
ACM/IEEE 17th International Conference on

Model Driven Engineering Languages and Systems

September 29, 2014 – Valencia (Spain)

XM 2014 – Extreme Modeling Workshop

Proceedings

Davide Di Ruscio, Juan de Lara, Alfonso Pierantonio (Eds.)

Editors’ addresses:

Juan de Lara

Escuela Politécnica Superior

Departamento de Ingeniería Informática

Universidad Autónoma de Madrid (Spain)

Davide Di Ruscio

Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica

Università degli Studi dell’Aquila (Italy)

Alfonso Pierantonio

Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica

Università degli Studi dell’Aquila (Italy)

Preface

Increasingly, models are starting to become commonplace and Model-Driven Engineering is gaining

acceptance in many domains, including

- Automotive Software Engineering

- Business applications and financial organizations

- Defense / aerodynamics / avionic systems

- Telecommunications domain

Raising the level of abstraction and using concepts closer to the problem and application domain rather than

the solution and technical domain, requires models to be written with a certain agility. This is partly in

contrast with MDE whose conformance relation is analogous to a very strong and static typing system in a

current programming language. For instance EMF does not permit to enter models which are not conforming

to a metamodel: on one hand it allows only valid models to be defined, on the other hand it makes the

corresponding pragmatics more difficult. In this respect, there is a wide range of equally useful artefacts

between the following extremes

- diagrams informally sketched on paper with a pencil

- models entered in a given format into a generic modeling platform, e.g., Ecore/EMF

At the moment MDE encompasses only the latter possibility, while depending on the stage of process it

might make sense to start with something closer to the former to eventually end up with the latter. For

instance, this clearly requires different notions of conformance and the possibility to even have a method for

user-defined conformance relations depending on the scope. In other words, we do need different forms of

agility in terms of both artefacts (the way they are conforming to metamodels) and processes (the way they

are created and whose subsequent versions linked together in a consistent and uniform framework).

The third edition of the Extreme Modeling Workshop (http://www.di.univaq.it/XM2014/) has been co-

located with ACM/IEEE 17
th
 International Conference on Model Driven Engineering Languages & Systems.

It provided a forum for researchers and practitioners where to discuss different forms of agility as

demonstrated by the technical program, including

- EMF modularity

- agile ways to assign semantics to graphical languages

- scalable modeling approaches

- agile development of model transformations

as well as empirical studies related to model-driven agile development.

Many people contributed to the success of XM 2014. We would like to truly acknowledge the work of all

Program Committee members, and reviewers for the timely delivery of reviews and constructive discussions

given the very tight review schedule. Finally, we would like to thank the authors, without them the workshop

simply would not exist.

September 2014

Davide Di Ruscio, Juan de Lara, and Alfonso Pierantonio

Organizers

Davide Di Ruscio (co-chair) Università degli Studi dell’Aquila (Italy)
Juan De Lara (co-chair) Universidad Autonoma de Madrid (Spain)
Alfonