usc.edu/csse/re-

search/COCOMOII/cocomo_main.html

5. Arlene F. Minkiewicz, Estimating Software from Use Cases & Estimating Software from

Requirements: http://legacy.pricesystems.com/research/white_papers.asp

6. Steffen Becker, Heiko Koziolek, Ralf Reussner, The Palladio component model for model-

driven performance prediction, Journal of Systems and Software, v.82 p.3-22, January, 2009

7. STSC, Software Development Cost Estimating Guidebook: http://www.stsc.hill.af.mil/con-

sulting/sw_estimation/softwareguidebook2010.pdf

8. Quantitative Software Management Inc., Function Point Languages Table:

http://www.qsm.com/resources/function-point-languages-table

9. mCPS - End to End Mobile Publication: http://www.evoprogroup.com/page/mcps

10. Daniel Grunwald, Using NRefactory for Analyzing C# Code: http://www.codepro-

ject.com/Articles/408663/Using-NRefactory-for-analyzing-Csharp-code

Proceedings of MPM 2014 10

Integrating System Modeling and Cost Models Using Meta-Modeling Techniques

Discrete-Continuous Semantic Adaptations for
Simulating SysML Models in VHDL-AMS

Daniel Chaves Café1,2, Cécile Hardebolle1, Christophe Jacquet1,
Filipe Vinci dos Santos2, and Frédéric Boulanger1

1 Supélec E3S – Computer Science Departement,
2 Thales Chair on Advanced Analog System Design,

{daniel.cafe, cecile.hardebolle, christophe.jacquet,
filipe.vinci, frederic.boulanger}@supelec.fr

Abstract. Our research focuses on the simulation of heterogeneous sys-
tems modeled in SysML, in particular, systems that mix different engi-
neering domains such as mechanics, analog and digital circuits. Because
of their nature, expressing multi-paradigm behavior in heterogeneous
systems is a cumbersome endeavor. SysML does not provide a standard
method for defining the operational semantics of individual blocks nor
any intrinsic adaptation mechanism when coupling blocks of different
domains. We present in this paper a way to address these obstacles. We
give well-defined operational semantics to SysML blocks by using profile
extensions, together with a language for the description of adaptors. We
apply our approach to a test case, using a toolset for SysML to VHDL-
AMS transformation, capable of automated generation of VHDL-AMS
code for system verification by simulation.

1 Introduction

In the Electronic Design Automation (EDA) industry, the need for modeling
and verification of mixed-signal systems gave rise to several system design lan-
guages supporting Analog and Mixed Signal (AMS) extensions. Some examples
are VHDL-AMS [6] and SystemC-AMS [8]. These extensions support the use of
different models of computation concurrently in a single design thus enabling
the modeling of heterogeneous systems. As complexity increases, these textual
languages are no longer suitable for proper documentation and communication
among different teams. For these use cases, graphical languages are preferable,
and they play well with Model Driven Engineering workflows.

SysML, the Systems Modeling Language, is an industry standard for systems
specification. It provides a large set of diagrams which can be used to specify sys-
tem’s requirements, model their behavior or even detail the interconnections of
structural blocks. Despite its flexibility, SysML does not provide clear semantics.
On the one hand, this can be helpful for engineers wishing to describe systems
in an early development phase, especially when some implementation details are
not yet entirely defined. In this case, SysML is a helpful communication tool.

Proceedings of MPM 2014 11

On the other hand, the lack of clear semantics can be cumbersome if one wants
to run simulations from the SysML diagrams.

For the purpose of solving the lack of semantics of SysML diagrams, we have
developed a technique to generate executable code from SysML models which
is based on two foundations : (a) Explicitly state the semantics of modeling ele-
ments, and (b) Define the semantic adaptations between heterogeneous models.
The focus of this work is the creation of an adaptor instantiation language for
semantic adaptation for specifying interfaces precisely and without ambiguity.

The organization of this article is as follows : The state of the art is presented
in section 2 detailing existing heterogeneous modeling techniques. A case study is
then introduced in section 3 to illustrate the problem. The actual implementation
of our solution is detailed in section 4. And finally we discuss the approach and
the results in sections 5 and 6.

2 Related Work

One of the precursors of heterogeneous modeling is the well-known Ptolemy II [7]
framework. Here, heterogeneity is handled by hierarchy. Components are nested
in black boxes called actors for which the semantics of execution and communi-
cation are described by an entity called Director. It defines the model of com-
putation (MoC) of the actor. In Ptolemy, computation and communication are
defined for a large set of MoCs. These include Process Networks, Dataflow, Dis-
crete Event, Finite State Machines, Continuous Time and others. Unfortunately,
Ptolemy does not provide explicit ways to define adaptations between models
that use different MoCs. For example, interactions between discrete event (DE)
and synchronous dataflow (SDF) models can result in redundant events in the
DE domain if a given value does not change. In the same way, an SDF model
might not be regularly activated as discussed in [2].

ModHel’X [10] was developed to explore semantic adaptations in heteroge-
neous models. ModHel’X improves upon the execution algorithm of Ptolemy
by introducing an adaptation phase. This yields an effective way to define the
semantics of the interactions between different models of computation. The cur-
rent implementation of ModHel’X is based on a non-standard metamodel which
makes it hard to integrate with existing toolchains.

We propose to introduce ModHel’X’s good practices of stating the semantics
of different components and explicit modeling of the semantic adaptation be-
tween heterogeneous components, into an industry standard modeling language:
SysML. In our approach SysML acts as a pivot language from which we gener-
ate executable code for widely deployed languages, such as SystemC-AMS and
VHDL-AMS. We use a custom profile to extend the semantics of SysML blocks
for continuous-time and discrete-event blocks. These two domains are general-
ized into two stereotypes � analog � and � digital �. A third stereotype
is dedicated to the description of � adaptor � blocks. Those provide explicit
behavior on how to adapt data, time and/or control. To do so, a mini-DSL was
designed to allow the instantiation of off-the-shelf types of adapters. Depending

Proceedings of MPM 2014 12

Discrete-Continuous Semantic Adaptations for Simulating SysML Models in VHDL-AMS

on the target language these could either be present in standard libraries or
custom designed.

Substantial work has been carried out to apply SysML/UML to the design of
electronic (analog and digital) systems. Many researchers focused on the genera-
tion of VHDL-AMS code from SysML diagrams. D. Guihal [9] and J. Verriers [14]
extended the VHDL metamodel proposed in [1] and [13] to use AMS construc-
tions in their code generators. J.-M. Gautier et al. [3] used model transforma-
tions to generate VHDL-AMS code from SysML Block Definition Diagrams and
Internal Block Diagrams. They have used block constraints to define physical
equations in VHDL-AMS modules.

Although these previous works have shown methods to generate VHDL-AMS
code from SysML diagrams, they have not dealt with the semantic inconsistencies
that heterogeneity introduces. Our previous work [4] presents a technique to deal
with this problem. It targets SystemC-AMS simulation language. The present
work is a follow-up that introduces a new adaptor instantiation language and
MoC definition mechanisms that are better suited for model driven engineering.
This is also an opportunity to show that previously developed techniques apply
to other target languages as well, namely VHDL-AMS.

3 A case study of a MEMS Accelerometer

Micro Electro Mechanical Systems (MEMS) motion-sensing devices are a good
example of heterogeneous systems that mix mechanical, analog and digital com-
ponents in the same system. They can be used to measure a variety of physical
quantities such as acceleration, pressure, force, or chemical concentrations. To
make such measurements, MEMS sensors can take advantage of several transduc-
tion mechanisms, for example, piezoresistive or capacitive sensing. Here we build
a simple model of a capacitive sensing accelerometer to illustrate our proposal.

3.1 Description of the system

Our case study is a capacitive sensing accelerometer composed of two electrodes
and an intermediary membrane free to move only in the vertical axis as il-
lustrated in figure 1. This structure forms two capacitors between the middle
membrane and both the top and bottom walls. The vertical movement of the
membrane implies the variation of both capacitances since C ∝ 1/(g0±x), where
g0 is the gap distance at rest and x is the displacement of the membrane from
rest. One can either connect the membrane to ground hence fixing the middle
voltage Vmiddle to zero or one can leave it disconnected thus fixing the current
to zero. In the first case, the change in stored charge caused by the displacement
of the membrane leads to a current flow. In the second case, since the middle
electrode is disconnected, there is no current flow, and by charge conservation
the voltage across the membrane must change with the displacement.

Using the second method, we obtain a linear relation between the membrane’s
voltage and its displacement provided that we apply a symmetric voltage on both
top and bottom electrodes (i.e. Vtop = −Vbottom = V0) as explained in [5]:

Proceedings of MPM 2014 13

Discrete-Continuous Semantic Adaptations for Simulating SysML Models in VHDL-AMS

d = 2 gx
o

V

V

V
middlex

top

bottom

Fig. 1. Electrical vs Mechanical Model

Vmiddle = V0
x

g0
(1)

The membrane’s displacement depends on several forces. In our example we
consider only inertial, spring and friction ones. These are assumed to act ex-
clusively at the center of the membrane. The spring force is proportional to
displacement and the damping (friction) to velocity. We are here interested in
studying the behavior of this system when an external force is applied to the
membrane, typically gravity, but it could be any external force. Applying New-
ton’s law, we end up with:

Fexternal = −kx− cẋ+mẍ (2)

Several precautions must be taken to accurately extract Vm. Our model uses
the most simple read-out circuit, an operational amplifier configured as a buffer.
The output of the buffer is fed to a voltage comparator, giving a one-bit output
that undergoes further processing in the digital domain. The details of the rest
of the system fall outside of the scope of the discussion.

The model of the operational amplifier consists of a single piecewise equation
considering the gain and saturation. The latter assures that the output does not
exceeds the supply voltages of VDD = +15V and VSS = −15V . The piecewise
equation is as follows:

Vout(Vin) =

VSS : Vin < VSS/gain
VDD : Vin > VDD/gain
Vin × gain : elsewhere

(3)

3.2 SysML Model

In SysML, we have divided the system into five major blocks as illustrated
in figure 2: the accelerometer models the electromechanical dynamics, the
opamp models the operational amplifier, the sampler adapts analog data to
the digital world by periodic sampling, the comparator checks for a threshold

Proceedings of MPM 2014 14

Discrete-Continuous Semantic Adaptations for Simulating SysML Models in VHDL-AMS

Fig. 2. SysML Model [IBD]

crossing generating a bit stream from the output of the sampler, and finally a
source sine wave force generator stimulates the model.

While analog blocks use differential equations defined in continuous time,
digital circuitry is best modeled in the discrete domain. These two formalisms
handle different types of data and react differently to inputs. If we wish to model
and simulate a system with both of them together, we must specify not only the
operational semantics (i.e. the Model of Computation) of a particular block but
also the semantic adaptation between both domains.

To solve the semantic ambiguity issue, we use custom stereotypes defined
in a separate profile. Stereotypes are element modifiers that allow us to give
precise meaning to base elements of SysML. In our case, we have chosen to
apply specific stereotypes to SysML blocks in order to specify the use of a given
model of computation. Since we are dealing with continuous-digital integration,
we have added the notion of � analog � and � digital � blocks to SysML
as seen in figure 3. We have also added one stereotype � adaptor � to specify
blocks that are in the frontier of two different MoCs.

For an analog block, we use SysML/UML constraints to describe the physical
relations shown previously. The equations defined in SysML constraints are con-
sidered to be continuous. The interconnections in an analog block impose other
equations that can be inferred from the topology of the system. In the case of
electrical circuits, these are the Kirchoff laws. Digital blocks on the other hand
are connected by signals that transmit events. Even though in the real world,
digital circuits have analog behavior, this formalism abstracts these electrical
phenomena making digital circuits design simpler.

One particular case that is worth noting here is the definition of piecewise
equations. We have used a particular syntax in SysML constraints to describe
these kind of relations. For instance, equation 3 describes the simplified behavior
of an operational amplifier and is represented by one SysML constraint preceded
by the keywords PIECEWISE FUNCTION in our mini-DSL (see figure 4-left).
In VHDL-AMS, this is translated to USE conditions as we see in figure 4-right.

We have also defined the quantities that exists between terminals, such as
voltage or current using SysML properties (see figure 3). These are translated
to VHDL-AMS quantities directly.

Proceedings of MPM 2014 15

Discrete-Continuous Semantic Adaptations for Simulating SysML Models in VHDL-AMS

Fig. 3. SysML Model [BDD]

1 PIECEWISE FUNCTION
2 V_in < VSS/gain:
3 V_out = VSS,
4 V_in > VDD/gain:
5 V_out = VDD,
6 elsewhere:
7 V_out = gain ∗ V_in

1 IF V_in’ABOVE(VDD/gain) USE
2 V_out == VDD;
3 ELSIF NOT V_in’ABOVE(VSS/gain) USE
4 V_out == VSS;
5 ELSE
6 V_out == gain ∗ V_in;
7 END USE;

Fig. 4. Definition of piecewise equations (SysML vs VHDL-AMS)

3.3 Adaptation Mechanisms

The � adaptor � stereotype defines a block whose main purpose is to adapt
data, time and/or control from one domain to another. This special block defines
the adaptation semantics of heterogeneous interfaces. If they are well defined,
then generating executable code from that model should produce the same result
regardless of the target language (VHDL-AMS in this case, but it could be any
other AMS-capable language, such as SystemC-AMS).

In our example, the block sampler is an adaptor from analog to digital
domain. It samples data periodically. We do not specify the behavior of the
adaptor using our language, rather we instantiate and parameterize a pre-defined
adaptor. This is achieved using a SysML constraint starting with the ADAPTOR
keyword. Figure 5 shows our mini-DSL being used to instantiate the sampler.

Analog data is generated at a dynamic timestep in VHDL-AMS simulators.
The adaptor specification guarantees that output data will be sampled at a
fixed timestep of 2µs. This case of adaptor is interesting because we are not only

Proceedings of MPM 2014 16

Discrete-Continuous Semantic Adaptations for Simulating SysML Models in VHDL-AMS

1 ADAPTOR
2 FROM analog TO digital
3 IS sampler
4 PARAMS
5 input : vin,
6 output : sampled_data,
7 timestep : 2us

Fig. 5. Adaptor specification in SysML constraints

adapting the time base but also the data format. In the analog domain, ports are
considered to be terminals connected to nodes of a circuit. Kirchhoff equations
can be then deduced from the topology of the circuit. The adaptor must extract
the voltage between the input terminal and a reference and propagate it to
a discrete event domain as data tokens. The parameters input and output of
figure 5 indicate the analog voltage to read and the binary stream to write.

Certain adaptors that we make available to system designers have off-the-
shelf counterparts in the target language; others do not. In the former case, our
transformation chain chooses adaptors from a standard library; in the latter case
it defines new adaptors in the target language.

In this case study, the sampler isn’t present in the VHDL-AMS library so we
generate the module responsible for this specific adaptation. The generated code
can be separated into two different VHDL processes. One for setting the time
step and a second one, triggered by the first, to model the adaptor semantics.
In this case, the semantics are fairly simple. It consists on copying the analog
voltage from input terminal and its reference to the discrete event output at a
scheduled moment in time, i.e. every 2µs.

The output of the sampler is connected to a comparator which will generate
a bit stream from its input. When the input analog voltage crosses a value given
by the threshold parameter, the digital output switches to a logical value of ‘1’,
or ‘0’ otherwise.

4 Model Transformation

Our approach, illustrated in figure 6 consists in two separated phases. Starting
from a SysML model, we first perform a model-to-model (M2M) transformation
T1 in order to obtain a VHDL-AMS model. We then generate VHDL-AMS code
through a model-to-text (M2T) transformation T2.

The model-to-model step T1 translates every SysML element into its equiva-
lent VHDL-AMS element. This step provides the model with semantics on how
to interpret SysML elements. For instance, UML ports are converted to ter-
minals while SysML flow ports are translated to quantity ports. In the same
way, a SysML constraint will be transformed into an equation with its variables
translated into VHDL-AMS quantities.

For this first step, we have used the Atlas Transformation Language (ATL) [11].
ATL is a language for defining model transformations by a set of rules. Being a

Proceedings of MPM 2014 17

Discrete-Continuous Semantic Adaptations for Simulating SysML Models in VHDL-AMS

VHDL-AMS
Meta-Model

VHDL-AMS
Model

M2M

ATL
Meta-Model

SysML
Meta-Model

SysML
Model

M2T

Acceleo
Meta-Model

VHDL-AMS
Grammar

VHDL-AMS
Templates

VHDL-AMS
Code

uses

usesuses

uses

conforms conforms
uses

conforms conforms conforms

T1 T2

Fig. 6. Our approach

model itself, the transformation has its own meta-model. ATL is based on pat-
tern recognition of input elements and conditions which trigger the creation of
output elements in the resulting model.

The VHDL-AMS metamodel is an improvement from previous works [1, 9,
14]. It includes the notion of parameterizable adaptors and some slight modifi-
cations to the general structure of how libraries are used inside a model. This
has proven to be very practical in our implementation but it introduces elements
to the metamodel that are not totally part of VHDL-AMS. Instead, a two-step
approach separating pure syntax from semantics could also be considered.

Finally, transformation T2 is responsible for generating the actual code that
will be used for running the simulation. For this we use the ACCELEO [12]
model-to-text engine from Obeo. In ACCELEO we write templates that specify
the code to generate for the various model elements. The adaptors, for instance
were instantiated depending on their type. This is specified in our mini-DSL
by the keyword IS and is parameterized by the list of parameters listed after
PARAMS. The generated code is a template with two VHDL processes (as ex-
plained in section 5).

5 Simulation Results

Applying both transformations (T1 and T2) to the SysML model presented in
figure 3, we obtain several VHDL-AMS files (one per block) which we use to
run simulations. In figure 7 we show the output of the Hamster VHDL-AMS
simulation tool for a sinusoidal input force.

Note that, despite the non-linear variation of both top and bottom capac-
itances, the output voltage is linear and follows the input stimulus, which is
conform to equation 1. The left side of figure 7 allows us to conclude that the
threshold detection mechanism described by the block comparator works cor-
rectly as the binary stream output follows the sign of the opamp’s output.

A closer look allows us to confirm that digital data is sampled at a fixed
timestep even tough the analog data is not. The signal clk generates events
every 2µs, both on the rising and falling edge. The detail of the right part of
figure 7 shows that the output voltage was already negative several simulation

Proceedings of MPM 2014 18

Discrete-Continuous Semantic Adaptations for Simulating SysML Models in VHDL-AMS

Fig. 7. Simulation Results

cycles before the threshold detection. This translates into a delay between the
effective crossing of the threshold (bottom left of figure 7) and its detection.
This is the expected behavior since the specification of the adaptor constraint of
figure 5 specifies a 2µs sampling period thus there can be a delay of up to 2µs.

6 Conclusions

In this paper we introduce an approach for simulating continuous-digital inter-
action in SysML models. We validate the behavior through simulation and we
generate executable VHDL-AMS code using automatic model transformations.
We address the ambiguity of SysML diagrams by assigning them concrete se-
mantics (MoCs) using a simple profile. In order to solve the semantic adaptation
problem, we explicitly design adaptation mechanisms using a dedicated language
based on SysML constraints. These are translated into specific VHDL-AMS con-
structs that enforce the specified behavior.

The case study presents a typical case where integration issues occur. We
have specified not only the model of computation of individual SysML blocks
using stereotypes but also the semantic adaptations between continuous and
discrete domains using the notion of adaptors.

In future work, we wish to separate the semantic parts of our transformation
from purely syntactical ones. This would allow us to focus on a more generic
approach so as to deal with heterogeneous interactions independently from the
language used to run simulations. In order to do so, we have considered using a
generic intermediary metamodel to facilitate transformations to other languages.

Proceedings of MPM 2014 19

Discrete-Continuous Semantic Adaptations for Simulating SysML Models in VHDL-AMS

References

1. V. Albert. Traduction d’un modèle de système hybride basé sur réseau de Petri
en VHDL-AMS. Master de conception en architecture de machines et systèmes
informatiques, Université Paul Sabatier, LAAS-CNRS, 2005.

2. Frédéric Boulanger and Cécile Hardebolle. Execution of models with heterogeneous
semantics. In Tutorial on critical systems simulation at CSDM’12, December 2012.

3. Fabrice Bouquet, Jean-Marie Gauthier, Ahmed Hammad, and Fabien Peureux.
Transformation of SysML structure diagrams to VHDL-AMS. In Design, Con-
trol and Software Implementation for Distributed MEMS (dMEMS), 2012 Second
Workshop on, pages 74–81. IEEE, 2012.

4. Daniel Chaves Cafe, Filipe Vinci dos Santos, Cecile Hardebolle, Christophe
Jacquet, and Frederic Boulanger. Multi-paradigm semantics for simulating SysML
models using SystemC-AMS. In Specification & Design Languages (FDL), 2013
Forum on, pages 1–8. IEEE, 2013.

5. Franck Chollet and Haobing Liu. A (not so) short introduction to Micro Elec-
tro Mechanical Systems. http://memscyclopedia.org/introMEMS.html, pages 149-
152. Nov 2013.

6. Ernst Christen and Kenneth Bakalar. VHDL-AMS - a hardware description lan-
guage for analog and mixed-signal applications. Circuits and Systems II: Analog
and Digital Signal Processing, IEEE Transactions on, 46(10):1263–1272, 1999.

7. Johan Eker, JoernW. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig,
Stephen Neuendorffer, Sonia Sachs, and Yuhong Xiong. Taming heterogeneity -
the ptolemy approach. Proceedings of the IEEE, 91(1):127–144, 2003.

8. Christoph Grimm, Martin Barnasconi, Alain Vachoux, and Karsten Einwich. An
introduction to modeling embedded analog/mixed-signal systems using SystemC
AMS extensions. In DAC2008 International Conference, 2008.

9. Guihal, D and Andrieux, L and Esteve, D and Cazarre, A. VHDL-AMS model
creation. In Mixed Design of Integrated Circuits and System, 2006. MIXDES 2006.
Proceedings of the International Conference, pages 549–554. IEEE, 2006.

10. Cécile Hardebolle and Frédéric Boulanger. ModHel’X: A component-oriented ap-
proach to multi-formalism modeling. In Models in Software Engineering, pages
247–258. Springer, 2008.

11. Frédéric Jouault and Ivan Kurtev. Transforming models with ATL. Satellite Events
at the MoDELS 2005 Conference, pages 128–138, 2006.

12. J. Musset, E. Juliot, S. Lacrampe, W. Piers, C. Brun, L. Goubet, Y. Lussaud, and
F. Allilaire. Acceleo user guide, 2006.

13. Guillaume Savaton, Jérôme Delatour, and Karl Courtel. Roll your own hardware
description language. In OOPSLA & GPCE Workshop Best Practices for Model
Driven Software Development, 2004.

14. Jean Verries. Approche pour la conception de systèmes aéronautiques innovants en
vue d’optimiser l’architecture. Application au système portes passager. PhD thesis,
Université Paul Sabatier-Toulouse III, 2010.

Proceedings of MPM 2014 20

Discrete-Continuous Semantic Adaptations for Simulating SysML Models in VHDL-AMS

ProMoBox in Practice : A Case Study on the GISMO
Domain-Specific Modelling Language

Romuald Deshayes1, Bart Meyers2, Tom Mens1, and Hans Vangheluwe2,3

1 Département d’Informatique, Université de Mons, Mons, Belgium
firstname.lastname@umons.ac.be

2 Modeling, Simulation and Design Lab (MSDL), University of Antwerp, Belgium
firstname.lastname@uantwerp.be

3 Modeling, Simulation and Design Lab (MSDL), McGill University, Canada

Abstract. Domain-specific modelling (DSM) helps designing systems at a higher
level of abstraction, by providing languages that are closer to the problem space
than to the solution space. Unfortunately, specifying and verifying properties of
the modelled system has been mostly neglected by DSM approaches. At best,
this is only partially supported by translating models to formal representations on
which properties are specified and evaluated based on logic-based formalisms.
This contradicts the DSM philosophy as domain experts are usually not familiar
with such formalisms. To overcome this shortcoming, the ProMoBox approach
lifts property specification and verification tasks up to the domain-specific level.
For a given DSM language, some operations at the metamodel level are needed to
allow specification and verification of properties. This paper reports on a practical
case study of how to apply the ProMoBox approach on GISMO, a DSM language
designed specifically for developing gestural interaction applications.

1 Introduction
Domain-specific modelling (DSM) helps designing systems at a higher level of abstrac-
tion. By providing languages that are closer to the problem domain than to the solution
domain, low-level technical details can be hidden. An essential activity in DSM is the
specification and verification of properties to increase the quality of the designed sys-
tems [1]. Providing support for these tasks is therefore necessary to provide a holistic
DSM experience to domain engineers. Unfortunately, this has been mostly neglected by
DSM approaches. At best, support is limited to translating models to formal representa-
tions on which properties are specified and evaluated with logic-based formalisms [2],
such as Linear Temporal Logic (LTL). This contradicts the DSM philosophy as domain
experts desiring to specify and verify domain-specific properties are not familiar with
such formalisms.

In previous work we proposed the ProMoBox framework to shift property specifica-
tion and verification tasks up to the DSM level. The scope, assumptions and limitations
of this approach are presented in [3]. The ProMoBox framework consists of (i) generic
languages for modelling all artefacts that are needed for specifying and verifying prop-
erties, (ii) a fully automated method to specialise and integrate these generic languages

Proceedings of MPM 2014 21

in a given DSML, and (iii) a verification backbone based on model checking that is di-
rectly pluggable to DSM environments such as AToMPM [4]. Properties in ProMoBox
are translated to LTL and a Promela model is generated that includes a translation of the
system, its environment and its rule-based operational semantics. The Promela model
is checked with the SPIN model checker [5] and if a counter-example is found it is
translated back to the DSM level.

This paper presents a case study that applies ProMoBox to GISMO, a DSML for
executable modelling of gestural interaction applications. We illustrate how to make
some minor changes and additions to the metamodel of the DSML in order to enable
the generation of all needed languages (an input language, output language, property
language, and runtime language) that are required for the specification and verification
of properties at DSM level. We subsequently report on the results of verifying these
properties.

The paper is structured as follows. Section 2 presents the GISMO DSML used as a
case study. Section 3 explains the changes required to the GISMO metamodel in order
to apply the ProMoBox approach. Section 4 presents the results of applying ProMoBox
to GISMO. Section 5 exemplifies the specification of domain-specific properties on
GISMO models and provides some results and counter-examples found after verifica-
tion of these properties. Section 6 presents related work, and Section 7 concludes.

2 GISMO: a DSML for gestural interaction
GISMO is a DSML developed by the first author to facilitate development of gesture-
based interactive applications [6]. Specifying gestural interaction with objects is achieved
in a state-based way. The GISMO metamodel is depicted in Fig. 1. A GISMO model is
composed of states and gestures. State changes may be performed when a gesture is
performed by a user. In previous work we have developed a framework [7] that takes
care of interpreting such high level gestures from the raw data coming from 3D sen-
sors such as Microsoft’s Kinect motion sensor. The operational execution semantics of
GISMO is based on ICO [8], a formalism based on high-level Petri nets.

Fig. 1. Metamodel of the GISMO DSML for gestural interaction.

Fig. 2 shows an example of a domain-specific model in GISMO, representing the
gestural interaction of a user with a virtual bow as part of some computer game. States

Proceedings of MPM 2014 22

ProMoBox in Practice: A Case Study on the GISMO Domain-Specific Modelling Language

are represented as labelled rounded rectangles. The unique active state is displayed in
green. Gesture boxes are used to specify the gesture that is expected from the user.
They are composed of the body part (e.g., left or right hand) involved in the gesture,
the direction of movement (e.g., left, right, up, down), the type of gesture (e.g., moving,
dragging, opening) and the observed dimension of the gesture (i.e., distance d, time t
or speed s).

Fig. 2. GISMO model representing the expected gestural interaction of a user with a virtual bow.

The model is executed as follows. Whenever the user performs a specific gesture
matching an expected outgoing gesture from the currently active state, the active state
changes to the destination of the outgoing edge of the performed gesture. Global vari-
ables can be defined on GISMO models (e.g. nbarrow and power in Fig. 2). They store
relevant information about the object being modeled. Triggering a state change can be
conditioned by a boolean precondition that may combine the observed dimension of
the gesture and the global variables. For example, a state change from Drawn to Ar-
rowReady is triggered if the distance d of the drag gesture exceeds 30cm and the global
variable nbarrow is strictly positive. Exit actions of a matching gesture can be executed
to perform operations on a global variable, such as reassigning its value by the value
retrieved from the observed dimension. In the example of Fig. 2, the two drag gestures
connected to state Bending add or subtract from global variable power the value of the
gesture’s distance dimension.

3 Simplifying the GISMO metamodel
Enabling verification of domain-specific model properties requires a certain amount of
preparatory work in order to make it applicable in practice. In particular, the ProMoBox

Proceedings of MPM 2014 23

ProMoBox in Practice: A Case Study on the GISMO Domain-Specific Modelling Language

approach [3] requires the metamodel of the DSML under study to be annotated before
starting the generation process. Depending on the complexity of the language, other
changes may be required as well. Most of the simplifications aim to reduce the combi-
natorial search space of the SPIN model checker. Not performing such simplifications
would result in an exponentially longer verification time. This scalability problem is
inherent to model checking, as the search space grows very fast in terms of the number
of different possible inputs and input types.

This section focuses on the changes and simplifications required to the GISMO
metamodel in order to enable specification and verification of domain-specific prop-
erties. A first simplification ignores the time and speed dimensions of input gestures.
Thus, we restrict ourselves to properties based on the distance dimension only. More-
over, as unbounded variable domains are too costly to check, we provided a binary
classification of a gesture’s distance value into either small or big. A wider range of
distance classes could be used, at the expense of a longer verification time.

As another simplification we limit the types of global variables to boolean values
only, i.e., integer values are not supported during property verification. We also repre-
sent each global variable by a unique integer identifier instead of a variable name since
strings are not supported by Promela, the verification modelling language to which our
DSML models are translated. This is not a huge concern since it can be fully automated
and made transparent for the DSML engineer.

Finally, we simplified the preconditions and exit actions of GISMO models. In
GISMO, preconditions are boolean expressions resulting from the logical composition
(AND, OR, NOT) of comparisons between global variables, gesture dimensions and
integer values (e.g., nbarrow>0 & d>30 between Drawn and ArrowReady states in
Fig. 2). Exit actions, on the other hand, can express assignment operations of global
variables (e.g., power += d in the gestures linked to the Bending state). For model veri-
fication we limit the precondition checks to verifying if a global variable is true or false;
and exit actions are limited to changes of the boolean value of the global variable. Gen-
erally speaking, most of the simplifications on the GISMO DSL can be semi-automated
and applied to any DSL, thus reducing the task of the domain engineer.

4 Applying ProMoBox to GISMO
The ProMoBox framework [3] relies on a family of fully automated generated mod-
elling languages based on the DSML metamodel. These languages are required to mod-
ularly support specification and verification of model properties. The design language
allows DSM engineers to design the static structure of the system. The runtime lan-
guage enables modellers to define a state of the system, e.g., an initial state as input
of a simulation, or a particular “snapshot” during runtime. The input language lets the
DSM engineer model the behaviour of the system environment, e.g., by modelling an
input scenario as an ordered sequence of events containing one or more input elements.
The output language can be used to represent execution traces (expressed as ordered
sequences of states and transitions) of a simulation or to show verification results in the
form of a counter-example. Output models can also be created manually as part of an
oracle for a test case. The property language can be used to express properties based on
modal temporal logic, including structural logic and quantification.

Proceedings of MPM 2014 24

ProMoBox in Practice: A Case Study on the GISMO Domain-Specific Modelling Language

A fully automated method specialises and integrates these languages to any given
DSML, thus minimising the effort of the language engineer. This is realised by manu-
ally annotating the DSML metamodel entities (classes, associations and attributes) with
the necessary stereotypes required for every language construct. Stereotype �rt� (for
runtime) annotates metamodel entities that serve as output (e.g., a state variable); stereo-
type �ev� (for event) annotates entities that serve as input only (e.g., a marking);
stereotype �tr� (for trigger) annotates static entities that may also serves as input
(e.g., a transition event). More stereotypes could be envisioned, but the generation of the
sub-languages currently only supports those three. Stereotypes �ev� and �tr� cannot
be used jointly on the same metamodel entity.

Fig. 3. The ProMoBox approach applied to GISMO.

Fig. 3 illustrates how to apply ProMoBox to GISMO. Only the grey parts of Fig. 3
need to be modelled explicitly, the white parts are generated from the annotated and
simplified GISMO’ metamodel, shown in Fig. 1. Classes colored in grey have been
removed by the simplification process; stereotype annotations have been added.

A family of languages is generated from GISMO’ using a template-based approach.
This approach makes ProMoBox applicable to different types of DSMLs. The main idea
is that generic metamodel elements (shown as grey rectangles in Fig. 4) are interwoven
with the DSL metamodel elements.

As an example, Fig. 4 shows the metamodel of the generated output language
GISMOO. The metamodel of generated design language GISMOD closely resembles
GISMOO, except that the grey classes in the figure are absent, OutputElement is re-
placed by DesignElement, and the isActive attribute of Element and the value attribute

Proceedings of MPM 2014 25

ProMoBox in Practice: A Case Study on the GISMO Domain-Specific Modelling Language

of Bool is also absent, because of the �rt� annotations in Fig. 1. The metamodel of
generated runtime language GISMOR looks like GISMOO, except that the grey classes
are absent, and OutputElement is replaced by RuntimeElement. Fig. 2 shows an example
runtime instance model of GISMOR, representing a snapshot of the bow model during
its execution. The currently active state is displayed in green. The generated metamodel
of input language GISMOI is depicted in Fig. 4, together with an example instance
model. This model represents a sequence of a MoveGesture followed by two DragGes-
tures (each gesture is surrounded by a green circle) provided by the user as input and
processed by the operational semantics rules to execute the runtime model GISMOR.
The generated metamodel of property language GISMOP allows to define temporal
properties over the system behaviour by means of four constructs: quantification (∀ or
∃), temporal patterns, structural patterns and domain-specific pattern elements. These
property-related constructs are added to the GISMO’ metamodel by weaving the generic
metamodel template of Fig. 5 into the DSML. The resulting language has a concrete
syntax that highly corresponds to the DSML, and the quantification and temporal pat-
terns (instead of LTL operators) are raised to a more intuitive level by using natural
language. The full metamodel of GISMOP is not shown here, but a similar example can
be found in [3].

Properties specified in GISMOP are translated to LTL, and a Promela model is
generated that includes a translation of the initialised system, the environment, and the
rule-based operational semantics of the system. This translation is generic, and thus
independent of the DSML. The properties are checked by the SPIN model checker. If
any counter-example is found, the verification results are translated back to the DSM
level.

The limitations of the framework are related to the mapping to Promela as explained
in [3]. In its current state, ProMoBox does not allow dynamic structure models. Because
of the nature of Promela, boundedness is ensured in the translation. Other constraints
can be circumvented, as described in Section 3.

5 Specifying and checking properties on GISMO models

We implemented the ProMoBox framework in AToMPM [4], and the generic compilers
that compile models to and from Promela or text were written in Python. The resulting
generated Promela code is around 800 lines of code.

We verified fifteen properties on the runtime instance model of Fig. 2. Five proper-
ties are described below:
P1 It is always possible to return to a previously active state.
P2 A bow cannot be bent if there is no arrow on it. (see Fig. 6 at the top left; the global

variable nbarrow is represented by integer id 1).
P3 All states of a model can be reached from any state.
P4 Whenever the bow is fired, the amount of available arrows should decrement (see

Fig. 6 at the top right; the global variable nbarrow is represented by integer id 1).
P5 After firing an arrow, one should eventually be able to fire another one.

The above properties are transformed to LTL, and are inserted in Promela code con-
sisting of the initial state of the system, the environment and the rule-based operational

Proceedings of MPM 2014 26

ProMoBox in Practice: A Case Study on the GISMO Domain-Specific Modelling Language

Generated metamodel of output language GISMOO

Generated metamodel of input language GISMOI

Example of an instance model of GISMOI

Fig. 4. Generated metamodels GISMOO and GISMOI , and instance model of GISMOI .

Proceedings of MPM 2014 27

ProMoBox in Practice: A Case Study on the GISMO Domain-Specific Modelling Language

Fig. 5. The generic metamodel template used for generating the property language.

semantics as shown in step 1 of Fig. 3. In step 2, SPIN verifies whether the system sat-
isfies the formula, returning “True” if it does. If there is a counter-example, steps 3 to
5 are followed: the counter-example trace is played back by SPIN, and a readable trace
is printed (step 3), this trace is converted automatically to the counter-example output
model (step 4), and this counter-example can be played out state by state by showing a
runtime model for each state (step 5). The properties P2 and P4 yield a counter-example,
one of which is shown in Fig. 6 at the bottom. The trace represents a sequence of five
states, leading to the undesirable state (the last one, where the state is Bending, but the
nbarrow variable has value 0). Each state can be mapped to Fig. 2, and the current state
is highlighted, as well as the current input gesture. Because of these counter-examples,
we were able to find and fix an error in our bow model of Fig. 2, namely that picking
up an arrow (represented by the MoveGesture to the left of sheated) is not required.
In another instance, we were able to find and correct an error in one of the operational
semantics’ rules.

In comparison to [3], we made some changes that influence the performance, such as
splitting up quantified rules into several LTL formulae (e.g., Prop. 3). The performance
in terms of time and memory consumption is good: evaluation never takes more than a
second, and never requires more than 100 MB of memory. Also, the search tree depth
never exceeds 4000, and the number of states that are visited stays well under 20000.

6 Related Work

In the last decade, a plethora of language-specific approaches have been presented to
specify and verify properties for different kinds of design-oriented languages. A sub-
set of these approaches verify component-based systems [9], concurrent systems [10]
and architectural models expressed in UML [11]. Gabmayer et al. survey approaches

Proceedings of MPM 2014 28

ProMoBox in Practice: A Case Study on the GISMO Domain-Specific Modelling Language

Fig. 6. The two properties P2 (top left) and P4 (top right) that yield a counter-example, and the
counter-example of P2 (bottom).

aiming at specifying and verifying temporal model properties by model checkers [12].
These approaches offer either language-specific property languages, or LTL properties
have to be defined directly on the formal representation, thus not aiming at supporting
DSMLs engineers in the task of building domain-specific property languages.

Generic solutions shift the specification and verification tasks to the model level in a
more generalized manner. Some approaches propose OCL extensions for defining tem-
poral properties (TOCL) on models [13,14]. Combemale et al. propose a pattern-based
extension to modelling languages aiming at supporting temporal property verification
using TOCL, while producing model-based input and output automatically for model
checking purposes [15]. Klein et al. [16] present an approach to define properties at the
model level in a generic way, by extending a language for specifying structural patterns
based on Story Diagrams with support for specifying temporal patterns.

7 Conclusion and Future Work

This article reported on a practical application of the ProMoBox approach [3] for ver-
ifying temporal properties on DSMLs. A small number of models is required as input
to specify properties and transform them to SPIN, verify them and visualise possible
counter-examples, while the user is shielded from the underlying formal model check-
ing intricacies. GISMO, a DSML for specifying executable models of gestural inter-
action applications, was used as a case study. We illustrated how verifying properties
on GISMO models can be realised with ProMoBox, after applying a series of neces-
sary simplifications on the GISMO metamodel to ensure that the model is bounded and
to avoid a combinatorial explosion of the model checking. We conclude that applying
ProMoBox to GISMO is feasible. Annotating the GISMO metamodel to enable the auto-
matic generation of a property language is straightforward. Simplifying the metamodel
to enable the model checker to verify properties in a reasonable time took some more ef-
fort and reflection. Nevertheless, this is a common step when applying model checking.
Lifting the power of model checking to the level of domain-specific models is possible,

Proceedings of MPM 2014 29

ProMoBox in Practice: A Case Study on the GISMO Domain-Specific Modelling Language

and the expressiveness of the properties is only limited by the template metamodels of
ProMoBox, that can be easily extended to include all the concepts of model-checking
formalisms such as LTL and Promela.

In future work, we are interested in broadening the types of languages that are sup-
ported by ProMoBox, e.g. languages and properties that explicitly include time. Also,
we will investigate alternative approaches to model checking, such as the generation
and execution of test cases, so that the approach becomes more scalable.

References
1. France, R., Rumpe, B.: Model-driven development of complex software: A research

roadmap. In: 2007 Future of Software Engineering. FOSE ’07, Washington, DC, USA,
IEEE Computer Society (2007) 37–54

2. Risoldi, M.: A methodology for the development of complex domain-specific languages.
PhD thesis, University of Geneva (2010)

3. Meyers, B., Deshayes, R., Lucio, L., Syriani, E., Wimmer, M., Vangheluwe, H.: ProMoBox:
A framework for generating domain-specific property languages. In: Int’l Conf. Software
Language Engineering (SLE). (2014)

4. Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Mierlo, S.V., Ergin, H.: AToMPM:
A Web-based Modeling Environment. In: MoDELS Demonstrations. (2013) 21–25

5. Holzmann, G.J.: The model checker spin. IEEE Trans. Softw. Eng. 23 (1997) 279–295
6. Deshayes, R.: A domain-specific modeling approach for gestural interaction. In: Visual

Languages and Human-Centric Computing (VL/HCC). (2013) 181–182
7. Deshayes, R., Mens, T., Palanque, P.: A generic framework for executable gestural interac-

tion models. In: Visual Languages / Human Centric Computing. (2013) 35–38
8. Navarre, D., Palanque, P., Ladry, J.F., Barboni, E.: ICOs: A model-based user interface

description technique dedicated to interactive systems addressing usability, reliability and
scalability. ACM Trans. Comput.-Hum. Interact. 16 (2009) 18:1–18:56

9. Cimatti, A., Mover, S., Tonetta, S.: Proving and explaining the unfeasibility of message
sequence charts for hybrid systems. In: Proceedings of the International Conference on
Formal Methods in Computer-Aided Design. FMCAD ’11 (2011) 54–62

10. Li, X., Hu, J., Bu, L., Zhao, J., Zheng, G.: Consistency checking of concurrent models for
scenario-based specifications. In: SDL 2005: Model Driven. Volume 3530 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg (2005) 298–312

11. Pelliccione, P., Inverardi, P., Muccini, H.: Charmy: A framework for designing and verifying
architectural specifications. IEEE Trans. Softw. Eng. 35 (2009) 325–346

12. Gabmeyer, S., Kaufmann, P., Seidl, M.: A classification of model checking-based verification
approaches for software models. In: Proceedings of the STAF Workshop on Verification of
Model Transformations (VOLT 2013). (2013) 1–7

13. Ziemann, P., Gogolla, M.: Ocl extended with temporal logic. In Broy, M., Zamulin, A., eds.:
Perspectives of System Informatics. Volume 2890 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg (2003) 351–357

14. Bill, R., Gabmeyer, S., Kaufmann, P., Seidl, M.: OCL meets CTL: Towards CTL-Extended
OCL Model Checking. In: Proceedings of the MODELS 2013 OCL Workshop. Volume 1092
of CEUR Workshop Proceedings. (2013) 13–22

15. Combemale, B., Crégut, X., Pantel, M.: A Design Pattern to Build Executable DSMLs and
Associated V&V Tools. In: Asia-Pacific Softw. Eng. Conf. (APSEC). (2012) 282–287

16. Klein, F., Giese, H.: Joint structural and temporal property specification using timed story
scenario diagrams. In: Proceedings of the 10th International Conference on Fundamental
Approaches to Software Engineering. FASE’07 (2007) 185–199

Proceedings of MPM 2014 30

ProMoBox in Practice: A Case Study on the GISMO Domain-Specific Modelling Language

On Synergies between Model Transformations and
Semantic Web Technologies

Robert Bill1, Simon Steyskal1,2, Manuel Wimmer1, and Gerti Kappel1

1 Vienna University of Technology, Austria
[lastname]@big.tuwien.ac.at

2 Siemens AG Österreich, Siemensstrasse 90, 1210 Vienna, Austria

Abstract. The integration of heterogeneous data is a reoccurring problem in
different technical spaces. With the rise of model-driven engineering (MDE),
much effort has been spent in developing dedicated transformation languages and
accompanying engines to transform, compare, and synchronize heterogeneous
models. At the same time, ontologies have been proposed in the Semantic Web
area as the main mean to describe the intension as well as the extension of a
domain. While dedicated languages for querying and reasoning with ontologies
have been intensively studied, specific support for integration concerns leading to
executable transformations is rare compared to MDE.
Based on previous studies which relate metamodels and models to ontologies, we
discuss in this paper synergies between transformation languages of MDE, in par-
ticular Triple Graph Grammars (TGGs), and Semantic Web technologies (SWTs),
namely OWL/SPARQL. First, we show how TGGs are employed to define corre-
spondences between ontologies and how these correspondences are expressed in
SPARQL. Second, we show how reasoning support of SWTs is applied to allow
for underspecified model transformation specifications as well as how the differ-
ent assumptions on existing knowledge effect transformations. We demonstrate
these aspects by a common case study.

Keywords: Model Transformation, Model Integration, Triple Graph Grammars,
OWL, SPARQL

1 Introduction

The integration of heterogeneous data has first emerged in the database area [26]. How-
ever, data integration is a reoccurring problem, not only in the database area, but in
different technical spaces [8, 11]. With the raise of model-driven engineering (MDE),
much effort has been spent in developing dedicated transformation languages and ac-
companying engines to transform, compare, and synchronize heterogeneous models.

At the same time, ontologies have been proposed in Semantic Web to describe the
intension as well as the extension of a domain. While dedicated languages for querying
and reasoning with ontologies have been intensively studied (e.g., classification of indi-
viduals and consistency checking are provided by standard reasoner), specific support
for integration concerns leading to executable transformations is rare.

Proceedings of MPM 2014 31

In order to understand the differences and commonalities between MDE and Se-
mantic Web technologies (SWTs), several studies have investigated about the languages
used in both fields to describe the domain of discourse [28]. Thus, bridges are already
available between these two worlds for transforming metamodels and corresponding
models to ontologies and vice versa. Some studies go also beyond purely structural
information [12], but bridges concerning dynamic information are still mostly unex-
plored. Moreover, for specific domains, such as configuration management [4], both
technologies are applied, but mostly in an isolated manner as we currently explore in a
recent project3.

Based on previous studies which relate metamodels and models to ontologies [5,10],
we discuss in this paper synergies between transformation languages of MDE, in par-
ticular Triple Graph Grammars (TGGs) [24], and SWTs, namely a combination of
OWL/SPARQL. First, we show how TGGs are employed to define correspondences
between ontologies visualized as metamodels and how these correspondences are op-
erationalized by a compilation of TGGs to OWL/SPARQL. Second, we show how rea-
soning support of SWTs is applicable to allow for underspecified model transformation
specifications, i.e., the concrete types of instances are assigned in a post-processing
step using OWL reasoner. Third, we discuss how switching between the closed world
assumption (CWA) to an open world assumption (OWA) is beneficial for particular
integration scenarios where only partial knowledge of existing models is present. We
demonstrate these aspects by a common case study.

The rest of this paper is structured as follows. In the next section, we introduce the
running example for this paper as well as the technological prerequisites. In Section 3,
we discuss the mapping between TGGs and OWL/SPARQL in a general form, whereas
in Section 4 we demonstrate the compilation of TGGs to OWL/SPARQL by-example
and discuss how features of ontologies may be exploited for model transformations. In
Section 5 we discuss related work before we conclude in Section 6.

2 Preliminaries

2.1 Motivating Example

As an example we will illustrate how heterogeneous views on computer networks can
be joined (cf. Fig. 1). The first view comprises the physical network structure includ-
ing cables of various types and speed as well as computers. The second view contains
the application structure of the network, i.e., various computers are running different
services which might require each other. In that case, a connection to a matching ser-
vice is required. Connections can be modeled by their physical structure, as well as
their logical network structure. By using TGGs we are able to define correspondences
between both structures, which can be used to either (𝑖) express graph transformation
rules to transform individuals from one schema to another or (𝑖𝑖) check whether or
not such alignments hold for given models. Extending those correspondence definitions
with SWTs, allows even more sophisticated reasoning, inferencing, and querying tasks.

3 http://cosimo.big.tuwien.ac.at

Proceedings of MPM 2014 32

On Synergies between Model Transformations and Semantic Web Technologies

Device
name:FString

Computer
utilization:FDouble Cable

bandWidth:FDouble
Router

slots:FInteger
maxBandWidth:FDouble
curBandWidth:FDouble

System

CopperCable

GlassFiberCable

*
devices

cables
*

connected
*

networkCables
*

1
1

source

target

(a)

Connectable
name:qString

Computer Connection
speed:qDouble
isPhysical:qBooleanIntermediateNode

System

*computers

1 1source target
*target

ServiceConnection
maxload:qDouble
curload:qDouble

Service
name:qString

connections
* services

*

us
es

* services *

*
requires service

0..1 *

(b)

Fig. 1. Representations of networks: (a) physical and (b) logical

2.2 Triple Graph Grammars (TGGs)

TGGs have first been introduced by Andy Schürr [24]. A TGG rule combines elements
from a left model (LM), a right model (RM) and a correspondence model (CM). Each
TGG rule contains a left hand side graph (LG) conforming to LM, a right hand side
graph (RG) conforming to RM and a correspondence graph (CG) conforming to CM
which connects elements from LG and RG. Vertices and edges may not be deleted by
any rule, they can only be preserved or created. In contrast to usual graph transformation
rules, TGG rules are inherently bidirectional. A TGG engine searches for rule applica-
tions creating the required input graphs and creates elements of all other graphs during
that process. For example, in a transformation scenario an input graph for LM would
result in a graph for CM and RM. TGG rules might also have additional constraints,
e.g., negative application conditions or attribute constraints, also restricting the value of
an attribute depending on attribute values of other objects in the TGG rule.

The left-hand side of Fig. 5 shows a simple example of a TGG rule of a computer
network that relates connections of the same speed without declaring them equal. Black
elements denote elements which have been matched already, green elements are ele-
ments which are matched or created then. In this case, the difference between both
models is only a syntactical one.

2.3 Semantic Web Technologies (SWTs)

RDF & OWL. The Resource Description Framework (RDF)4 is a framework to de-
scribe and represent information about resources and is both human-readable and
machine-processable, which enables the possibility to easily exchange information
among different applications using RDF triples.

In RDF everything is a resource, uniquely identified by its URI and all data is repre-
sented as (𝑠𝑢𝑏𝑗𝑒𝑐𝑡, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑜𝑏𝑗𝑒𝑐𝑡) triples, where subjects and predicates are URIs
and objects can either be literals (strings, integers, . . .) or URIs.

Since RDF itself does not contain sophisticated semantics to express characteristics
of concepts or to define more expressive relationships among them, the Web Ontology

4 http://www.w3.org/TR/rdf-mt/

Proceedings of MPM 2014 33

On Synergies between Model Transformations and Semantic Web Technologies

Language (OWL)5 was developed. Introducing OWL allows the usage of reasoning
systems such as Pellet [27], FaCT++ [29] or HermiT [25] to (𝑖) infer new knowledge
and (𝑖𝑖) detect inconsistencies based on the modeled semantics.

SPARQL. The Protocol And RDF Query Language (SPARQL) is basically the standard
query language for RDF6. Its syntax (cf. Figs. 2-4) is highly influenced by an RDF
serialization format called Turtle [1] and SQL. In its current version, SPARQL allows
besides basic query operations such as union of queries, filtering, sorting and ordering
of results as well as optional query parts, the use of aggregate functions (SUM, AVG,
MIN, MAX, COUNT,...), the possibility to use subqueries, perform update actions
via SPARQL Update and several other requested features as indicated in [18].7

Another important feature of SPARQL are CONSTRUCT queries, which allow the
construction of new RDF graphs based on a previously matched (against one ore more
input graphs) SPARQL graph pattern (cf. Fig. 3). Their main purpose lies in data inte-
gration scenarios, where data from one ore more data sources have to be normalized to
fit a common schema [19, 23].

SELECT ?a ?name
WHERE {
?a a :Device .
?a :name ?name .

}

Fig. 2. SELECT Query

CONSTRUCT {
?a :hasName true .

}
WHERE {
?a a :Device .
?a :name ?name .

}

Fig. 3. CONSTRUCT Query

ASK WHERE {
?a a :Device .
?a :name ?name .

}

Fig. 4. ASK Query

3 Aligning TGGs and SWTs

In the following, we map basic TGG rules to SPARQL queries. The TGG rule definition
is based on [2] and extended by labels. Advanced features of graph transformations like
multi–nodes are not supported. Subsequently, we discuss two benefits of using SWTs:
(𝑖) automatic type inference and (𝑖𝑖) reasoning under CWA and OWA.

Definition 1 (E–Graph). A labeled E–Graph 𝐺 = (𝑉𝐺, 𝑉𝐷, 𝐸𝐺, 𝐸NA, 𝐸EA, (src𝑗 ,
trg𝑗)𝑗∈{𝐺,EA,EA}, 𝑙) consists of graph vertices 𝑉𝐺, data vertices 𝑉𝐷, graph edges, node
attribute edges and edge attribute edges 𝐸𝐺, 𝐸NA, 𝐸EA, source and target edge func-
tions src𝑗 and trg𝑗 mapping edges to corresponding vertices and a labeling function
𝑙 defining a label for each vertex and edge. As shorthand we use src(𝑒) and trg(𝑒) to
denote source and target edge functions operating on edges of any kind.

Definition 2 (Typegraph). A typegraph TG is an E-Graph specifying the relation be-
tween types. A type morphism 𝑡 maps nodes and edges of a graph to the corresponding
nodes and edges in the type graph.

5 http://www.w3.org/TR/owl2-overview/
6 http://www.w3.org/TR/sparql11-overview/
7 For a comprehensive overview on the semantics of SPARQL queries see [17, 22].

Proceedings of MPM 2014 34

On Synergies between Model Transformations and Semantic Web Technologies

Definition 3 (Triple graph). A triple graph TRG = (LG 𝑚𝑠←−− CG 𝑚𝑡−−→ RG) consists
of three E–Graphs LG, CG and TG and morphisms 𝑚𝑠 and 𝑚𝑡 mapping corresponding
nodes from the correspondence graph to other graphs.

Definition 4 (TGG rule). A parametrized TGG rule TGG = (SG, ZG, ac) consists of
a source triple graph SG, a target triple graph ZG ⊃ SG, and application conditions ac.
For the sake of simplicity, we consider application conditions as boolean formulas using
∧ and ∨, over atomic positive application conditions (PACs) and negative application
conditions (NACs) defined as triple graphs which might share vertices with each other
and SG and TG.

Example 1. The TGG rule r2n = (tr𝑠, tr 𝑡, true) represented in Fig. 5 could be
specified as follows: The type graph of both models is derived from the metamodel.
For example, a subset of the typegraph for network1 could be specified as 𝐺n1 =
({𝑑n1 , 𝑐n1}, {double}, {sn1 , 𝑡n1}, {bn1}, {}, {(𝑠n1 , 𝑐n1), (𝑡n1 , 𝑐n1)}, {(𝑠n1 , 𝑑n1),
(𝑡n1 , 𝑑n1)}), {(𝑏𝑛1, 𝑐n1)}, {(𝑏n1 , double)}, {}, {}) combined with a standard double
DSIG algebra.

The source graph of TGG rule tr𝑠 = (LG𝑠
𝑚𝑠𝑠←−− CG𝑠

𝑚𝑡𝑠−−→ TG𝑠) with
LG𝑠 = ({𝑑1, 𝑑2}, ∅, . . . , ∅), CG𝑠 = ({g2c1, g2c2}, ∅, . . . , ∅), TG𝑠 = ({cb1, cb2}, ∅,
. . . , {}), 𝑚𝑠𝑠 = ∅, 𝑚𝑡𝑠 = ∅. The target graph tr 𝑡 = (LG𝑡

𝑚𝑠𝑡←−− CG𝑡
𝑚𝑡𝑡−−→ TG𝑡) with

LG𝑡 = LG𝑠 ∪ ({𝑐1}, {𝑛}, {𝑠1, 𝑡1}, {𝑏1}, ∅, {(𝑠1, 𝑐1), (𝑡1, 𝑐1)}, {(𝑠1, 𝑑1), (𝑡1, 𝑑2)},
{(𝑏, 𝑐1)}, {(𝑏, 𝑛)}, ∅, ∅), CG𝑡 = CG𝑠 ∪ ({}, ∅, . . . , ∅), RG𝑡 = RG𝑠 ∪ ({𝑐1}, {𝑛},
{𝑠1, 𝑡1}, {𝑏1}, ∅, {(𝑠1, 𝑐1), (𝑡1, 𝑐1)}, {(𝑠1, cb1), (𝑡1, cb2)}, {(sp, 𝑐1)}, {(sp, 𝑛)}, ∅, ∅).
The labeling function assigns the type names from the metamodel in Fig. 1 to elements
of the type graph and lables equal to variable name to elements of other graphs.

Mapping TGG rules to SPARQL queries. Both transformation and correspondence
construction can be expressed using SPARQL queries in the merged ontology using
the labeling function. If a model should be synchronized, at first the maximum cor-
respondence is searched, then for the unmatched elements a transformation might be
conducted. Each vertex and edge in a TGG rule can be used as context, matched or
created element, depending on the use of the TGG rule. In every case, the context nodes
are exactly those occurring in the source model, but not in the target one. In a trans-
formation, elements of source model of the transformation in the target rule, but not in
the source, are used as matched elements while the others are used as created elements.
In a corresponding search scenario, only the elements of the correspondence graph are
created, all others are matched. According to [7], an attribute hasMatch is introduced
to specify which elements have been matched already. For elements, it is initially un-
set and may be set to true. For edges, it has the same domain and range as the edge
to match, but hasMatch_ as prefix to the original name. Thus, it is not necessary to
modify the ontology prior to using the converted TGG rules.

In many cases, TGG rules as defined previously can be transformed to correspond-
ing SPARQL queries. Table 1 shows matching concepts. The general structure of a gen-
erated SPARQL query is CONSTRUCT <transformed created elements>
WHERE <context elements>. The first two lines, e.g., indicate that the occur-
rence of a vertex 𝑛 labeled c1 with a type labeled computer in the TGG rule should

Proceedings of MPM 2014 35

On Synergies between Model Transformations and Semantic Web Technologies

P. Type TGG SPARQL
W c,m Vertex 𝑛 ?𝑙(𝑛) a 𝑙(𝑡(𝑛)).

W c,m
Vertex 𝑛1, 𝑛2,
𝑛1 ̸= 𝑛2, injec-
tive matching

FILTER (?𝑙(𝑛1) != ?𝑙(𝑛2)).

C cr Vertex 𝑛 ?𝑙(𝑛) a 𝑙(𝑡(𝑛)).
W c,m Edge 𝑒 ?𝑙(𝑠(𝑒)) dom(𝑒):𝑙(𝑒) ?𝑙(𝑡(𝑛)).
C cr Edge 𝑒 ?𝑙(𝑠(𝑒)) dom(𝑒):𝑙(𝑒) ?𝑙(𝑡(𝑛)).
C m,cr Vertex 𝑛 ?𝑙(𝑛) tgg:hasMatch true.
C m,cr Edge 𝑒 ?𝑙(𝑠(𝑒)) tgg:hasMatch_dom(𝑒)_𝑙(𝑒) ?𝑙(𝑡(𝑒)).
W m Vertex 𝑛 FILTER NOT EXISTS {?𝑙(𝑛) tgg:hasMatch true.}

W m Edge 𝑒
FILTER NOT EXISTS {?𝑙(𝑠(𝑒))
tgg:hasMatch_dom(𝑒)_𝑙(𝑒) ?𝑙(𝑡(𝑒))}

W c Vertex 𝑛 FILTER EXISTS {?𝑙(𝑛) tgg:hasMatch true.}

W c Edge 𝑒
FILTER EXISTS {?𝑙(𝑠(𝑒)) tgg:hasMatch_dom(𝑒)_𝑙(𝑒)
?𝑙(𝑡(𝑒))}

C m,cr
Mapping 𝑒1 ↦→
𝑒2 from 𝑚ss, 𝑚st ,
tt or ts

?𝑙(𝑒1) owl:sameAs ?𝑙(𝑒2)

C m,cr
Mapping 𝑒1 ↦→
𝑒2 from 𝑚ss, 𝑚st ,
tt or ts

?𝑙(𝑒1) owl:sameAs ?𝑙(𝑒2)

W - Atomic PAC ac
BIND (EXISTS {<expand ac acc. to
Tab. 1>}) AS ?gn(ac)

W - Atomic NAC ac
BIND (NOT EXISTS {<expand ac acc. to
Tab. 1>}) AS ?gn(ac)

W -
Full AC ac =
ac1(∧|∨)ac2

FILTER (?gn(ac1) (&&/||) ?gn(ac2)) or rather
applied recursively until the atomic operations.

Table 1. SPARQL patterns occuring in the WHERE (W) and CONSTRUCT (C) part for context
(c), matching (m) and created (cr) elements

result in c1 a computer., which is placed in the CONSTRUCT part of the SPARQL
query for context nodes and nodes to be matched and in the WHERE part for created
nodes.

The helper function dom returns the graph for an element. It returns o1 for ele-
ments of the left graph, o2 for elements of the right graph and c for elements of the
correspondence graph. The helper function gn assigns a unique name to each atomic
application condition.

Many current TGG implementations allow the use of functions to set values for
attributes. Existing approaches for converting OCL into SPARQL, could be used for
functions requiring matched nodes, context nodes and, for created nodes, (other) created
nodes. The result then can be assigned using BIND. Some constraints on created nodes
might be formulated using SWRL expressions, e.g., the subset of OCL defined in [12].
In this case, the specific match of vertices in a TGG rule has to be stored to be able
to subsequently apply the constraint. Thus, attributes :hasSwrlRule_name_index
might be set true to specify that an element is used as element nr. index in the SWRL
rule name. In such a way, not only conditions in the TGG can be formulated, but also
invariants of each individual model or the merged model. Simple invariants may also be
modeled directly in OWL. In the following, we will show an example to illustrate how
this may help reducing the complexity of TGG rules significantly.

Proceedings of MPM 2014 36

On Synergies between Model Transformations and Semantic Web Technologies

Automatic Type Inference. Considering the two views on an imaginary network,
one might distinguish the creation of Coppercables and Glassfibrecables
based on the speed of a correlating Connection between two previously aligned
Devices and Connectables (e.g. creating a Glassfibrecable if the speed
exceeds a certain threshold or a Coppercable otherwise). Although such distinc-
tions can be modeled with TGGs, at least two TGG rules (in our case; one matching
Coppercable and one matching Glassfibrecable) would be necessary.

A more convenient way to model such a behavior can be achieved by out-sourcing
the type inference to OWL reasoners and only define one TGG rule, which describes the
more general Cable and Connection correspondence as depicted in Figure 5 (with
its corresponding SPARQL CONSTRUCT query). The constraints itself (i.e., defining
the concept Glassfibrecable to be equivalent to an anonymous concept which
is defined as Cable having a speed with a value over 17) can be directly modeled
within the ontology using OWL axioms8 and were generated during the initial model to
ontology transformation .

g2:Device

k1:Cable
bandWidth<=<n
+

g1:Device source+

target+

source+
c1:Connection

speed<=<n
+

target+

gc1:D2C

physical (namespace o1)

logical (namespace o2)

correspon-
dence
(ns. c)

Metamodel excerpt (namespace o1)

Cable

bandWidth:<Double

inv:<bandWidth<>=<17

GlassFibreCableCopperCable

inv:<bandWidth<<<17

c:G2c

TGG rule example

gc2:D2Cg3:Connectable

g4:Connectable

CONSTRUCT {
?k1 a o1:Cable .
?k1 o1:source ?g1 .
?k1 o1:target ?g2 .
?k1 o1:bandWidth ?n .
?k1 tgg:hasMatch true .
?c1 tgg:hasMatch true .

} WHERE {
?gc1 a c:D2C. ?gc2 a c:D2C.
?g1 owl:sameAs ?gc1 .
?g2 owl:sameAs ?gc2 .
?g3 owl:sameAs ?gc1 .
?g4 owl:sameAs ?gc2 .
?c1 o2:source ?g3 .
?c1 o2:target ?g4 .
?c1 o2:speed ?n .
FILTER (?gc1 != ?gc2) .
FILTER (?g1 != ?g2) .
FILTER (?g3 != ?g4) .
FILTER EXISTS
{?gc1 tgg:hasMatch true} .

FILTER EXISTS
{?gc2 tgg:hasMatch true} .

FILTER NOT EXISTS
{?c1 tgg:hasMatch true} .

}

Fig. 5. CONSTRUCT query which generates Cables for given Connections

Reasoning under Open and Closed World Assumption. One of the major benefits
of SWTs for integration scenarios are their well defined semantics and the extensive
reasoner support as already discussed previously. With OWL and OWL reasoners it is

8 cf. [6] for a comprehensive list of OWL axioms

Proceedings of MPM 2014 37

On Synergies between Model Transformations and Semantic Web Technologies

e.g., possible to describe cardinality constraints, perform automatic type inferencing as
discussed above and to check for inconsistency in the given models.

While Semantic Web languages are based on OWA (i.e., if a statement is not ex-
plicitly stated, it does not mean that it does not exist), software engineering languages
are mostly based on CWA (i.e., if a statement is not present, it does not exist) [20].
To deal with this issue, we translate parts9 of the constraints expressed as OWL ax-
ioms into SPARQL queries and query for the presence of individuals which violate
those constraints. E.g., consider the cardinality constraint computers exactly 2
Computer for concept System expressed in OWL Manchester Syntax10. The an-
swer to the question whether or not a particular System has the right amount of
Computers, would not be directly decidable for the OWA but for the CWA with the
support of SPARQL as depicted in Listing 1.

ASK WHERE {
{ SELECT (count(?b) AS ?number) ?a WHERE {

?a a :System .
?a :computers ?b . } GROUP BY ?a }

FILTER(?number != 2)}

Listing 1. ASK Query which returns true if a System has not exactly 2 Computers

4 Related Work
We discuss three lines of related work: (𝑖) approaches for bridging models and ontolo-
gies, (𝑖𝑖) approaches for transforming transformations to SWTs, and (𝑖𝑖𝑖), approaches
directly using SWTs to encode model transformations.

Bridging models and ontologies. Combining modeling approaches steaming from
MDE with ontologies has been studied in the last decade [5]. There are several ap-
proaches to transform Ecore-based models to OWL and back, e.g., cf. [9, 31]. In ad-
dition, there exist approaches that allow for the definition of ontologies in software
modeling languages such as UML by using dedicated profiles [13]. Moreover, there
are also approaches which combine the benefits of models and ontologies such as done
in [14, 16]. Not only the purely structural part of UML is considered, but some works
also target the translations of constraints between these two technical spaces by using
an intermediate format [3]. We build on these mentioned approaches, but we focus on
correspondence definitions and their execution as transformations.

Transforming transformations to SWTs. Concerning the definition and execution of
model transformations based on SWTs, we are aware of two approaches. First, [15] pro-
pose the usage of an ATL-inspired language for defining mappings between ontologies.
Thus, uni-directional transformations are implementable for ontologies as it is known
from model transformations. Another approach is presented in [30] which translates
parts of ATL transformations to ontologies for checking the consistency of transforma-
tion rules, e.g., overlaps between rules in terms of overlapping matches. In our work,
we follow this line of research, but we consider bi-directional transformations specified
in TGGs. Thus, in our translations to ontologies we have to consider not only source to

9 The decision, which constraints have to be translated, highly depends on the respective inte-
gration scenario.

10 http://www.w3.org/TR/owl2-manchester-syntax/

Proceedings of MPM 2014 38

On Synergies between Model Transformations and Semantic Web Technologies

target transformations, but we have to encode comparison and synchronization trans-
formations as well in SPARQL.

Specifying transformations with SWTs. Finally, there are approaches which shift the
definition of the model transformations to the SWTs. For instance, in [21] it is proposed
to use SWRL to define the correspondences between models to allow for model syn-
chronization. In [10], ontology matching tools are applied to search for correspondences
between metamodels and to derive from these correspondences model transformations.
In the context of this work, we have the assumption that correspondences are defined
based on models using TGGs, but at the same time we explored which benefits from
ontology reasoning may be transferred to model transformation approaches.

5 Conclusion and Further Work
In this paper we have outlined an initial mapping between TGGs and OWL/SPARQL.
Especially, new features of the latest SPARQL version helped in defining a compre-
hensive mapping between these languages. Moreover, we also explored how reasoning
capabilities can be leveraged for underspecified model transformations.

While the initial results of applying our approach seem promising, both from a
mapping point of view and usage of reasoning capabilities for model transformations,
further investigation are planned such as considering a mapping between TGGs and
SWRL. Empirical studies are planned as well in the area of configuration management
together with our industry partner Siemens AG Österreich. In particular, for performing
distributed configuration management [4] where several different models and reasoners
have to be connected, we plan to apply our approach to provide the necessary integra-
tion means.

Acknowledgment: This work has been funded by the Vienna Business Agency (Aus-
tria), in the programme ZIT13 plus, within the project COSIMO (Collaborative Config-
uration Systems Integration and Modeling) under grant number 967327.

References

1. David Beckett and Tim Berners-Lee. Turtle-terse RDF triple language. W3C Team Submis-
sion, 14, 2008.

2. Juan de Lara, Roswitha Bardohl, Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele
Taentzer. Attributed graph transformation with node type inheritance. Theoretical Computer
Science, 376(3):139–163, 2007.

3. Dragan Djuric, Dragan Gasevic, Vladan Devedzic, and Violeta Damjanovic. A UML Profile
for OWL Ontologies. In Proc. of MDAFA, pages 204–219, 2004.

4. Andreas A. Falkner, Alois Haselböck, Gottfried Schenner, and Herwig Schreiner. Modeling
and solving technical product configuration problems. AI EDAM, 25(2):115–129, 2011.

5. Dragan Gasevic, Dragan Djuric, and Vladan Devedzic. Model Driven Engineering and On-
tology Development (2. ed.). Springer, 2009.

6. OWL Working Group. OWL 2 Web Ontology Language. W3C recommendation, 2012.
7. Frank Hermann, Hartmut Ehrig, Fernando Orejas, Krzysztof Czarnecki, Zinovy Diskin,

Yingfei Xiong, Susann Gottmann, and Thomas Engel. Model synchronization based on triple
graph grammars: correctness, completeness and invertibility. SoSyM, pages 1–29, 2013.

8. Zhenjiang Hu, Andy Schürr, Perdita Stevens, and James F. Terwilliger. Dagstuhl seminar on
bidirectional transformations (bx). SIGMOD Record, 40(1):35–39, 2011.

Proceedings of MPM 2014 39

On Synergies between Model Transformations and Semantic Web Technologies

9. Gerti Kappel, Elisabeth Kapsammer, Horst Kargl, Gerhard Kramler, Thomas Reiter, Werner
Retschitzegger, Wieland Schwinger, and Manuel Wimmer. Lifting Metamodels to Ontolo-
gies: A Step to the Semantic Integration of Modeling Languages. In Proc. of MODELS,
pages 528–542, 2006.

10. Gerti Kappel, Horst Kargl, Gerhard Kramler, Andrea Schauerhuber, Martina Seidl, Michael
Strommer, and Manuel Wimmer. Matching metamodels with semantic systems - an experi-
ence report. In Proc. of BTW Workshops, pages 38–52, 2007.

11. Ivan Kurtev, Mehmet Aksit, and Jean Bézivin. Technical Spaces: An Initial Appraisal. In
Proc. of CoopIS, 2002.

12. Sergey Lukichev. Defining a subset of OCL for expressing SWRL rules. In RuleApps, pages
1–3, 2008.

13. Milan Milanovic, Dragan Gasevic, Adrian Giurca, Gerd Wagner, and Vladan Devedzic. To-
wards Sharing Rules Between OWL/SWRL and UML/OCL. ECEASST, 5, 2006.

14. Fernando Silva Parreiras and Steffen Staab. Using ontologies with UML class-based model-
ing: The TwoUse approach. Data Knowl. Eng., 69(11):1194–1207, 2010.

15. Fernando Silva Parreiras, Steffen Staab, Simon Schenk, and Andreas Winter. Model driven
specification of ontology translations. In Proc. of ER, pages 484–497, 2008.

16. Fernando Silva Parreiras, Steffen Staab, and Andreas Winter. On marrying ontological and
metamodeling technical spaces. In Proc. of FSE, pages 439–448, 2007.

17. Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and Complexity of
SPARQL. In Proc. of ISWC, pages 30–43, 2006.

18. Axel Polleres. SPARQL1. 1: New features and friends (OWL2, RIF). In Web Reasoning and
Rule Systems, pages 23–26. Springer, 2010.

19. Axel Polleres, François Scharffe, and Roman Schindlauer. SPARQL++ for mapping between
RDF vocabularies. In Proc. of OTM, pages 878–896, 2007.

20. Tirdad Rahmani, Daniel Oberle, and Marco Dahms. An adjustable transformation from
OWL to Ecore. In Proc. of MODELS, pages 243–257, 2010.

21. Federico Rieckhof, Mirko Seifert, and Uwe Aßmann. Ontology-based model synchronisa-
tion. In Proc. of TWOMDE Workshop, 2010.

22. Simon Schenk. A sparql semantics based on datalog. In Proc. of KI, pages 160–174, 2007.
23. Simon Schenk and Steffen Staab. Networked graphs: a declarative mechanism for SPARQL

rules, SPARQL views and RDF data integration on the web. In Proc. of WWW, pages 585–
594, 2008.

24. Andy Schürr. Specification of Graph Translators with Triple Graph Grammars. In Proc. of
WG Workshop, pages 151–163, 1994.

25. Rob Shearer, Boris Motik, and Ian Horrocks. HermiT: A Highly-Efficient OWL Reasoner.
In Proc. of OWLED Workshop, 2008.

26. Nan C. Shu, Barron C. Housel, Robert W. Taylor, Sakti P. Ghosh, and Vincent Y. Lum. EX-
PRESS: A Data EXtraction, Processing, amd REStructuring System. ACM Trans. Database
Syst., 2(2):134–174, 1977.

27. Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden Katz. Pel-
let: A practical OWL-DL reasoner. J. Web Sem., 5(2):51–53, 2007.

28. Steffen Staab, Tobias Walter, Gerd Gröner, and Fernando Silva Parreiras. Model driven
engineering with ontology technologies. In Proc. of Reasoning Web, pages 62–98, 2010.

29. Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic reasoner: System description.
In Automated reasoning, pages 292–297, 2006.

30. Dennis Wagelaar. Towards using OWL DL as a metamodelling framework for ATL. In Proc.
of MtATL Workshop, pages 79–85, 2010.

31. Tobias Walter, Fernando Silva Parreiras, Gerd Gröner, and Christian Wende. OWLizing:
Transforming Software Models to Ontologies. In Proc. of ODiSE, pages 7:1–7:6, 2010.

Proceedings of MPM 2014 40

On Synergies between Model Transformations and Semantic Web Technologies

Next Generation (Meta)Modeling: Web- and
Cloud-based Collaborative Tool Infrastructure

Miklós Maróti2, Tamás Kecskés1, Róbert Kereskényi1, Brian Broll1, Péter
Völgyesi1, László Jurácz, Tihamér Levendoszky1, and Ákos Lédeczi1

1 Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN,
USA

akos.ledeczi@vanderbilt.edu
2 Bolyai Institute, University of Szeged, Szeged, Hungary

mmaroti@math.u-szeged.hu

Abstract. The paper presents WebGME, a novel, web- and cloud-based,
collaborative, scalable (meta)modeling tool that supports the design of
Domain Specific Modeling Languages (DSML) and the creation of cor-
responding domain models. The unique prototypical inheritance, origi-
nally introduced by GME, is extended in WebGME to fuse metamodel-
ing with modeling. The tool also introduces novel ways to model cross-
cutting concerns. These concepts are especially useful for multi-paradigm
modeling. The main design drivers for WebGME have been scalability,
extensibility and version control. The web-based architecture and the
constraints the browser-based environment introduces provided signif-
icant challenges that WebGME has overcome with balanced trade-offs.
The paper describes the architecture of WebGME, argues why the major
design decisions were taken and presents the novel features of the tool.

Keywords: DSML, metamodel, collaboration, web browser

1 Introduction

Applying Domain-Specific Modeling Languages (DSMLs) for the engineering
of complex systems is becoming an increasingly accepted practice. Model In-
tegrated Computing (MIC) is one approach that advocates the use of DSMLs
and metamodeling tools [1]. The MIC open source toolsuite centered on the
Generic Modeling Environment (GME) [2] has been applied successfully in a
broad range of domains by Vanderbilt [3–7] and others [8–13]. (Note that this is
just a selected subset of domains.) Design space exploration with sophisticated
tool support [14] and the seamless integration of multiple third party software
packages [15] are the most striking examples of the power of MIC.

However, the widespread application of MIC has uncovered the limitations
of the tools. GME was designed as a desktop tool for the creation of small- to
medium-sized models by a single user (or a small group of co-located users). The
models are typically stored in a single file in a proprietary format. The elementary
modeling concepts are somewhat arbitrary and are closely tied to their respective

Proceedings of MPM 2014 41

visualizations. The metamodels and the instance models are decoupled requiring
a translation step, making DSML evolution cumbersome. As a result of the ever-
increasing expectations, additional features have been added to the tools. For
example, to address scalability concerns both in the size of the models and in
the number of concurrent users, GME was extended with a Subversion-based
backend to store the models in multiple XML files [16]. However, pessimistic
locking to avoid incompatible changes to the model by multiple users proved
to be inflexible and non-scalable. It became clear that these are fundamental
limitations that need to be addressed at the very core of the architecture.

To address these limitations, we created WebGME, a web-based cyberin-
frastructure to support the collaborative modeling, analysis, and synthesis of
complex, large-scale information systems. The metamodels and the correspond-
ing domain-specific models are tightly integrated via prototypical inheritance
and stored in the cloud. Online collaboration, model version control, complex
DSMLs and large instance models are transparently supported. Clients are web
browser-based, resulting in platform independence and doing away with installa-
tion and upgrade issues. The user interface supports several built-in visualization
techniques. Multiple APIs are provided to interface with existing external tools
as well as to enable the development of custom domain-specific visualization
components and code generation tools.

This paper presents the architecture and major design decisions of WebGME.
Section 2 describes the meta-metamodel and the support for DSML specifica-
tion. Section 3 describes the collaboration approach provided by WebGME. The
data model is presented in Section 4, the overall architecture is described in Sec-
tion 5, while model visualization support is summarized in Section 6. Section 7
illustrates how multi-paradigm modeling is supported by WebGME. The paper
concludes with a brief overview of related work and conclusions.

2 Modeling Language Specification

The metamodel specifies the domain-specific modeling language. The metamod-
eling language consists of a set of elementary modeling concepts. These are the
basic conceptual building blocks of any given approach and corresponding tools.
It is the meta-metamodel that defines these fundamental concepts. These may
include composition, inheritance, various associations, attributes and other con-
cepts. Which ones to include, how to combine them, and what editing operations
should operate on them and how are the most important design decisions that
affect all aspects of the infrastructure and the domains that will use it.

Hierarchical decomposition is the most widely used technique to handle com-
plexity. This is the fundamental organization principle in this tool, too. Copying,
moving, or deleting a model will copy, move, or delete its constituent parts.

The single most important distinguishing feature of GME has been the unique
use of prototypal inheritance. Each model at any point in the composition hier-
archy is a prototype that can be derived to create an instance model. Derivation
creates a copy of the model (and all of its parts recursively, i.e., a deep copy), but

Proceedings of MPM 2014 42

Next Generation (Meta)Modeling: Web- and Cloud-based Collaborative Tool Infrastructure

it establishes a dependency relationship between the corresponding objects. Any
changes in the prototype automatically propagate to the instance. Of course,
instances can be used again as prototypes for further specialization.

Fig. 1. Prototypical inheritance in WebGME

To illustrate this concept,
consider Figure 1. Let’s sup-
pose that we have a DSML
for modeling cars and the lan-
guage has a concept called
Component for modeling var-
ious parts of a car. The top
half of the figure shows that
we have created a simple Car
model that has an ABS brake
and a V6 engine. Notice that
an Engine model was also
created and V6 is derived
from it. Note that all these
models are derived from the
Component model specified in
the metamodel (not shown).
Also note that solid lines
represent composition, while
dashed line show inheritance.
Now if we take Car as a pro-
totype and create a derived
Car’ instance model from it,

you can see that it will contain a new instance of ABS and a new instance of
V6 as well. Note that we also added a Sunroof to this new car model. The
corresponding inheritance tree is shown in the bottom half of the figure.

This approach is markedly different from inheritance in OO programming
languages or in other modeling languages such as UML. First of all, it combines
composition and inheritance. Note that Smalltalk and JavaScript have prototyp-
ical inheritance also, but it does not create new instances down the composition
hierarchy. Second, inheritance is a “live” relationship between models that is
continuously maintained during the modeling process. That is, any changes to
a model propagate down the inheritance tree immediately. For example, if we
change a property of the Engine model shown in Figure 1, it will also change
in V6 and V6’. On the other hand, if that property was already changed in V6,
then the property modification in Engine will not have an effect on either V6 or
V6’. But if we reset the value in V6 to the one inherited from Engine, that will
propagate to V6’ unless it has been overridden there beforehand. These rules
also mean that when a model is deleted, so are all of its instances and instances
of all of its children recursively. This variant of inheritance is a very powerful
way to help the modeler handle the inherent complexity in large models and
intricate DSMLs.

Proceedings of MPM 2014 43

Next Generation (Meta)Modeling: Web- and Cloud-based Collaborative Tool Infrastructure

The novel idea in WebGME is to blur the line where metamodeling ends and
domain modeling begins by utilizing inheritance to capture the metamodel/model
relationship. Every model in a WebGME project is contained in a single inheri-
tance hierarchy rooted at a model called FCO, for First Class Object, as shown
in Figure 1. Metamodel information can be provided anywhere in this hierarchy.
An instance of any model inherits all of the rules and constraints from its base
(recursively all the way up to FCO) and it can further refine it by adding ad-
ditional metamodeling information. This is a form of multi-level metamodeling
with a theoretically infinite number of levels.

As a result of this approach, 1) metamodel changes propagate automatically
to every model; 2) metamodels can be refined anywhere in the inheritance and
composition hierarchies; 3) partially built domain models can become first class
language elements to serve as building blocks; and 4) different (meta)model
versions can peacefully coexist in the same project.

2.1 Meta-metamodel

A WebGME project is a collection of metamodels and models in a single compo-
sition hierarchy. Note that the words model and object will be used interchange-
ably throughout the rest of the paper. When the user creates a new project,
it contains two objects called Root and FCO. Root is the root of the composi-
tion hierarchy, so every object in the project will be a node in the composition
tree rooted at Root. FCO is contained by Root and it is the root of the in-
heritance hierarchy. Neither Root nor FCO can be deleted. Furthermore, the
meta-metamodel of WebGME specifies that Root can contain an FCO and con-
sequently, it can contain any other type of object. The meta rules of Root cannot
be modified either. In addition, the initial meta rules of FCO are empty. The
reason is that meta rules are inherited and they can only be extended and never
restricted. For example, if we want a DSML where any model can contain any
other kind of model, we can simply specify that FCO can contain FCOs. From
then on, there cannot be any restrictions on composition in this DSML.

Additional relationships between objects can be expressed with pointers and
sets. A pointer is a binary directed named association. Any object can have any
number of different pointers. A pointer definition includes its name and a list
of possible target objects. The latter restricts valid targets of the pointer to an
element of the list, i.e., a model or any model derived from it. For example, if
we want a pointer to be able to point to any other object in the project, we can
specify the list of its valid targets to contain FCO.

A pair of pointers can be visualized as a connection. For example, the default
WebGME editor takes any object with two pointers with the reserved names
of src and dst, displays the object as a connection and supports the customary
editing operations. Otherwise, connections are ordinary models; they can contain
children, have other pointers and can be derived, etc. Therefore, the connection
concept as such is not part of the meta-metamodel.

A set is a named association between one object and an unordered set of
other objects. It can be considered a collection of pointers. A set is similar to

Proceedings of MPM 2014 44

Next Generation (Meta)Modeling: Web- and Cloud-based Collaborative Tool Infrastructure

UML aggregation, but the objects the pointers can point to are not limited to
be of the same kind. Any object can have any number of different sets. A set
specification is exactly the same as that of a pointer.

An attribute defines a property of a model. The metamodel specifies the
type of the attribute and a default value. Currently supported types are string,
integer, float and enumeration, but these can be easily extended.

An aspect (also called view) is a subset of a model’s children. Each model has
a default aspect that contains all its children. Additional aspects help manage
the complexity of models with many children. For example, a model of a car
might have separate aspects for its mechanical, electrical and hydraulic design.

Prototypical inheritance is at the core of the WebGME meta-metamodel. In-
herited children cannot be deleted, but new children can be added. Associations
within the composition tree rooted at the base are adjusted to refer to the cor-
responding new instances. Associations pointing outside of the base model tree
preserve their targets. New associations, attributes and aspects can be added.
Association targets and attribute values in an instance can be modified. The goal
of these rules is to be able to extend the inherited model, but prevent restricting
it. New meta specification can be added to any object anywhere in the inheri-
tance hierarchy. The rigid line between modeling and meta-modeling simply does
not exist any more. A brief video tutorial (available at http://webgme.org) ex-
plains and demonstrates these concepts.

2.2 Cross-cutting concepts

Cross-cutting concepts are always difficult to model. In GME, the only way
to capture relationships between models in different branches and/or levels of
the composition hierarchy is through pointers and sets. However, the visual
depiction of such associations is not intuitive at all since most tools display
models according to composition, that is, they typically show the children of
one model in one window (grandchildren may show up as ports). The target of
a pointer can be indicated by its name and navigation to it can be supported,
for example, by a double click operation, but an intuitive visual depiction of
such relationships is sorely missing. For example, a connection between far away
objects is supported by the meta-metamodel, yet there is no way to actually
show it. To address this problem, WebGME introduces the concept of crosscuts.

A crosscut is a collection of objects that the modeler wishes to view together.
Currently, the user can manually drag objects into a crosscut view. In the near
future, we will define a simple query language that can be used to issue one-time
queries to collect models from anywhere in the composition hierarchy. Existing
associations between objects in a crosscut are depicted by various lines between
the objects. For example, inheritance is shown similar to UML class diagrams,
while pointers are visualized with lines and arrows. In addition to visualization,
the main utility of crosscuts is that they serve as association editors. The target
of pointers and set membership can be edited here. Deleting a model from a
crosscut does not delete the object from the project, it simply removes it from
the given crosscut.

Proceedings of MPM 2014 45

Next Generation (Meta)Modeling: Web- and Cloud-based Collaborative Tool Infrastructure

Each crosscut has a context model, the designated container for new model
elements created in the crosscut. (Note that it is atypical to create new models
since a crosscut is meant to be a collection of already existing models. However, a
connection is a model with two pointers, so allowing new connections in crosscuts
was the motivation behind this design decision.) The default context is Root.
As Root can contain anything, crosscuts can be freely constructed. However,
if the modeler chooses a context different from Root, the composition rules of
the metamodel apply (even though crosscut containment is not composition).
This is actually a great way to control and manage crosscuts. On the flip side,
if one wants a crosscut with no constraints, but wants to avoid creating too
many crosscuts in Root, one can simply create a model and specify that it can
contain FCOs. Any instance of such a model can now serve as the context for
unconstrained crosscuts.

Fig. 2. HFSM Metamodel

One use for crosscuts in WebGME is
for metamodeling. Recall that meta infor-
mation can be specified anywhere in the
composition hierarchy. Therefore, there is
no single model to show to edit the meta-
model of the DSML. In WebGME, a cross-
cut is created for the metamodel where
the user drags in all models that need
to contain DSML specification. It is there
and only there, where meta information
can be specified. Of course, the meta-
model is a special crosscut, because a new
association created there does not actu-
ally create a new instance of a pointer,

for example, but instead specifies that the given kind of pointer of a model can
point to the selected model (and its instances).

Consider Figure 2 that depicts the metamodel of a simple hierarchical finite
state machine (HFSM). It shows that both State and Transition are derived
from FCO. Note that unlike in any other tool we are aware of, this inheritance
relationship was not drawn explicitly by the user. Instead, when the State and
Transition models were created in the first place, they were instantiated from a
model, in this case, FCO. The metamodel only displays these already existing
inheritance relationships; they cannot be edited per se. On the other hand, the
associations in Figure 2 were created in the meta crosscut. For example, the src
and dst pointer specifications were drawn by the user specifying that a transition
represents a relationship between two states. The default WebGME editor, in
turn, will show these as connections (explained above) as expected in an HFSM.

3 Collaboration

Large-scale information systems modeling poses unique challenges that ad-hoc
use of simple modeling tools cannot adequately address. As the amount of data

Proceedings of MPM 2014 46

Next Generation (Meta)Modeling: Web- and Cloud-based Collaborative Tool Infrastructure

stored, manipulated, and analyzed and the number of users and stakeholders
spread across multiple institutions increase, the coordination of the modeling
process becomes exponentially more difficult. There are known domain specific
solutions targeting the versioning and configuration of coarse grained model
hierarchies, such as the approach for CAD designs [17], but most domain models
are much finer grained. Domain specific (meta)modeling tools need to scale up
to support decentralization, collaboration, domain evolution and at the same
time, ensure consistency.

Because of the very high level of interconnectedness among the models, even
simple operations (such as copy or delete of a hierarchical model) can affect
a large part of the model database. In our experience, this renders lock- or
partition-based cooperation infeasible, especially when the system must always
present consistent information to users and external tools. In large-scale mod-
eling, users should have decentralized access to the model database where con-
current modifications even to the same set of models are possible. WebGME
addresses this challenge by introducing a very lightweight branching scheme
where different branches structurally share the same models if those have not
been modified (see Section 4).

WebGME supports online collaboration where changes are immediately broad-
cast to all parties and everyone sees the same state. This is similar to how Google
Docs works, except here the models have a much richer data model making con-
sistency management more challenging. Since branch updates are very cheap
and store only those objects that are explicitly modified, these changes can be
broadcast to all participating parties and concurrent editing conflicts can be
detected, retried, or rejected with immediate visual feedback.

The exact datamodel supporting the quick dissemination of objects between
the server and clients is described in the next section. At this point, it is enough
to know that every revision in the object database is uniquely identified by the
hash value of a commit object, and that a commit object uniquely describes all
models in the model hierarchy at a particular time instant.

Clients can freely create commit objects and send branch update messages
to the server. Each branch update request contains the hash values of the old
and new commit objects, and the database backend verifies (among others) that
the old hash value matches the current branch hash before it is updated. With
this protocol, the backend ensures that each branch has a linear history and
rejects those branch updates that would fork the branch. If a branch update is
accepted, then the new hash of the commit object is broadcasted to all clients.
If a branch update is rejected (because another client has made a concurrent
change and the old hash value does not match), then the client has the following
three options: 1) reject the change made in the user interface and present the
new version to the user, 2) automatically fork the branch (creates a new branch)
and indicate this to the user, or 3) perform a merge of the local modifications
to the branch with the changes already in the database and retries the branch
update request. Currently, we support option 1 only, as automatic merging is
not yet implemented.

Proceedings of MPM 2014 47

Next Generation (Meta)Modeling: Web- and Cloud-based Collaborative Tool Infrastructure

Fig. 3. Evolution of a branch during concurrent editing

As a simple example, let us consider two users concurrently editing a model
hierarchy (see Figure 3). Initially, there is only one revision (r1), and both users
(A and B), as well as the server (S), agree that the head of the branch is r1. Then
user A makes two quick changes on his client computer (r2 and r3), which are
immediately displayed (since all changes are performed synchronously without
communicating with the server), and two branch update messages (r1→r2 and
r2→r3) are sent to the server. After some time the server gets the r1→r2 message,
at which time user B still sees revision r1, the server thinks that the head is at
revision r2, and user A sees revision r3. The server sends out a notification to
all clients that the head of the branch has changed to r2. User B displays the
new head (r2), but user A ignores this update because it sees that he is already
ahead of r2 and knows that it has already sent those updates.

At this point user B makes a concurrent change (r4) branching the history,
but she does not know this yet, and notifies the server with an r2→r4 message.
The server gets the r2→r3 message from A first in this example, so it updates the
head to r3 and notifies all clients again. Then the server gets the r2→r4 update
message from user B, but ignores it since the old revision in the update message
(r2) does not match the current revision (r3). User B will get the head change
message from the server with revision r3, and sees that this is not an ancestor of
his current revision (r4). At this point user B knows that the branch has forked
and his version is not the official one. Currently, we notify user B of this situation
and discard his change, but with automatic merging, the client program for user
B can perform the merge (r5) and can retry the branch head update request
with r3→r5. If user A does not modify the branch in the meantime, then the
server accepts this update and notifies user A.

In the near future, WebGME will also support merging branches. This will
allow for an additional kind of collaboration where users fork the project, work on
their own branches and once they are ready with their modifications, merge the
changes back into the master branch. The structural consistency of the models
are maintained by each basic operation and verified at merging. In most cases,
the system will able to perform the merge automatically, but should a conflict
arise because of conflicting modifications to the same models, the system will
reject the merge and offer manual or guided conflict resolution on the client.

The version control scheme already enables users to work on and analyze
consistent snapshots of the database without stopping others from modifying

Proceedings of MPM 2014 48

Next Generation (Meta)Modeling: Web- and Cloud-based Collaborative Tool Infrastructure

the models. This means that long running model translators, code generators or
analysis tools can run while users carry on model building concurrently.

It is instructive to see why current solutions cannot meet the requirements of
large scale modeling. Distributed Revision Control (DRC) is a well-known and
scalable solution to source code management, but it requires clients to download
full revisions to make changes [18]. However, we need to allow users to delete,
copy, and move hierarchical models consisting of thousands of elements without
downloading the internal structure of those models to the client. Moreover, as
we have explained, the rich inter-model relations (such as inheritance) would
also require the client to potentially download and modify an even larger set
of objects. Many cloud-based information systems provide extreme scaling (e.g.
Twitter, Facebook, Wikipedia, etc.), but do not provide branching and consistent
snapshots. For example, Wikipedia has revision control of individual pages, but
it does not allow users to concurrently fork the entirety of Wikipedia, update
thousands of pages, and merge these changes back. Online collaborative text and
diagram editors (e.g. Google Docs, Lucidchart, etc.) do not support branching
and store individual artifacts separately with no integration. On the other hand,
WebGME enables large-scale collaborative modeling with refactoring capabilities
and consistency guarantees.

Beyond supporting collaborative online work, model evolution, and conflict
resolution within individual projects, in the future, WebGME could foster model
and language reuse on a much larger scale than it is currently practiced. De-
sign publishing, discovery, and change tracking are poorly supported by current
desktop-based model editors. We believe that the stimulating effects of Source-
Forge, Google Code, and GitHub (among others) on code reuse can and should
be replicated for model-based design. The WebGME infrastructure can serve as
cloud-based live repository of DSMLs and corresponding domain model libraries
as current online project repositories are heavily source-file oriented and, hence,
inadequate for model-based design collaboration.

4 Data Model

In this section, we describe the underlying data model of the system as an
object graph and explain how the elementary operations (copy, delete, move,
instantiate, update, etc.) are efficiently implemented without sacrificing extreme
scalability and data integrity. First, we present a simplified view of the proposed
architecture, then indicate the real difficulties.

Our primary goal is to ensure structural sharing of model objects between
different branches of the database. We achieve this by organizing the objects
into a containment hierarchy tree, where each object in the database stores the
identifiers of its children, but not that of its parent.

If an object (e.g., G in Figure 4) needs to be updated, we simply make a copy,
assign a new identifier (G′), recursively copy the parents (C, A) and replace the
old child identifiers with new ones. This way the old and new versions of the
graph structurally share a large portion of their objects. Since we do not store

Proceedings of MPM 2014 49

Next Generation (Meta)Modeling: Web- and Cloud-based Collaborative Tool Infrastructure

the parent in the child object, we can simply implement the copy operation as
adding the identifier of an already existing model to the list of children. From
the perspective of the user (and other tools), we have a new deep copy of the
model, but in the database we did not have to recursively traverse its children
because we just reused old content.

A'

C'

G'

A

B

E F

C D

G H JI

K L M

Fig. 4. Structural sharing of objects

We never modify any model object in
the database, only create new objects that
link to the old ones. Therefore, we can effi-
ciently traverse and compare different ver-
sions of the model database and discover
if large portions of their objects are the
same. Instead of using standard identifiers
for each object, we use a hash (SHA1) of
the content of the model. Even if the same
object is recreated on different clients (or
the same modifications are preformed on

the same client later), the modified objects will have the same hash value and
only a single database object is created. The object database contains one root
object for each version of the model, essentially tracking its evolution. The root
objects are linked by commit objects that record parent commits, the new root
object, and among others, the user who created the new tree. Another benefit of
the use of hashes is that clients (browsers) can cache model objects freely, since
they are not going to get modified, and can verify the integrity of the models.

The client (browser) does not need to download the whole database in order
to perform operations on the models, only those objects that are necessary to be
displayed to the user. For example, we can move, copy, or delete whole subtrees
without ever downloading the internal objects. Note that the discovery of the
model database is inherently asynchronous; the client needs to download new
content, but modifications can be performed locally without server interaction
except for eventually saving the new version of the model objects to the server.
The saving of the new objects can be arbitrarily delayed, unless the user wants
online collaboration with other users or wants to minimize accidental branch-
ing. Therefore, it is possible to support offline work where the user can continue
editing the model without restriction if all the required content is already down-
loaded to the browser. The integrity of the modifications is maintained, and the
changes can be uploaded to the database when connectivity is restored.

So far what we have described is very similar to how Git [19] operates, except
we do not want to download the whole repository or the whole tree to the client,
and we intend to use the browser as our management and editor tool. The real
challenge is to track and update the rich inter-model relations in a consistent
way without sacrificing the benefits presented above.

Imagine that we have an association between objects H and M in Figure 4,
and we want to delete object G. Since all operations are hierarchical, object M ,
and therefore, the association between M and H needs to be deleted as well.
As we have explained, the client loads only those objects that are absolutely

Proceedings of MPM 2014 50

Next Generation (Meta)Modeling: Web- and Cloud-based Collaborative Tool Infrastructure

necessary, which includes the parents of loaded objects, so the browser knows of
A, C, and G, but not of H or M . Somehow we need to change H without loading
it and remove that association that is visible in the old version of H. WebGME
stores associations not at M or H or both, but at their common ancestor, that
is, at C. Therefore, when we want to delete object G we immediately know all
external associations that tie an object within G to another object that is not
inside G (these associations are stored at C and A), so we can remove these
when object G is deleted.

A

B

E F

C D

G H JI

K L M

G’’

K’’ L’’ M’’

Fig. 5. Copying of associations

During a deep copy operation we
also need to copy associations, but
this case is more complicated than
deletion because we need to distin-
guish internal and external associ-
ations and consider their direction.
Suppose that we make a copy G′′

of G and insert it in parent B (see
Figure 5). An association is internal
if both of its endpoints are within
G, for example K-L. Internal associa-

tions are stored within the subtree of G because their common ancestors are also
below G, so these associations are automatically copied. An external association
pointing from an object below G to an object outside of G, e.g. from M to H,
needs to be copied and the new association will point from M ′′ to H. An external
association pointing from outside of G to an object within G, e.g. from I to M ,
is not copied because those reference a specific object. As we have seen, we have
to maintain the direction of associations to properly maintain the semantics of
copy and delete operations, and in this regard, associations behave like pointers
in programming languages. Observe, that if G is loaded to the client and the
new parent B of G′′ is also loaded, then we can perform the copy operation and
update all external associations at C and A without loading any new objects.

Movement of objects is the most complicated operation in the containment
hierarchy, but even in this case, all associations can be properly updated within
the already loaded parent objects. This means that all basic operations (delete,
copy, move) can be performed in the client on arbitrary large subtrees without
loading any new objects or even talking to the server.

The most important inter-model relationship is inheritance, which is signifi-
cantly more challenging to support than associations. Simple changes in a base
type can have an influence on all subtypes, but again we do not want to load all
instances just because we modify the base type. Containment and inheritance
interact in surprising ways, for example, deletions can have a cascading effect
through containment and inheritance. To combat these, we dynamically com-
pute the inheritance, where each object stores internally only those attributes
and children that are different than those that are already present in its base
type. This logic works even for associations, however, some extra logic is needed
to allow the deletion of associations in instances. Currently, moving of objects

Proceedings of MPM 2014 51

Next Generation (Meta)Modeling: Web- and Cloud-based Collaborative Tool Infrastructure

within basetypes that already have instances are not supported on the client be-
cause this would still require the traversal of the inheritance chain. Deletion and
coping does not have this restriction, and currently we are investigating ways to
be able to support moving of objects in this case, as well.

To support this datamodel and online collaboration, the database backend
provides the following two services: 1) respond to load and save requests of
objects that are identified by their hash, and 2) store the current hash value of
the commit object for each branch and broadcast changes of this hash value to
connected clients. Since each object is uniquely identified by its hash value, the
load and save requests can be completely reordered and no coordination between
clients is required (only hash collisions need to be monitored for safety). On the
other hand, updates of the current branch hash has to be serialized and all new
objects should already be in the database when the new hash value is updated
and broadcasted. Once the branch hash value is broadcasted, the clients update
their user interface and download all missing objects from the backend.

With the datamodel described above, users can concurrently delete, copy and
move entire subtrees consisting of millions of objects with the same efficiency as
operating on a single object. Moreover, all these operations can be performed
immediately on the client with no database round trip, so WebGME can provide
instant visual feedback even if the network connection is slow or disconnected.

5 Architecture

WebGME is designed from the ground-up as a modern web application, using
a single page interface and advanced AJAX communication patterns. Figure 6
illustrates the high-level system architecture. By choosing JavaScript for imple-
menting all core components and with a re-configurable stack of data access
layers (database driver, cache, remote access), WebGME allows for different
deployment scenarios tuned for scalable collaboration, offline work and/or for
high-performance and high-bandwidth model interpretation. In the most com-
mon deployment model, a relatively thin server-side component—running as
a Node.JS process—acts as a communication bridge between the model stor-
age (MongoDB) and multiple browser-based clients. Beyond providing serialized
read/write data access, it sends broadcast messages to all connected clients after
each update—using WebSockets as the transport protocol for both tasks. In a
high-performance scenario, a single client can be deployed directly and exclu-
sively on top of the database interface in a Node.JS container on the server.
Intermediate layers in the data access stack also enable intentional or accidental
(e.g., due to network problems) offline work.

The most critical components (Core and Client) are deployed on top of the
data access stack. These layers assemble and maintain consistent in-memory
snapshots of the model hierarchy and provide Model API, the common basic
interface for all higher level components. This interface is directly used by the
visualization stack (Section 6) and by high-performance plug-ins implemented
in JavaScript. These plug-ins can target specific domains for a wide spectrum

Proceedings of MPM 2014 52

Next Generation (Meta)Modeling: Web- and Cloud-based Collaborative Tool Infrastructure

of automated tasks, such as model analysis, simulation, verification, code and
report generation, model transformation, and design space exploration. Also, the
architecture can be extended by domain-independent plug-ins for providing and
integrating new generic tools.

MODEL
DATABASE

NOTIFICATIONS QUERY PROCESSING

DATABASE ADAPTATION AND CACHE

Server-side PlugIns

HTTP(S), WebSockets

MODEL API

OBJECT CACHE

GENERIC PLUGIN

MODEL API

DSML PLUGIN

MODEL API

Br
ow

se
r

Se
rv

er
(s

)

DSML VISUALIZER

GUI TOOLKIT

G
EN

ERIC P
LU

GIN

D
SM

L P
LU

GIN

Abstract Model
Tree

Concrete Visual
Syntax

Fig. 6. High-level system architecture

Note that developing new
plug-ins against the Model API
requires the components to be
developed in JavaScript. To
overcome this limitation and
provide data access for the
models for the widest devel-
oper community, a REST web
services API is also provided
by our server. This interface
enables language and technol-
ogy independent access to the
same data-model that is avail-
able via the Model API. The
trade-off of the REST in-
terface is slower access (sig-
nificantly higher latency and

serialization/de-serialization overhead). Note that both native JavaScript and
REST components can be deployed on client and server side. Although server-
side REST components still use the same general infrastructure as those on the
client side, these benefit from the physical proximity to the server.

Our experience shows that higher-level domain-specific APIs can dramati-
cally boost the productivity of domain developers. These auto-generated APIs
‘speak the language’ of the domains, and can significantly reduce the time and
effort needed to develop new plug-ins. The definition and generation of these
APIs—based on the meta information in the model—is part of our future work.

Another recurring pattern we identified in a large sample of existing third-
party tools uses a semi-offline processing approach for the model hierarchy. These
tools initially traverse the entire model and store it in an intermediate format for
performance and convenience reasons. These types of components can leverage
the model export/import facility on our server, which supports full and partial
(de-)serialization of the models in JSON format. This capability is integrated
with the REST service interface.

Beyond acting as a data bridge, sending broadcast notifications and providing
the REST API, the current server-side component is responsible for bootstrap-
ping the browser application with static content and for implementing authenti-
cation and authorization tasks. The authentication infrastructure is based on the
Passport framework [20], which supports a comprehensive set of strategies and
protocols from simple username/password pairs to OpenID and OAuth providers
(e.g. Facebook, Google).

Proceedings of MPM 2014 53

Next Generation (Meta)Modeling: Web- and Cloud-based Collaborative Tool Infrastructure

6 Visualization

Traditional MIC model editors enable an extremely fast early prototyping phase
by providing default visualization and user controls for each element of the DSML
language being developed. These editors provide built-in user interface logic for
each fundamental (meta-meta) concept. Although, parts of the built-in behav-
ior is customizable—with bitmap and vector images or by providing custom
rendering and event handling code plug-ins—many environments make it diffi-
cult to implement a fundamentally different user interface experience. Deviating
from the default mapping of abstract model elements to visual primitives or
implementing radically different visual behavior is becoming exponentially more
difficult. Thus, after the early prototyping phase, many DSML designers strug-
gle with developing a refined domain-specific and user-centric editor experience.
Typically these custom views include tabular data representation, textual for-
mats (source code, XML, JSON), form-based user interfaces, or complex data
visualization with precisely controlled layout and rendering. In all these cases,
customization needs to reach beyond the rendering of individual model elements
and has to control the overall mapping of abstract data model elements to visual
primitives and UI actions to operations on the data.

Hence, WebGME provides a visualization toolkit as opposed to the customiz-
able model editor approach of GME. The key difference is that with the toolkit,
the DSML designer has more control over the visualization aspects of the lan-
guage. Elements of the toolkit include layout managers, line and area rendering
primitives, and in-place text editors. These elements handle the rendering and
UI interaction tasks. The DSML designer will use the graphical building blocks
and provide the mapping between the model database (Model) and the toolkit
elements (Views and Controllers).

Visually complex and large models pose scalability challenges for the UI
much sooner than for the underlying model database. Graphical model editors
typically address the visual scalability problem by either providing flat ‘model
canvases,’ with which the model can be partitioned to multiple sheets with some
shared entities, or by using hierarchical decomposition. Examples for the former
approach are UML class diagrams, circuit schematics, and Petri nets, while the
second approach is more prevalent in modeling signal flow graphs, hierarchical
state machines, and design spaces. Both methods have limitations: the model
builder has to reason about a ‘mentally stitched’ model or constantly navigate
into a deep model hierarchy while taking extra effort to model cross-cutting rela-
tionships across distant model elements. Filtered views (i.e., aspects)—showing
only a subset of the elements of the model—is a simple but insufficient feature
towards providing a scalable user interface.

Both GME and WebGME supports model canvases, hierarchy and filtered
views (aspects), but WebGME takes a significant step beyond these standard
techniques with the introduction of crosscuts. Crosscuts decouple visualization
from the model hierarchy and provide completely user-defined orthogonal views
of the models. The default visualization in crosscuts focus on associations by
displaying any existing relationship between members of the crosscut with lines,

Proceedings of MPM 2014 54

Next Generation (Meta)Modeling: Web- and Cloud-based Collaborative Tool Infrastructure

as well as provide the means to modify them or create news ones. However, any
other type of visualization can be implemented as required by the given domain.
Elements of the crosscut can be selected by direct user actions or soon user-
defined queries can gather model objects and populate the crosscut. We believe
that by providing powerful query-based cross-cutting views one can build truly
scalable domain specific interfaces.

7 Multi-Paradigm Modeling Support

The best way to show how WebGME supports multi-paradigm modeling is
through an example. Consider a simple DSML, a hierarchical signal flow lan-
guage similar to Simulink called SignalFlow. Figure 7 shows WebGME with the
SignalFlow DSML inside a Chrome browser. The metamodel is shown on top.
The main concepts are Compound and Primitive, signal flow operators that are
the composite and leaf nodes of the model hierarchy, respectively; Input and Out-
put ports that provide the signal interface for the operators; and Flow that are
the connections between ports. Parameters (with DataType and Size attributes)
provide configuration parameters to operators.

Fig. 7. Example Signal Flow DSML in WebGME

Proceedings of MPM 2014 55

Next Generation (Meta)Modeling: Web- and Cloud-based Collaborative Tool Infrastructure

The left side of the screen shows the panel control buttons and below them
the Part Browser that displays the models that can be instantiated inside the
model loaded in the current panel as defined by the metamodel. Dragging and
dropping a model from the Part Browser creates a new instance of the given
model. The top right side of the user interface shows the Object Browser that
shows the composition hierarchy of the project starting at Root. Below is the
Property Editor where attributes, preferences and other properties of the cur-
rently selected model can be edited.

The user interface of the tool provides quite sophisticated features especially
considering the browser-based execution environment. Drag and drop, context
menus, search, autorouting, Bezier curves, and various visualizers in addition to
what is shown in the figure are all provided. However, a detailed description of
the user interface is beyond the scope of this paper.

Suppose we want to create a new DSML, that supports Signal Flow models,
but also allows the modeling of simple multiprocessor hardware and the assign-
ment of signal flow components to processors. Similarly to GME, WebGME also
supports libraries. We can select any model in a project and export it as a li-
brary. This takes the composition tree rooted at the given model and generates

Fig. 8. Processor Assignment for Signal Flow Models

Proceedings of MPM 2014 56

Next Generation (Meta)Modeling: Web- and Cloud-based Collaborative Tool Infrastructure

a JSON file from it. In our example, the SignalFlow metamodels were stored
not directly in Root, but in a model contained by Root called Language. We
exported it and then imported it into a new project called SignalFlowSystem.
Imported libraries are read-only models, but they can be derived and associa-
tions can point to any part of them. In this new project, we created a simple
computer hardware DSML. Finally, the only thing missing from the metamodels
is the specification of the assignment. This is the concept that ties together the
two paradigms. This can be done simply by dragging in the Processing model
(the signal flow base component) in the Hardware metamodel and adding a new
pointer to Processing called assign that can point to HWNodes (see top of Fig-
ure 8). Note that none of the composition rules were changed, that is, signal
flow models cannot contain hardware models and vice versa. The only relation
between the two sub-languages is the assign pointer, but it cannot be visualized
in any of the models nicely. But we can create a crosscut that can contain Pro-
cessing and HWNode models and it will show the assignment pointers and also
enables the user to edit them as shown in the bottom part of Figure 8.

8 Related Work

There have been promising approaches to (i) collaborative modeling, (ii) web-
based modeling environment, and (iii) model versioning. This section reviews
the results closest to our solutions.

Collaborative modeling is used in specific domains such as mechanical en-
gineering [21], automotive industry [22], and UML [23]. A collaborative DSML
definition process is presented in [24, 25] which could be supported by WebGME.
SLIM [26] is a prototype of a collaborative environment executed in a web
browser. The Connected Data Objects (CDO) [27] is a model repository and a
run-time persistence framework for EMF. It supports locking, offline scenarios,
various persistence backends, such as Hibernate, and pluggable fail-over adapters
to multiple repositories. As a part of CDO, the Dawn framework supports col-
laboration on the user interface level with functions such as locking, conflict
detection and resolution. It is integrated with multiple graphical editors. In con-
trast with our approach, CDO supports model integration on the model level,
and not on that of the edit operations. If two transactions are trying to modify
the same object, CDO signals a conflict for the second transaction as opposed
to our approach, where this creates a new branch automatically. CAMEL [28] is
also an eclipse plugin that supports collaborative interaction via modeling, draw-
ing, chatting, posterboards, whiteboards, and it is capable of replaying online
meetings. Its focus is on collaborative communications rather than versioning
and collaborative use of domain-specific languages.

AToMPM [29], a web-based metamodeling and transformation tool for Multi-
Paradigm Modeling, is the closest to our work. While many of the authors’
architectural decisions are similar to ours, versioned repository, the fusion of
metamodeling and prototypical inheritance and crosscuts are the biggest differ-
entiating factors.

Proceedings of MPM 2014 57

Next Generation (Meta)Modeling: Web- and Cloud-based Collaborative Tool Infrastructure

A summary of model versioning can be found in [30]. A formal approach is
contributed in [31]. [32] describes an extension of AMOR [33] to facilitate model-
based merging. [34] describes precise methods for parallel dependent graph ma-
nipulations when insertion has priority over deletion. Our philosophy is rather
to avoid situations where merge is needed – the fine grained commit cycles serve
exactly this purpose. However, especially after offline work, these solutions can
extend our approach when two branches need to be merged.

Web technologies have advanced to the point where it is feasible to build user-
friendly and visually appealing user interfaces with good performance inside a
web browser. Lucid Charts [35] and CircuitLab [36] are excellent examples of
what is possible. Some of these even support online collaboration. On the other
hand, these tools 1) employ relatively simple, typically flat data models and 2)
are very specific to their respective domains. They do not solve the challenges
associated with evolutionary language design, configurability, branching, and
extensibility.

9 Conclusions

WebGME has a number of novel features and several advantages over desktop-
based (meta)modeling tools. The browser-based client is platform-independent
and does away with installation and software update issues. The data model and
software architecture were designed from the ground up to provide scalability,
seamless collaborative modeling and powerful model versioning. The prototypi-
cal inheritance and crosscuts are probably the two most unique features of the
WebGME meta-metamodel providing DSML and model complexity manage-
ment.

WebGME is still under development. The two most significant missing pieces
are merge support for branches and a constraint manager. The merge operation
is critical to enable other modes of collaboration beyond immediate concurrent
updates. Constraints also play an important role in DSMLs. GME has an OCL-
based constraint manager which proved very useful for people who were willing to
learn OCL, but were ignored by most users. What constraint language WebGME
will ultimately utilize is still up for debate.

WebGME supports multi-paradigm modeling using inheritance, libraries and
crosscuts. Multiple inheritance would be really powerful for metamodeling in
general and multi-paradigm modeling in particular. Merge may enable multiple
inheritance support, however, it is a really challenging concept because of the
complex interplay between composition and inheritance.

9.1 Acknowledgement

This work was sponsored in part by the Defense Advanced Research Project
Agency (DARPA) and by the European Union and the European Social Fund
via project FuturICT.hu (grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-0013).

Proceedings of MPM 2014 58

Next Generation (Meta)Modeling: Web- and Cloud-based Collaborative Tool Infrastructure

References

1. Sztipanovits, J., Karsai, G.: Model-integrated computing. Computer 30(4) (1997)
110–111

2. Lédeczi, Á., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J., Kar-
sai, G.: Composing domain-specific design environments. Computer 34(11) (2001)

3. Long, E., Misra, A., Sztipanovits, J.: Increasing productivity at saturn. Computer
31(8) (1998) 35–43

4. Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.: Model-integrated development
of embedded software. Proceedings of the IEEE 91(1) (2003) 145–164

5. Mathe, J.L., Ledeczi, A., Nadas, A., Sztipanovits, J., Martin, J.B., Weavind, L.M.,
Miller, A., Miller, P., Maron, D.J.: A model-integrated, guideline-driven, clinical
decision-support system. Software, IEEE 26(4) (2009) 54–61

6. Lattmann, Z., Nagel, A., Scott, J., Smyth, K., Porter, J., Neema, S., Bapty, T.,
Sztipanovits, J., Ceisel, J., Mavris, D., et al.: Towards automated evaluation of ve-
hicle dynamics in system-level designs. In: ASME 2012 Computers and Information
in Engineering Conference, ASME (2012) 1131–1141

7. Levendovszky, T., Balasubramanian, D., Coglio, A., Dubey, A., Otte, W., Karsai,
G., Gokhale, A., Nyako, S., Kumar, P., Emfinger, W.: Drems: A model-driven dis-
tributed secure information architecture platform for managed embedded systems.
IEEE Software (2014) 1

8. Bagheri, H., Sullivan, K.: Monarch: model-based development of software archi-
tectures. Model Driven Engineering Languages and Systems (2010) 376–390

9. Bézivin, J., Brunette, C., Chevrel, R., Jouault, F., Kurtev, I.: Bridging the generic
modeling environment (GME) and the eclipse modeling framework (EMF). In:
Proceedings of the Best Practices for Model Driven Software Development at OOP-
SLA. Volume 5., Citeseer (2005)

10. Bunus, P.: A simulation and decision framework for selection of numerical solvers
in. In: Proceedings of the 39th annual Symposium on Simulation. ANSS ’06,
Washington, DC, USA, IEEE Computer Society (2006) 178–187

11. Czarnecki, K., Bednasch, T., Unger, P., Eisenecker, U.: Generative programming
for embedded software: An industrial experience report. In: Generative Program-
ming and Component Engineering, Springer (2002) 156–172

12. Stankovic, J., Zhu, R., Poornalingam, R., Lu, C., Yu, Z., Humphrey, M., Ellis, B.:
Vest: an aspect-based composition tool for real-time systems. In: Real-Time and
Embedded Technology and Applications Symposium, 2003. Proceedings. The 9th
IEEE. (May) 58–69

13. Thramboulidis, K., Perdikis, D., Kantas, S.: Model driven development of dis-
tributed control applications. The International Journal of Advanced Manufactur-
ing Technology 33(3) (2007) 233–242

14. Mohanty, S., Prasanna, V., Neema, S., Davis, J.: Rapid design space exploration
of heterogeneous embedded systems using symbolic search and multi-granular sim-
ulation. ACM SIGPLAN Notices 37(7) (2002) 18–27

15. Hemingway, G., Neema, H., Nine, H., Sztipanovits, J., Karsai, G.: Rapid synthesis
of high-level architecture-based heterogeneous simulation: a model-based integra-
tion approach. Simulation 88(2) (2012) 217–232

16. Ledeczi, A., Balogh, G., Molnar, Z., Volgyesi, P., Maroti, M.: Model integrated
computing in the large. In: Aerospace Conference, 2005 IEEE, IEEE (2005) 1–8

17. Katz, R.H.: Toward a unified framework for version modeling in engineering
databases. ACM Comput. Surv. 22(4) (December 1990) 375–409

Proceedings of MPM 2014 59

Next Generation (Meta)Modeling: Web- and Cloud-based Collaborative Tool Infrastructure

18. Altmanninger, K., Seidl, M., Wimmer, M.: A survey on model versioning ap-
proaches. IJWIS 5(3) (2009) 271–304

19. : GIT Homepage. http://git-scm.com Cited 2013 Mar 14.
20. : Passport, authentication middleware. http://passportjs.org Cited 2014 Mar

17.
21. Li, M., Wang, C.C., Gao, S.: Real-time collaborative design with heterogeneous

cad systems based on neutral modeling commands. Journal of Computing and
Information Science in Engineering 7(2) (2007) 113–125

22. Kong, S., Noh, S., Han, Y.G., Kim, G., Lee, K.: Internet-based collaboration
system: Press-die design process for automobile manufacturer. The International
Journal of Advanced Manufacturing Technology 20(9) (2002) 701–708

23. Boger, M., Graham, E., Köster, M.: Poseidon for uml.
Pode ser encontrado em http://gentleware.com/fileadmin/media/
archives/userguides/poseidon users guide/book1.html (2000)

24. Izquierdo, J.L.C., Cabot, J.: Enabling the collaborative definition of dsmls. In:
Advanced Information Systems Engineering, Springer (2013) 272–287

25. Izquierdo, J.L.C., Cabot, J., López-Fernández, J.J., Cuadrado, J.S., Guerra, E.,
de Lara, J.: Engaging end-users in the collaborative development of domain-
specific modelling languages. In: Cooperative Design, Visualization, and Engi-
neering. Springer (2013) 101–110

26. Thum, C., Schwind, M., Schader, M.: Slima lightweight environment for syn-
chronous collaborative modeling. In: Model Driven Engineering Languages and
Systems. Springer (2009) 137–151

27. Stepper, E.: Connected data objects (cdo). Website http://www. eclipse.
org/cdo/documentation/index. php, seen November (2012)

28. Cataldo, M., Shelton, C., Choi, Y., Huang, Y.Y., Ramesh, V., Saini, D., Wang,
L.Y.: Camel: A tool for collaborative distributed software design. In: Global
Software Engineering, 2009. ICGSE 2009. Fourth IEEE International Conference
on, IEEE (2009) 83–92

29. Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Van Mierlo, S., Ergin, H.:
Atompm: A web-based modeling environment, MODELS (2003)

30. Altmanninger, K., Seidl, M., Wimmer, M.: A survey on model versioning ap-
proaches. International Journal of Web Information Systems 5(3) (2009) 271–304

31. Diskin, Z., Czarnecki, K., Antkiewicz, M.: Model-versioning-in-the-large: Algebraic
foundations and the tile notation. In: Proceedings of the 2009 ICSE Workshop on
Comparison and Versioning of Software Models. (2009) 7–12

32. Brosch, P., Seidl, M., Wieland, K., Wimmer, M., Langer, P.: We can work it out:
Collaborative conflict resolution in model versioning. In: ECSCW 2009. Springer
(2009) 207–214

33. Altmanninger, K., Kappel, G., Kusel, A., Retschitzegger, W., Seidl, M., Schwinger,
W., Wimmer, M.: Amor–towards adaptable model versioning. In: 1st International
Workshop on Model Co-Evolution and Consistency Management, in conjunction
with MODELS. Volume 8. (2008) 4–50

34. Ehrig, H., Ermel, C., Taentzer, G.: A formal resolution strategy for operation-based
conflicts in model versioning using graph modifications. Springer (2011)

35. : Lucidchart. http://www.lucidchart.com Cited 2014 Mar 17.
36. : CircuitLab. https://www.circuitlab.com Cited 2014 Mar 17.

Proceedings of MPM 2014 60

Next Generation (Meta)Modeling: Web- and Cloud-based Collaborative Tool Infrastructure

Towards an Approach for Orchestrating Design
Space Exploration Problems to Fix
Multi-Paradigm Inconsistencies

Sebastian J. I. Herzig, Benjamin Kruse, Federico Ciccozzi,
Joachim Denil, Rick Salay, and Dániel Varró

sebastian.herzig@gatech.edu,bkruse@ethz.ch,

federico.ciccozzi@mdh.se,joachim.denil@uantwerpen.be,

rsalay@cs.toronto.edu,varro@mit.bme.hu

Abstract. In model-driven engineering, the aim of design space explo-
ration (DSE) is to generate a set of design candidates that satisfy a
given set of constraints and requirements, and are optimal with respect
to some criteria. In multi-paradigm modeling it is not uncommon to
perform a variety of computationally expensive analyses as part of such
an exploration process. However, existing DSE techniques do not take
dependencies between solver operations into account, thereby failing to
provide a mechanism for pruning infeasible solutions early. Motivated by
this source of inefficiency, this paper discusses a conceptual approach to
orchestrating solvers and design space exploration problems.

Keywords: design space exploration, solver orchestration

1 Introduction

The design of complex systems necessitates the exploration and evaluation of de-
sign alternatives from different perspectives leveraging multi-paradigm modeling
languages and tools. Different functionally equivalent design candidates need to
be systematically sought out and derived by Design Space Exploration (DSE)
techniques [1]. These candidates must simultaneously (i) conform to syntactic
constraints and (ii) satisfy requirements defined as semantic properties (uni-
formly called multi-paradigm consistency criteria). Violating these constraints
and consistency criteria can result in inconsistencies. Such inconsistencies can
be resolved by changing the underlying model through fix operations [2].

Validating static well-formedness constraints, assuring semantic properties
(e.g., correctness, completeness, determinacy) and evaluating extra-functional
properties (e.g., availability, throughput) requires complex analysis techniques
which exploit fundamentally different abstractions and solver technologies. Ex-
isting DSE techniques are limited to sequentially calling independently operating
solvers. For instance, the generic DSE framework presented in [3] supports ar-
bitrary analysis tools, but requires a predefined workflow. Similarly, Phoenix
Integration ModelCenter [4] is a framework enabling DSE of a variety of param-
eterized models by calling external solvers in a pre-determined sequence. Both
approaches are limited in that explicit dependencies between solvers cannot be
specified. Therefore, violations to constraints imposed by a previously called

Proceedings of MPM 2014 61

solver cannot be detected by subsequently called solvers, thereby potentially
carrying forward and further exploring infeasible solutions.

This paper proposes an alternative approach based on performing semantic
fixes to resolve diverse, multi-paradigm inconsistencies through semi-automated
orchestration of existing checker and solver tools that are driven by a guided
DSE process. The paper is a result of a collaborative effort of the authors at
the 2014 Computer Automated Multi-Paradigm Modelling (CAMPaM) work-
shop. Our hypothesis is that focusing on orchestration and decomposition of
the overall design space exploration problem (DSEP) is a necessary step towards
managing the complexity associated with running expensive analyses in scenar-
ios where multiple DSEPs must be solved simultaneously. Our proposed solution
is an orchestration strategy that uses heuristics to define the data and control
flow between the different analysis and exploration phases to call the appropri-
ate off-the-shelf solvers as needed. Core is the idea of back-tracking solutions
automatically by exploiting the dependencies of underlying solvers, the multi-
paradigm consistency criteria, and the orchestration strategy.

The paper is organized as follows: we introduce our view on DSE and develop
our conceptual idea through application to an example problem in Section 2. Our
proposed approach is discussed in further detail in Section 3.

2 Orchestrating Design Space Exploration Problems

DSE is the process of generating and analyzing a set of design alternatives for
the purpose of finding the most preferred configuration. In our framework we
consider a guided incremental approach to exploration, in which potential de-
sign candidates (alternatives) must meet a set of constraints. Constraints can
apply to both numerical and structural attributes [1]. Design candidates are
evaluated based on quality metrics such as cost or dependability (optimality cri-
teria). Hints are provided in the form of heuristics to guide the design process,
which mitigates the prominent issue of most DSE approaches: their inefficiency
in handling structural constraints and dynamic manipulation of elements due
to the use of model checking in conjunction with exhaustive state space explo-
ration [1]. Hints represent expert knowledge (i.e., heuristics) that can guide the
exploration process by detecting dead ends or unpromising paths early.

2.1 Semantic Inconsistency Fixing as a DSEP

Within the context of our work, we view the constraints typically used for iden-
tifying feasible solutions in a DSE as semantic consistency constraints. A vio-
lation of these is indicative of an inconsistency. We say that semantic consis-
tency constraints belong to either the class of solution or path constraints. One
prime example of solution constraints are constraints used to ensure adherence
to language syntax and structural semantics. Path constraints represent a set of
conditions that valid exploration paths must fulfill; they are used to determine
whether, as a result of applying an operation, the intended model functionality
is preserved. Through path constraints, pruning of exploration paths enables to
focus on optimizing only valid paths.

Proceedings of MPM 2014 62

Towards an Approach for Orchestrating Design Space Exploration Problems to Fix Multi-Paradigm Inconsistencies

Fig. 1. A BPMN model for a card delivery system

Semantic inconsistencies can be identified by specifying paradigm-specific
solution and path constraints. Given a graph-based model representation, nega-
tive graph constraints can be used for the purpose of checking static semantics
[2]. In our framework, we associate these negative constraints with one or more
fixing operations that can be used to alleviate the respective semantic incon-
sistency. Each fix is performed in two steps: first, an analysis is performed by
a checker, which looks for the existence of possible inconsistencies with respect
to desired characteristics. In a second step, the identified inconsistencies are re-
solved. The resolution is performed based on a set of given model transformation
operations and is guided by i) a given optimality criteria, and ii) heuristics and
hints. Dependencies between fixing operations are provided in the form of (for-
mally captured) hints. These dependencies can then be used for early pruning
of non-optimal solutions. For instance, if the optimization criteria implies a so-
lution with the smallest difference to the original model, a dependency analysis
of the model operations allows an a-priori determination of which combination
of operations should be applied in what particular sequence [2].

2.2 Illustrative Example
In the following, we illustrate how different DSEPs can be orchestrated to find
and resolve multi-paradigm semantic inconsistencies. For this purpose, a process
model – more specifically, a business process model (conforming to the Business
Process Model and Notation (BPMN) [5]) – is used. A business process model
describes the set of activities that an organization should implement and execute
to provide a particular service or product.

Figure 1 illustrates an example BMPN model for a card delivery process of a
service company (only one lane is shown due to space constraints). The company
checks if the client filled out the forms correctly and continues to process the
order until the card is delivered. Because of production constraints or malformed
requests, the order can be rejected.

When modeling this process, it is possible for a number of syntactic and
semantic inconsistencies to be introduced. For example, one well-formedness
constraint of BPMN2 states that a diverging OR-gate has to be preceded by
a single decision activity to specify what gate has to be taken [5]. Additionally, a
deadlock can be introduced if two processes in different lanes are each waiting for
messages that are only sent after the respective waiting tasks have terminated.
Both the detection and the fixing of these types of inconsistencies is non-trivial.

Proceedings of MPM 2014 63

Towards an Approach for Orchestrating Design Space Exploration Problems to Fix Multi-Paradigm Inconsistencies

Fig. 2. Example orchestration scenario

In addition to these inconsistencies, it is often desired to optimize business
processes. This requires exploration of the design-space of possible alternative
processes that result in the same service or product (i.e., that are functionally
equivalent). One possible optimization is the redistribution of resources to reduce
the expected waiting times at some of the activities.

Exploring the design space requires all of these inconsistencies to be identified
and fixed – ideally, in an automated fashion. Figure 2 illustrates one possible or-
chestration of solvers that check and fix the aforementioned inconsistencies. The
first of the three DSEPs manages conformance to language well-formedness con-
straints, the second DSEP optimizes the performance of the model. Finally, the
third DSEP performs a formal verification through model checking to check that
deadlocks cannot occur. Inconsistencies are checked for by evaluating constraints
(Cx) and fixed using a particular transformation operation (Ox).

In our example, the performance fixing DSEP is performed by first trans-
forming the BPMN model to an extended queuing network [6]. The following
types of performance fix operations are possible: (1) Resource Distribution: Re-
sources are redistributed to each of the activities resulting in shorter or longer
service times. (2) Parallelization: Activities that are executed in sequence can
be parallelized. (3) Serialization and Deserialization: An activity is divided into
multiple activities or merged into a single activity.

When executing different DSEPs sequentially, inconsistencies may be intro-
duced. For instance, when a parallelization rule of the performance fixer is exe-
cuted, a violation of a well-formedness constraint may occur: e.g., the activities
check performance and make decision should not be parallelized because a di-
verging OR-node is connected to the decision activity. Therefore, if the rule is ap-
plied for either activities, the model violates the constraints checked by the first
solver. Capturing such dependencies among fix operations formally as heuristics
(Hx) across different solvers enables automated backtracking to previous DSEPs
whenever necessary.

Proceedings of MPM 2014 64

Towards an Approach for Orchestrating Design Space Exploration Problems to Fix Multi-Paradigm Inconsistencies

3 Discussion

Our illustrative example revealed several general aspects of the DSEP orches-
tration problem for inconsistency fixing. First, it highlighted the fact that DSE
orchestration can be viewed as a decomposition problem: how to split a DSEP
into a set of sequential and parallel smaller DSEP steps that, together, are less
expensive than the original DSEP? Second, the ability to backtrack within an or-
chestration is essential. Third, an orchestration can be modeled using a modeling
language with specialized semantics.

3.1 Decomposition of a DSEP

There are several dimensions along which a DSEP decomposition can occur.

Submodel decomposition. The model being fixed can be decomposed into
submodels and thus the DSEP is split into an orchestration of a set of DSEP’s
over the submodels. For instance, in our example we could have decomposed
the card delivery system model into separate submodels for each lane. Non-
overlapping submodel DSEP’s could then be executed in parallel in the orches-
tration. For overlapping models, interface automata [7] could be defined.

Abstraction decomposition. If there is a natural way to create abstractions
of the model being fixed, the DSEP can be orchestrated into a sequence of
increasingly refined DSEP’s. For example, BPMN models can be abstracted by
collapsing a portion of the model into a single Activity thus producing a more
abstract model. A solution to the DSEP for the abstract model can be used to
constrain the DSEP for the original model by limiting its search to a subspace. If
no solution is found in the subspace, backtracking occurs to the abstract DSEP
to find another abstract solution.

Constraint decomposition. Decomposing the set of solution constraints yields
an orchestration into a sequence of DSEP’s, each using a subset of the con-
straints. This is the kind of decomposition we used in the card delivery system
example. If a solution is found in one step, it is passed as the initial model to
the next DSEP step and so on. This kind decomposition is most effective if the
fix operations of each step cannot cause a violation of the constraints in any of
the previous steps. If this condition cannot be guaranteed, then the constraints
of the first DSEP must be rechecked on a solution to the second DSEP and
if a violation occurs, backtracking must be performed. Constraint decomposi-
tion is particularly useful when different subsets of constraints require different
solvers (as is the case in our example). In this case, the constraints requiring
more expensive solvers can be put later in the sequence.

3.2 Backtracking

As discussed above, some decomposition approaches require support for back-
tracking. This is required to ensure that the orchestration is complete - i.e., that
every solution of the original DSEP is reachable by the orchestration.

In contrast to the related work discussed in the introduction that define
specialized and explicit backtracking mechanisms for their DSE problems, we
propose a general automated and implicit backtracking strategy. This is possible

Proceedings of MPM 2014 65

Towards an Approach for Orchestrating Design Space Exploration Problems to Fix Multi-Paradigm Inconsistencies

because we are restricting our attention to the problem of fixing inconsistencies
and all DSEPs in an orchestration have a set of fix operations. An automated
analysis of the dependencies among fix operations in the different DSEP’s can
determine the points at which backtracking is necessary. This is similar to what
is known as dependency-directed back-tracking [8] in artificial intelligence. In
our case, this entails the ability to automatically backtrack by exploiting known
dependencies among underlying solvers and multi-paradigm consistency criteria.

3.3 Towards an orchestration modeling language
Our goal with this work is to implement automated backtracking semantics on
top of an orchestration modeling language used for defining the forward flow
of the orchestration. For example, a designer may use a language such as UML
activity diagrams to define the forward flow orchestration of a set of DSEP’s.
Automated dependency analysis would be used to discover dependencies between
these DSEP’s and then when the orchestration is executed, this would the trigger
automatic backtracking where necessary.

4 Conclusions & Future Work
This paper introduces a conceptual basis for orchestrating multi-paradigm design
space exploration problems (DSEPs). A core idea is the decomposition of the
overall DSEP by exploiting dependencies between model operations. By allowing
for backtracking, the overall cost of multi-paradigm DSEPs can be decreased
significantly. However, in our approach, this is a conclusion that can only be
reached under the assumption that dependencies among model operations can be
established – i.e, under the assumption that a common formalism for representing
and manipulating models can be identified.

We believe that the semi-automation of the described solution is technically
viable, and, for achieving it, further research will be carried out. Future work
should include the development of a language for modeling DSEP orchestra-
tions. Additionally, the concepts discussed in this paper could be extended to
a dynamic orchestration where, similar to co-simulation, a control component
manages interactions between DSEPs rather than relying on manually defined
backtracking paths.

References

1. Abel Hegedus, Akos Horváth, István Ráth, and Dániel Varró. A Model-Driven
Framework for Guided Design Space Exploration. In Procs of ASE, pages 173–182.
IEEE Computer Society, 2011.

2. A. Hegedus, A. Horváth, I. Ráth, M. C. Branco, and D. Varró. Quick Fix Generation
for DSMLs. In Procs of VL/HCC, pages 17–24. IEEE, 2011.

3. T. Saxena and G. Karsai. MDE-Based Approach for Generalizing Design Space
Exploration. In Procs of MODELS, pages 46–60. Springer, 2010.

4. Phoenix Integration ModelCenter. http://phoenix-int.com.
5. Business Process Model And Notation (BPMN) Version 2.0, January 2011.
6. P. Bocciarelli and A. D’Ambrogio. Automated Performance Analysis of Business

Processes. In Procs of TMS/DEVS, 2012.
7. L. De Alfaro and T. A. Henzinger. Interface Automata. ACM SIGSOFT Software

Engineering Notes, 26(5):109–120, 2001.
8. R.M. Stallman and G.J. Sussman. Forward Reasoning and Dependency-Directed

Backtracking in a System for Computer-Aided Circuit Analysis. Artificial Intelli-
gence, 9(2):135–196, 1977.

Proceedings of MPM 2014 66

Towards an Approach for Orchestrating Design Space Exploration Problems to Fix Multi-Paradigm Inconsistencies

Taming Multi-Paradigm Integration in a
Software Architecture Description Language

Daniel Balasubramanian, Tihamer Levendovszky, Abhishek Dubey, and Gábor
Karsai

Institute for Software Integrated Systems
Department of Electrical Engineering and Computer Science

Vanderbilt University, Nashville, TN 37235, USA
{daniel,tihamer,dabhishe,gabor}@isis.vanderbilt.edu

http://www.isis.vanderbilt.edu

Abstract. Software architecture description languages offer a conve-
nient way of describing the high-level structure of a software system.
Such descriptions facilitate rapid prototyping, code generation and au-
tomated analysis. One of the big challenges facing the software commu-
nity is the design of architecture description languages that are general
enough to describe a wide-range of systems, yet detailed enough to cap-
ture domain-specific properties and provide a high level of tool automa-
tion. This paper presents the multi-paradigm challenges we faced and
solutions we built when creating a domain-specific modeling language
for software architectures of distributed real-time systems.

1 Introduction

Software architecture description languages offer a convenient way of describ-
ing the high-level structure of a software system. An architecture combines the
individual pieces of a system, such as software components and communication
networks, into an integrated view. Combining what are normally considered “sep-
arate” pieces of the system into such an integrated view allows the relationships
between the different elements to be explicitly represented.

Software architecture descriptions serve several purposes. Apart from pro-
viding documentation and a high-level view of a software system’s design, they
can serve as the basis for automated code generation. Automated tools can gen-
erate skeleton code for the software components based on their interfaces and
communication links to other components. This ability to translate a high-level
description into lower-level implementation artifacts makes architecture descrip-
tion languages ideal for rapidly prototyping applications. Automated analysis
can use an architecture description at design-time to answer questions related
to security, schedulability and resource utilization.

One of the big challenges facing the software community is the design of an
architecture description language that is both general enough to apply to a wide
range of systems, but at the same time expressive enough to describe problems

Proceedings of MPM 2014 67

specific to individual systems and provide a high amount of automated tool sup-
port. For instance, AUTOSAR [2], a standard for defining software architectures
in the automotive domain, is heavily tailored to concepts and standards found
in the vehicle design domain. On the other hand, languages like AADL [8] can
be too general to model software systems that contain concepts outside of its
specification, such as custom security concepts.

One alternative to using standardized architecture languages is to create a
custom language. This approach can work especially well when implemented
with domain-specific modeling languages (DSMLs), which provide an intuitive
syntax and ensure that only the relevant architectural concepts are captured.
Metamodeling environments also facilitate rapid language development itera-
tions. However, there are several multi-paradigm modeling challenges involved
with this approach: architectures contain elements at different levels of abstrac-
tion, multiple formalisms and cross-cutting concerns such as security. A viable
architecture description language must provide solutions to these challenges.

This paper presents our solutions to a series of multi-paradigm challenges
we faced while building a domain-specific language for describing the software
architecture of distributed embedded systems. The first challenge is combining
multiple formalisms (textual code and block diagrams) to describe component
interfaces. The second challenge is to transform high-level scheduling properties
of individual elements into a combined temporal schedule. The third challenge is
integrating different types of analyses into the modeling language. Even though
our approach is tailored to our architecture language, the solutions are applicable
across other architecture languages which face similar challenges on a similar
level of abstraction, and thus want to provide a similar level of tool automation.

The rest of this paper is organized as follows. Section 2 provides an overview
of the modeling language. Section 3 describes how we integrated a textual code
formalism with graphical block diagrams. Section 4 describes how we transform
high-level scheduling properties of individual elements into a low-level temporal
schedule. Section 5 briefly illustrates the opportunities for design-time analysis.
Section 6 presents related work, and we conclude in Section 7.

2 Overview

DREMS, Distributed Real-time Embedded Managed Systems [6], is a software
infrastructure for designing, implementing, configuring, deploying and managing
distributed real-time embedded systems. It consists of two major subsystems:
(1) a design-time toolsuite for modeling, analysis, synthesis, implementation,
debugging, testing and maintenance of application software built from reusable
components, and (2) a run-time software platform for deploying, managing and
operating application software on a network of computing nodes. DREMS is
intended for platforms that provide a managed network of computers running
distributed applications; in other words, a cluster of networked nodes.

The design-time toolsuite is underpinned by a DSML (an overview is pre-
sented in [6]) with tools and generators to automate the tedious parts of software

Proceedings of MPM 2014 68

Taming Multi-Paradigm Integration in a Software Architecture Description Language

development and provide an analysis framework. The run-time software platform
reduces the complexity and increases the reliability of software applications by
providing reusable technological building blocks in the form of an operating sys-
tem, middleware and application management services.

DREMS
model

Compilable
code (C++,

IDL)

Deployment
data (XML)

Build
system files

Domain-specific
model

Partition
schedules

Generated from model

Automated analyses

-Schedulability analysis with CPN

-Network bandwidth analysis
with Network Calculus

DREMS OS

MW/Glue code MW/Glue code

Comp1

Comp1
Comp3

Process 1 Process 2

Generated

Runtime platform Design-time toolsuite

Input

Deploys on
Networked

hardware nodes

-MLS security analysis

Fig. 1. The design-time toolsuite (left) and the run-time platform (right). The modeling
language is used as the basis for both analysis and code generation.

Figure 1 shows a high-level overview of the development process. A model
captures several aspects of the system in addition to structure. Models of the
software components and interfaces are used to generate compilable skeleton
code. Scheduling attributes of processes are used to generate OS schedules. The
mapping of software to hardware, along with component interaction descriptions,
generates deployment configuration files. Additionally, there exist design-time
analysis tools; Section 5 contains more details.

The run-time system, shown on the right-hand side of Figure 1, includes a
custom operating system (OS) and middleware (MW). Applications consist of
some number of components, hosted inside processes, that communicate through
the middleware. Each node in the system is expected to contain the full run-time
infrastructure.

3 Integrating textual code with graphical block diagrams

The first integration challenge we describe is integrating textual code inside the
graphical modeling language. The use of a textual language was motivated by
the fact that the underlying platform uses a component-based software engineer-
ing (CBSE) methodology [10]. In CBSE, applications are built from reusable,
communicating software components. For our underlying platform, these com-
ponents are specified using a language called the Interface Definition Language

Proceedings of MPM 2014 69

Taming Multi-Paradigm Integration in a Software Architecture Description Language

(IDL), an OMG standardized language to describe component interfaces. From
an IDL specification of a component, code generators produce code stubs that are
combined with user-written business logic and compiled to produce the actual
component.

Thus, inside our DSML, we need abstractions for describing components,
which include a suitable representation for IDL. The two main requirements for
using IDL inside models were (1) other modeling elements should be able to
refer to its properties and attributes, and (2) IDL developed independently from
the model should be straightforward to use inside the model. Figure 2 shows the
desired workflow.

Model
IDL

generator

Code
stubs

1. Existing IDL can be automatically imported into the model.

3. IDL defined inside the
model is generated.

4. Code generators
turn the IDL into
code stubs and
skeletons.

IDL inside
model

2. IDL inside the model is
referenced elsewhere in the
model.

IDL

Fig. 2. Workflow for using IDL in the modeling language.

We had two main choices for how to represent IDL inside our models: a
graphical representation or a textual representation. The drawback of using a
graphical notation to represent IDL is that it is cumbersome for the user. Es-
sentially, the user builds a graphical representation of the abstract syntax tree
(AST) of their IDL. This is especially tedious for designers who already have
some familiarity with IDL. The advantage of this approach is that it allows other
modeling elements to easily refer to attributes and properties of the IDL.

On the other hand, the advantage of a textual notation is that it is compact,
which makes it simple for users to write. It is also easy to import from existing
IDL definitions. The drawback of a textual notation is that other elements in the
modeling language cannot easily refer to its content. Also, the modeling language
itself cannot be used to enforce that syntactically correct IDL is written by the
user.

Ultimately, we decided on a combination of a graphical and textual represen-
tation. Figure 3 shows the portion of the metamodel (as a UML class diagram)
defining the six types of IDL elements represented graphically inside the model;
note that they are all subclasses of the abstract class DataType and inherit the
Definition attribute. These are the graphical elements that appear in the mod-
eling language.

Proceedings of MPM 2014 70

Taming Multi-Paradigm Integration in a Software Architecture Description Language

Fig. 3. The types of IDL elements represented graphically inside models.

The integration of the textual IDL language was accomplished by (1) gener-
ating an IDL parser using the ANTLR parser generator [12] and (2) creating an
add-on to the modeling language using our modeling environment’s extension
API that uses the generated parser. The overall process is shown in Figure 5.
The Definition attribute of each graphical IDL element contains its IDL code
and is edited using a special code editing window that is provided by the add-on
(see Figure 4). The code editor invokes the IDL parser and reports any syntax
errors to the user, as shown in Figure 4.

Fig. 4. Screenshot of the IDL code editing window, which was integrated into the
modeling language. Errors reported by the parser are at the bottom. In this example,
the IDL code is invalid because the comment on the last line begins with a single ‘/’.

If the IDL code is syntactically correct, then the integrated parser automat-
ically sets attributes of the corresponding graphical IDL element in the model.

Proceedings of MPM 2014 71

Taming Multi-Paradigm Integration in a Software Architecture Description Language

The key to the approach is the add-on that is able to (1) parse the textual
language, and (2) based on the results of the parser, set multiple attributes on
the graphical modeling elements. This is important because it enables attributes
defined in the textual language to be integrated into the modeling language.

1. The add-on is invoked from inside the
modeling language by clicking the arrow on the
lower right-hand side of the element. 2. User types the IDL code for the

element inside the integrated editor.

struct Position {
 string name; //@key
 double x, y, z;
};

IDL parser

3. The IDL parser checks the IDL
for syntactic correctness.

4. If the IDL was syntactically
incorrect, the IsWellFormed attribute
of the element would be
automatically set to false.

5. Because this example’s IDL is syntactically
correct, the following actions automatically
happen:
 -The IsWellFormed attribute of the
element is set to true
 -The Definition attribute is set to the value
of the IDL.
 -The HasKeys attribute is set to true
because the IDL definition specifies a key
using the “//@key” comment.

IsWellFormed = false
Definition = “”
HasKeys = false

IsWellFormed = true
Definition = “struct Position { …}”
HasKeys = true

Fig. 5. Overview of how the textual IDL parser is integrated into the modeling lan-
guage. Multiple attributes are set based on the value of the IDL in Step 5.

4 Schedule generation

The next challenge we describe deals with transforming high-level scheduling
properties of individual elements into a combined, low-level schedule for the tar-
get platform. The motivation for this is that the target DREMS platform uses its
own scheduler, namely, a temporal partition scheduler [1] to schedule processes.
A partition is a logical group of executing processes in which all processes in
the same partition are periodically given exclusive access to the CPU. Exclusive
access means that no process from another partition is given access to the CPU
during this time. Each partition can contain any number of processes and is
defined by two attributes: a duration and a period. For instance, a partition with
a duration of 4ms and a period of 10ms will run for 4ms every 10ms, and during
these 4ms the processes it contains will have exclusive access to the CPU.

In order for the target platform to schedule the temporal partitions at runtime
so that the period and duration constraints of each are satisfied, it must be given
a valid partition schedule. This partition schedule is a periodically repeating

Proceedings of MPM 2014 72

Taming Multi-Paradigm Integration in a Software Architecture Description Language

set of time slices called hyperperiods. The partition schedule specifies when to
start each partition relative to the start of the hyperperiod. At the end of the
hyperperiod, the same schedule is repeated again.

The multi-paradigm challenge with this is how to transform the process-
partition assignment graph as well as the high-level scheduling attributes (a
period and duration) of individual temporal partitions into a low-level partition
schedule that can be used at runtime by the operating system. This schedule
should be a part of the architecture description language because users must
know at design-time whether a satisfying partition schedule exists and if so, what
that schedule is. However, even for seemingly simple combinations of individual
partitions, calculating a schedule by hand can be a non-trivial task. Thus the
modeling language needs to hold enough information as well as provide a facility
to calculate this schedule automatically and present it to users.

Figure 6 shows our solution using a small example. On the left side of Figure 6
are two processes (P1 and P2), defined inside the software part of the modeling
language. These two processes are assigned to two different partitions (P1 is
assigned to T1 and P2 is assigned to T2) in the software deployment portion
of the language. The schedule calculator is the solution that provides a bridge
between the individual temporal partitions and an integrated partition schedule.
It is implemented as an add-on to the modeling language using our modeling
environment’s extension API and provides a bi-directional interface both to and
from the modeling language.

When the schedule calculator is invoked, it queries the model and collects
the individual temporal partitions. Next, it formulates the scheduling problem
as a constraint satisfaction problem [13]. The constraint satisfaction problem is
then given to an off-the-shelf solver (the Z3 SMT solver [3]). If the solver cannot
find a solution, then it indicates a conflict with the temporal partitions and the
schedule calculator then informs the user so that the temporal partitions can be
modified.

If a solution to the constraint satisfaction problem is found, then the schedul-
ing calculator must translate this solution into a partition schedule and insert
it into the model. Creating the partition schedule from the scheduling calcula-
tor is done using the modeling environment’s API which provides programmatic
access for setting attributes.

5 Design-time analysis

This section describes three automated analyses that we built for the modeling
language: security of communications, software component schedulability anal-
ysis and network quality of service (QoS) analysis. Due to space constraints, we
only briefly describe each.

The operating system provides security to applications through spatial isola-
tion (processes run in separate address spaces) and temporal isolation (temporal
partitions guarantee that processes get a guaranteed portion of processor time).
However, these two mechanisms alone cannot guarantee information flow iso-

Proceedings of MPM 2014 73

Taming Multi-Paradigm Integration in a Software Architecture Description Language

Software Deployment Software Deployment
with partition schedule

Partition schedule
(generated)

Temporal partitions

Period: 10ms
Duration: 4ms

Schedule Calculator

Period: 20ms
Duration: 5ms

Model interface
Solution
translated
into model

Constraint solver

P1

P2

Process Library
(Software Language)

T1

T2

Model
translated
into
constraints

Period: 10ms
Duration: 4ms

Period: 20ms
Duration: 5ms

T1

T2

Fig. 6. The schedule calculator transforms individual partition attributes into a com-
bined partition schedule. Processes (P1 and P2) from the software language are as-
signed to temporal partitions (T1 and T2) in the software deployment. The schedule
calculator uses the attributes of T1 and T2 to formulate and solve a set of numerical
constraints and generate a valid partition schedule, consisting of repeating sequences
of the two partitions, into the model.

lation between applications. This is important because the runtime system is
expected to host both trusted and untrusted (i.e., 3rd party) applications. Pre-
venting covert channel communication between applications is also important.
Our solution to this problem is a multilevel security (MLS) policy [6] that uses
multi-domain labels. The modeling language supports the MLS policy with label
elements that are attached to the communication endpoints and processes; an
automated tool was built to check the compatibility of security labels between
communicating processes at design time.

DREMS supports systems whose network quality and connectivity may vary
over time. To analyze whether the QoS requirements of processes can be satis-
fied with time-varying networks, the modeling language supports QoS profiles
describing the expected network parameters (e.g, bandwidth, latency) over time
and QoS requirements that specify the network requirements of processes. An
automated tool based on the network calculus [14] then analyzes whether the
QoS requirements of all processes can be satisfied.

The third analysis relates to the verification of system properties, such as
deadline violations by software components. This approach is based on modeling
the abstract control flow and timing properties for component operations and
then combining them with a formalized model of hierarchical schedulers in the
system (the operating system scheduler and the component operation scheduler)
to generate an integrated Colored Petri Net (CPN) [11] model. This model can
be used to ensure that as long as the assumptions made about the system hold,
the behavior of the system lies within the safe regions of operation. For example,
the tool can verify that component operations will not cause deadline violations.

Overall, these design time tools provide analyses to both application devel-
opers and system integrators to ensure that the system meets the expected re-
quirements and is robust to the runtime constraints imposed by the environment
and the infrastructure.

Proceedings of MPM 2014 74

Taming Multi-Paradigm Integration in a Software Architecture Description Language

6 Related work

There are several architectural description languages and standards that have
similarities to ours, such as AADL [8], OMG’s SysML [9], and AUTOSAR [2].
Both AADL and SysML are general-purpose architecture description languages
that support abstractions such as software components, hardware and system
integration. Our main reason for developing a custom architecture language was
the need fo a language closely coupled to the semantics of our target platform to
provide a sufficient level of tool automation. This required specific syntax and se-
mantics for modeling language elements like scheduling, component interactions
and security; using an AADL annex would have been too complex.

AUTOSAR [2] is a comprehensive standard for vehicle architectures that
has a component model similar to ours. The drawback is that the AUTOSAR
standard contains very little guidance on design-time analysis and tool support,
both of which are crucial for architecture design languages.

There exist various approaches for integrating textual artifacts within graph-
ical modeling languages. XText [7] is a framework integrated into the Eclipse
Modeling Framework (EMF) for developing domain-specific languages. From a
grammar in the XText grammar format, XText generates a parser that allows a
graphical editor and text editor to be simultaneously used to edit a file, with the
changes from each reflected in the other. The main difference to our approach is
that our add-on sets multiple attributes based on the contents of the text. XText
does offer an extension API that could be used to implement similar behavior.

The work in [5] considers the problem of using both textual and graphical
notations to modify models of the same language. This is different from our
work, which integrates textual code in one formalism with graphical models in
another formalism. Language workbenches [15] also offer language composition
features that can be used to combine textual and graphical languages for different
formalisms.

Our temporal partition scheduler is based on the temporal partitioning method
described in the ARINC-653 avionics standard [1]. ARINC-653 systems have
been modeled using AADL in [4]. Unlike the ARINC-653 standard, which does
not require address separation between processes of the same partition, DREMS
allows system integrators to separate components into separate address spaces
(called actors) within the same partition. The main advantage of our approach
is that we can handle faults within related components (within the scope of
an actor) with guaranteed isolation. This is not possible with the ARINC-653
standard.

7 Conclusions
This paper presented the multi-paradigm challenges we faced when building an
architecture description language for distributed, real-time systems. The first
challenge was integrating two different formalisms: textual code and graphical
block diagrams. The second was computing a low-level runtime schedule from
individual, high-level temporal partitions. The third challenge was integrating
design-time analysis.

Proceedings of MPM 2014 75

Taming Multi-Paradigm Integration in a Software Architecture Description Language

In cases such as ours, where a significant level of tool automation is required,
we believe that a custom architecture language tailored to the semantics of the
runtime platform provides a big advantage. The alternative, using a standard
architecture language, can require adapations to code generators and automated
analysis tools to account for semantic differences between the language and the
runtime platform, such as scheduling or security.

Acknowledgments: This work was supported by the DARPA System F6
Program under contract NNA11AC08C and USAF/AFRL under Cooperative
Agreement FA8750-13-2-0050. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of DARPA or USAF/AFRL.
References
1. ARINC Incorporated, Annapolis, Maryland, USA. Document No. 653: Avionics

Application Software Standard Inteface (Draft 15), January 1997.
2. Autosar GbR. AUTomotive Open System ARchitecture. http://www.autosar.

org/.
3. Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient smt solver.

In TACAS, pages 337–340, 2008.
4. Julien Delange, Laurent Pautet, Alain Plantec, Mickael Kerboeuf, Frank Singhoff,

and Fabrice Kordon. Validate, simulate, and implement ARINC 653 systems using
the AADL. In SIGAda, SIGAda ’09, pages 31–44, New York, NY, USA, 2009.
ACM.

5. Luc Engelen and Mark van den Brand. Integrating textual and graphical modelling
languages. Electron. Notes Theor. Comput. Sci., 253(7):105–120, September 2010.

6. Tihamer Levendovszky et al. Distributed real-time managed systems: A model-
driven distributed secure information architecture platform for managed embedded
systems. IEEE Software, 31(2):62–69, 2014.

7. Moritz Eysholdt and Heiko Behrens. Xtext: Implement your language faster than
the quick and dirty way. In SPLASH, SPLASH ’10, pages 307–309, New York,
NY, USA, 2010. ACM.

8. P.H. Feiler, Bruce A. Lewis, and S. Vestal. The SAE Architecture Analysis & De-
sign Language (AADL) A Standard for Engineering Performance Critical Systems.
In Computer Aided Control System Design, pages 1206–1211, 2006.

9. Matthew Hause et al. The SysML Modelling Language. In Fifteenth European
Systems Engineering Conference, volume 9, 2006.

10. George T. Heineman and Bill T. Councill. Component-Based Software Engineering:
Putting the Pieces Together. Addison-Wesley, Reading, Massachusetts, 2001.

11. Kurt Jensen and Lars Michael Kristensen. Coloured Petri Nets - Modelling and
Validation of Concurrent Systems. Springer, 2009.

12. Terence Parr. The Definitive ANTLR Reference: Building Domain-Specific Lan-
guages. Pragmatic Bookshelf, 2007.

13. Klaus Schild and Jörg Würtz. Scheduling of time-triggered real-time systems.
Constraints, 5(4):335–357, 2000.

14. Lothar Thiele, Samarjit Chakraborty, and Martin Naedele. Real-time calculus for
scheduling hard real-time systems. In in ISCAS, pages 101–104, 2000.

15. Markus Völter and Eelco Visser. Language extension and composition with lan-
guage workbenches. In SPLASH, SPLASH ’10, pages 301–304, New York, NY,
USA, 2010. ACM.

Proceedings of MPM 2014 76

Taming Multi-Paradigm Integration in a Software Architecture Description Language

Integrating Language and Ontology Engineering

Bruno Barroca‡, Thomas Kühne∗, Hans Vangheluwe†‡

† University of Antwerp, Belgium
‡ McGill University, Montréal, Canada

∗ Victoria University of Wellington, New Zealand

Keywords: Ontologies, FTG+PM, Properties, Meta-modeling Environments,
Description Logics, Semantic Mapping, Verification spaces

Abstract. Creating new modeling environments has become a relatively
low-cost investment thanks to meta modeling environments and language
workbenches that can automatically synthesize environments from lan-
guage specifications. However, the currently existing tools are focused on
language syntax and execution/simulation rather than providing means
to reason with semantic properties from the real world. It appears that
reasoning opportunities as they arise in ontology research (e.g., based on
description logics) are currently not exploited in the field of language en-
gineering. In this vision paper, we explore the integration of the hitherto
rather isolated areas of language engineering and ontology engineering
in order to exploit the potential of using reasoning for models expressed
in user-defined languages.

1 Introduction

The automated generation of modeling and programming environments can look
back at a long history – starting in the 1980’s [1] – of providing means to de-
fine the syntax and semantics of languages. Recently, influences from model-
driven development made it easier to define semantics more flexibly by means of
model-to-model transformations. However, most semantics definitions are still
concerned with execution or simulation.

Despite the common trend of increasing the return on investment by improv-
ing languages and tools, it appears that the basic ’grammar-ware’ principles of
meta modeling environments has not changed in over 30 years. However, we
can observe that the ability to chain transformations has enabled modelers to
learn more about their models – and thus the systems under study – than would
have been economically feasible in former days by defining a single transforma-
tion towards a particular platform: i.e., generating a compiler. The Formalism
Transformation Graph + Process Modeling (FTG+PM) [2] approach from the
area of multi-paradigm modeling is the most explicit example for this style of
modeling in which the output of one transformation is used as the input for
another one.

Proceedings of MPM 2014 77

The crucial aspect of this approach is that from an initial set of models, we
can have orthogonal transformations with totally different intents. In particu-
lar, each path in the transformation graph is designed to, from the initial set of
models, illuminate a particular set of properties of the system under study/de-
velopment, e.g., regarding termination, liveliness or even safety [3].

In this context, the main trend from the language engineering area, is to
establish a trace between the property checking results (in the leaves of a given
transformation chain) and the original model so that, for instance, the results
can be suitably interpreted by the modeler in a particular domain. In this pa-
per, we test yet another approach on this problem: we argue that one should
explicitly associate the properties of interest as an ontological type (i.e., intro-
duce ontological types explicitly as first-class citizens), and then test/check its
conformance by means of transformation(s) to the respective semantic domains
w.r.t. those properties.

To this end, we explore at the conceptual level, the integration of two hith-
erto unrelated areas: First, language engineering, with its support for model
representation and transformation, and second, ontologies with their rich tool
set for describing and inferring properties. In Section 2 we introduce a railway
system, that we will use as a running example to illustrate both challenges and
our proposed solution. In section 3, we present the context of the problem and
the ingredients that contribute to our proposed solution which is presented in
Section 4. Finally, we conclude in Section 5.

2 Case Study: The Railway System

Railway transportation is only one of the many sectors that have benefited from
the application of computer automation techniques ranging from early auto-
mated railway control to train scheduling [4].

2.1 General Requirements

First and foremost a railway system needs to support transport of people or
goods between endpoints. This basic function, however, is accompanied by ad-
ditional constraints and boundary conditions. For example, a railway system
must be affordable by end users and profitable for operators, placing certain
constraints on energy consumption, personnel cost, etc. Moreover, as with any
system where lives and or loss of large monetary investments are at stake, safety
is a critical concern. Preventing trains from derailing or colliding is crucial for a
railway system.

We observe that it is possible to separate the requirements into what hap-
pens, i.e., trains moving between endpoints, and how it happens, e.g., without
collisions. Generally speaking, we can distinguish between the mechanics of a sys-
tem (i.e., its execution semantics), and properties that can be associated with
the mechanics (with verification semantics).

Proceedings of MPM 2014 78

Integrating Language and Ontology Engineering

2.2 Execution Semantics

In the following, we will use a language to define a railway network (c.f. [5])
to describe the system mechanics. A railway network comprises a collection of
railway tracks organized into sections and connecting different train stations.
In order to avoid collisions, only one train is allowed in one section at a time.
Signals control when trains may enter and leave sections. The combination of
signals, their control logic, and track switches is called the interlocking system
and its purpose is to prevent conflicting train movements.

The behavior of such an interlocking system is specified in a control table
which embodies information about conflicting train routes. A formal description
of the control table in combination with information about the physical railway
layout could be regarded as a prescriptive model for the execution behavior of
the interlocking system.

2.3 Verification Semantics

While one could use the execution behavior of an interlocking system to simulate
the latter, this would only enable the detection of errors in the interlocking
system through testing. In order to gain certainty regarding the absence of any
potential conflicting train movements, it is necessary to formalize the respective
safety requirement and ensure that it is satisfied by the interlocking system under
study.

Somsak achieves the automated verification of an interlocking system by
translating it into a colored petri net (CPN) which can then be automatically
verified using CPN tools, a Petri Net model checker [5]. Each railway track repre-
sents a resource that should only be used by one train in order to avoid collisions,
and can therefore be directly mapped to a place in the CPN formalism. Despite
the fact that Somsak only verified three scenarios, this work is a good example
of how domain models (such as interlocking systems) can be automatically and
systematically verified by reusing effective algorithms developed in other domain
such as CPNs.

Note that safety concerns are just one example for the utility of verification
semantics. The railway operators may also be interested in the economics of
running the railway system and thus may want to convince themselves that
certain track layouts will achieve a desired throughput. In general, many such
properties will have to hold for a given system and will be required to occur in
conjunction, i.e., the system should be both economical to run and be safe to
use.

3 Linguistic Models versus Ontologies

It is worthwhile pointing out that both execution and verification represent two
different interpretations of one and the same model. Two different semantic
domains are used in order to answer different sets of questions regarding the same
model. The execution semantics tells us what may happen for a given interlocking

Proceedings of MPM 2014 79

Integrating Language and Ontology Engineering

system, while the verification semantics tells us whether the entirety of all that
may happen for a given interlocking system satisfies a particular property.

3.1 Natural vs. Verification Semantics

Intuitively, it appears that the execution semantics could be regarded as the
natural “meaning” of an interlocking system, while the verification semantics
appears to subject the interlocking system to a test. However, intuition is not
reliable and in the following we thus strive to identify intrinsic differences be-
tween these two kinds of semantics.

Both kinds of semantics obviously fulfill the minimal criterion of being map-
pings that are functional and total [6]. At first sight, it may furthermore appear
as if the two different kinds of semantics were on the same footing and thus
interchangeable. In our example, there appears to be a symmetric relationship
between

– the subset of safe interlocking systems,
– the subset of executions of safe interlocking systems, and
– the subset of elements in the verification space that satisfy the property

“safe”.

On closer examination, however, it becomes apparent that the roles of the two
different semantics cannot be swapped as there is an asymmetric dependency.
On the one hand, the space of all possible execution behaviors, as defined by
the execution semantics, can be partitioned by the properties it may satisfy.
In our example, the set of safe interlocking systems can be derived from the
subset of “safe” elements in the verification space and only then find a subset of
safe interlocking system executions in the overall set of all possible executions
of interlocking systems. On the other hand, it is not true that the verification
space can be usefully partitioned from the execution semantics. In our example,
this is trivial, since following our assumptions, we have no other way to decide
about the “safety” of a given interlocking system execution.

This asymmetric dependency may constitute an obstacle for purposes of our
conceptual integration. Fortunately, there exist technologies are a good fit in
order to

(a) enable the anchoring of natural semantics to models, and
(b) support the definition and organization of semantic properties

3.2 Language Engineering

A linguistic type model – often referred to as “metamodel” – is ideal for enabling
the attachment of natural semantics to models. Following our example, if we
define a “Railway DSL” grammar and well-formedness constraints combined in
the form of a linguistic type model, then we can determine the structure of all
elements that may occur in an interlocking system model. The linguistic type

Proceedings of MPM 2014 80

Integrating Language and Ontology Engineering

model is thus ideally suited to be used as the basis for transformation definitions
such as semantic mappings.

Existing metamodeling environments can synthesize complete environments
for configuring scenarios – such as the topology of the railway network, position-
ing of signaling devices, the control table logic, etc. – and even use the linguistic
type model as the basis for subsequent transformation (language) definitions [7].

Conformance of a model to a linguistic type model is typically granted by
construction. In special cases of “freehand” (as opposed to syntax directed)
editing and language evolution it may be necessary to check whether a model
conforms to a linguistic type model, but in most cases the model is the result
of using the linguistic type model as a generator, e.g., by structured editing or
model generation.

3.3 Ontology Engineering

An ontology comprises and organizes a number of concepts and may use de-
scription logic to express concept properties and relationships. While ontologies
in general contain very different kinds of concepts – of which so-called moment
types (properties) are only a particular subset – the technology associated with
them appears to be eminently suited to accommodate a taxonomy of properties
derived from the various verification semantics.

The most popular ontology language is the Web Ontology Language (OWL),
which along Common Logic (CL), and the Resource Description Framework
(RDF) is included in the Ontology Definition MetaModel (ODM) proposed by
the Object Management Group (OMG). The most advanced kind of reasoning
in ontology engineering is achieved by means of description logics (DLs). DLs
is a family of knowledge representation languages, which are used as logical
formalisms to support reasoning, e.g., in the context of the Semantic Web. DLs
are less expressive than first order logics, hence they are amenable to decidable
and efficient reasoning mechanisms.

The most interesting feature of these languages is their ability to infer new
knowledge, i.e., make implicit knowledge explicit. DLs language extensions span
from introducing the notion of time as partial-order relations such as in tem-
poral extensions [8]; introducing vagueness or incomplete concepts, such as in
fuzzy logics extensions [9]; introducing the notion of concepts with probability
values [10]; to introducing the ability to express possibility of event occurrence,
such as on possibilistic extension [11].

Conformance of a model to an ontological type, in contrast to linguistic
type model conformance, is never granted by construction. A conformance check
always requires the application of a certain interpretation – i.e., a semantic
mapping whose choice depends on the specific property that is to be validated
against – and then the subsequent ascertainment of whether or not the property
(or properties) associated with an ontological type hold(s) for the element that
is the result of the semantic mapping.

In general, ontological types are agnostic to the particular domain they are
applied to. For instance, in our example the safety property essentially embod-

Proceedings of MPM 2014 81

Integrating Language and Ontology Engineering

ies “absence of collisions” and could also be applied to a assembly line scenario
in which workpieces are transported and merged by conveyor belts. A different
semantic mapping would be required from an assembly line model into the ver-
ification space, but ascertaining whether the collision-free property holds based
on the respective element in the verification space by using a Petri Net model
checker would be identical to the railway example. For that, just consider that
instead of trains to Petri Net tokens, we would now have products to Petri Net
tokens; and instead of railway tracks to Petri Net Places, we would now have
conveyor belts to Petri Net Places; and the property to check is whether there
exist some situation in the entire set of possible situations where there are two
Tokens in the same Place.

While the above described language agnosticism allows ontological types and
their definition to be reused, it also means that it is not straightforward to asso-
ciated further ontological types to a model: for instance, consider the situation
where the only classification information known for a given model is a single on-
tological type. The latter can classify models from a whole range of languages so
it is not clear which semantic mapping (of many potentially applicable) would
have to be applied in order to validate it (the model) against another onto-
logical type. In contrast, if the linguistic type of a model is known (typically
by-construction in most modeling environments) then it is trivial to determine
which semantic mappings are available for it.

4 Integrating Languages with Ontologies

So far we have identified a particular subkind of semantics with associated prop-
erties that gives rise to ontological types (i.e., verification semantics), and fur-
thermore observed that linguistic types complement the latter. In the following,
we describe what a complete framework that encompasses language engineering
and ontology engineering could look like. Such an integrated approach is clearly
desirable since it allows us to not execute, simulate, and test models w.r.t. the
respective referents in the real world, but also to go beyond and reason about
their properties.

For instance, in our example, we could specify a railway ontology based on
notions concerning the economic efficiency and/or safety of railway topologies.
We could then infer the most economical, but also safe, train schedules using for
instance design space exploration techniques.

A complete framework for modeling with both linguistic and ontological
types, would typically use multiple formalism integration – in the style of FTG+PM
– and would have a number of desirable features:

(a) While transforming models across different formalisms, we should be able
to trace the properties that are being lost, preserved or created during such
transformations;

(b) It is rather likely that ontological types will be reusable across domains
(e.g., safety in the context of rail transportation and collision-free schedules

Proceedings of MPM 2014 82

Integrating Language and Ontology Engineering

in the context of assembly lines). This will greatly increase the return on
investment for developing the respective analysis approaches.

4.1 Conceptual Framework

We start our conceptualization from the well known model developed in [12] that
explores how linguistic symbols are related to the objects they represent.

Based on this conceptualization, our first attempt is presented in Figure 1 on
the left, where ‘System’ replaces the real world object, the ‘Ontological Type’
replaces thoughts (also called reference or Concept), and finally the ‘Linguistic
Type’ replaces symbol (also called ‘Sign’). Moreover, we present in the center of
the triangle, the model element, which in the modeling world is the first-class
entity that relates the System under study/development with both Ontological
and Linguistic types.

Linguistic
Type

re
p

re
se

n
ts

System

Ontological
Type

m
(Sentence)

m
(Sentence)

[[m]]
(Sentence)

Linguistic
Type

Semantic
Domain

Language

[[]]

Ontological
Type

Property

re
q

u
ir

es

Fig. 1. A base conceptual framework (on the left), and a refined version (on the right).

The Figure 1 on the right, extends our first attempt, where we unfold the ‘on-
tological instance-of’ relation between a given model m and its ontological type
(denoted in the Figure as ‘Ontological Type’). Notice that we start from a situa-
tion where although linguistic types are taken for granted (i.e., by-construction)
in modeling environments, the same is not true for ontological types. The un-
folding of this relation is therefore done by means of a semantic mapping [[]]
to a verification platform where a set of properties (denoted in the Figure as
‘Property’) relevant w.r.t. that given ‘Ontological Type’ can be verified. This
relevance is stressed in the Figure with the relation ‘requires’, which means that
a given ‘Ontological Type’ depends or includes as part of its intension, a given
set of properties.

One way of transversing the left side of this diagram is therefore, by assuming
that we know which Properties are required by a given Ontological Type, so
that we can choose the most appropriate verification platform and devise a
semantic mapping [[]] which can be realized by means of a model transformation.
This model transformation is then able to automatically transform arbitrary

Proceedings of MPM 2014 83

Integrating Language and Ontology Engineering

models m given that they do conform (in the linguistic sense) to a given meta-
model (or grammar) depicted in the Figure as ‘Linguistic Type’. The resulting
transformed model denoted as [[m]] by construction of the transformation itself
should also conform linguistically to the language from the verification platform
(denoted as ‘Semantic Domain Language’). The circle in this diagram is closed
by the satisfaction relationship (denoted as |=) between [[m]] and the Property
is established, which means that we can now conclude that the given model m
is indeed an ontological instance of the given Ontological Type.

It is important to mention here that in practice, there might be several dif-
ferent properties that a given Ontological Type may require. Therefore, we can
expect to have several different orthogonal semantic mappings [[]] using possibly
different kinds of verification mechanisms (and their associated semantics) in or-
der to be able to finally establish that ontological instance relationship between
a model and an ontological type.

4.2 Framework Instantiation

After describing the general terms of our conceptual framework, we will now look
at its instantiation in the particular case of our railway transportation example.

railway m

[[railway m]]

Railway
MM

CPN MM

[[]]

Safe

Collision-
free

re
q

u
ir

es

Railway
MM

CPN MM

Collision-
free

Safe

Fig. 2. Instantiation of the conceptual framework on the railway transportation exam-
ple (on the left), and the respective solution-partition space (on the right).

At the bottom left of Figure 2 (on the left), we see that the system under
study is an interlocking system in conjunction with a train scheduling system.
The model railway m at the bottom right, represents this system. The linguistic
type of railway m is the meta-model “Railway MM” to which it conforms syn-
tactically. At the top right is an interpretation of railway m that was chosen in
order to enable a reachability analysis. Such an interpretation can be achieved
by means of a model transformations of model railway m into a corresponding
Colored Petri Net [[railway m]]. The latter also has its own linguistic type (the
meta-model “CPN MM”) to which it conforms syntactically.

Proceedings of MPM 2014 84

Integrating Language and Ontology Engineering

The analysis of [[railway m]] is performed by unfolding the complete state-
space (e.g., by using the model-checking engine of a CPN tool). This state-space
is then queried for a property “Collision − free”, e.g., checking whether any
collision scenarios exist. This property “Collision−free” is depicted at the top-
left. Model railway m can be said to be an ontological instance of the ontological
type “Safe” (i.e., be called “safe”) if and only if its interpretation [[railway m]]
satisfies property Collision− free.

Finally, we show in Figure 2 (on the right) the solution space partitioning
complements the commuting diagram on the left. Notice that solutions are sys-
tems in the real world. On the one hand, given the ‘requires’ relation, the set
of safe solutions is a subset of collision-free solutions: in other words, ‘safe’ is
a stronger concept which may depend not only on being collision-free but also
from other concepts. On the other hand, given the semantic mapping [[]], the set
of solutions represented by models conforming to the Railway MM will always
be a subset of the total set of the solutions represented by models conforming
to the Colored Petri Nets CPN MM. Finally, given the above sets, we conclude
that the set defined by the commuting diagram on the left is defined by the
intersection of all of the sets defined on the right: i.e., a solution which has both
a Railway model representation and its respective CPN representation, which is
proven to be collision-free, and therefore an ontological instance of type Safe.

5 Conclusions

In this vision paper, we have proposed to integrate the technological spaces
of language engineering and ontology engineering in a manner that strengthens
language engineering to include concepts and techniques from ontology engineer-
ing. While modelers have already been successfully checking models for semantic
properties with various approaches in the past, to the best of our knowledge our
approach is the first to introduce ontological types with semantic properties as
first-class citizens and proposes to arrange them in taxonomies, thus exploiting
semantic relationships.

We have identified differences between ordinary, “natural” semantics and
verification semantics, observing that semantics of the latter kind are agnostic
to languages and partition sentences in a language. We have chosen to refer to
types that achieve such partitions as “ontological types”, referencing the fact that
they are based on semantic properties, rather than on syntactic conformance.

We could only touch upon the potential of using model exploration and infer-
ence engines to leverage a taxonomy of ontological types to a tool that supports
the identification of models that satisfy properties in multiple dimensions.

Nevertheless, in this paper we have contributed towards finding optimal ways
of combining linguistic type models with ontologies w.r.t. previous attempts [13,
14], which are rather more focused (with again) more syntactic issues than con-
ceptual ones. We also believe that our proposal is suitable to shed further light
on the most precise characterization of ontological vs linguistic classification as
presented in [15]. However, our use of the prefix “ontological” should not be

Proceedings of MPM 2014 85

Integrating Language and Ontology Engineering

construed as meaning that our notion of “ontological types” is exactly the same
as the “ontological types” discussed in [15]. While there is certainly large over-
lap, it remains to be seen whether our notion full subsumes the other, or rather
represent as subset of that may be best characterized as “moment ontological
types”.

References

1. T. Teitelbaum and T. Reps, “The Cornell Program Synthesizer: A syntax-directed
programming environment,” Commun. ACM, vol. 24, pp. 563–573, Sept. 1981.

2. S. Mustafiz, J. Denil, L. Lúcio, and H. Vangheluwe, “The FTG+PM framework
for multi-paradigm modelling: An automotive case study,” in Proceedings of the
6th International Workshop on Multi-Paradigm Modeling, MPM ’12, (New York,
NY, USA), pp. 13–18, ACM, 2012.

3. L. Lucio, S. Mustafiz, J. Denil, H. Vangheluwe, and M. Jukšs, “FTG+PM: An inte-
grated framework for investigating model transformation chains,” in SDL Forum,
pp. 182–202, 2013.

4. J. Pachl, Railway Operation and Control. VTD Rail Publishing, 2nd ed., 2009.
5. S. Vanit-Anunchai, “Modelling railway interlocking tables using coloured petri

nets,” in Coordination Models and Languages (D. Clarke and G. Agha, eds.),
vol. 6116 of Lecture Notes in Computer Science, pp. 137–151, Springer Berlin Hei-
delberg, 2010.

6. D. Harel and B. Rumpe, “Meaningful modeling: What’s the semantics of “seman-
tics”?,” IEEE Computer, vol. 37, no. 10, pp. 64–72, 2004.

7. T. Kühne, G. Mezei, E. Syriani, H. Vangheluwe, and M. Wimmer, “Systematic
transformation development,” Electronic Communications of the EASST, vol. 21,
2009.

8. A. Artale, E. Franconi, M. Mosurovic, F. Wolter, and M. Zakharyaschev, “Tempo-
ral description logic,” in Handbook of Time and Temporal Reasoning in Artificial
Intelligence, pp. 96–105, MIT Press, 2001.

9. U. Straccia, “A fuzzy description logic for the semantic web,” in Fuzzy Logic and
the Semantic Web. Capturing Intelligence, Elsevier (2006) 73–90.

10. Z. Ding and Y. Peng, “A probabilistic extension to ontology language OWL,” in
In Proceedings of the 37th Hawaii International Conference On System Sciences
(HICSS-37), Big Island, 2004.

11. G. Qi, J. Z. Pan, and Q. Ji, “A possibilistic extension of description logics,” in In
Proc. of DL’07, 2007.

12. C. Ogden and I. A. Richards, “The meaning of meaning: A study of the influence
of language upon thought and of the science of symbolism.,” 8th ed. 1923. Reprint
New York: Harcourt Brace Jovanovich, 1923.

13. B. Henderson-Sellers, “Bridging metamodels and ontologies in software engineer-
ing,” J. Syst. Softw., vol. 84, pp. 301–313, Feb. 2011.

14. E. Kapsammer, H. Kargl, G. Kramler, T. Reiter, W. Retschitzegger, and M. Wim-
mer, “Lifting metamodels to ontologies - a step to the semantic integration of mod-
eling languages,” in In Proceedings of the ACM/IEEE 9th International Confer-
ence on Model Driven Engineering Languages and Systems (MoDELS/UML 2006,
pp. 528–542, Springer, 2006.

15. T. Kühne, “Matters of (meta-) modeling,” Software and Systems Modeling, vol. 5,
no. 4, pp. 369–385, 2006.

Proceedings of MPM 2014 86

Integrating Language and Ontology Engineering

	Preface
	Integrating System Modeling and Cost Models Using Meta-Modeling Techniques
	Discrete-Continuous Semantic Adaptations for Simulating SysML Models in VHDL-AMS
	ProMoBox in Practice: A Case Study on the GISMO Domain-Specific Modelling Language
	On Synergies between Model Transformations and Semantic Web Technologies
	Next Generation (Meta)Modeling: Web- and Cloud-based Collaborative Tool Infrastructure
	Towards an Approach for Orchestrating Design Space Exploration Problems to Fix Multi-Paradigm Inconsistencies
	Taming Multi-Paradigm Integration in a Software Architecture Description Language
	Integrating Language and Ontology Engineering

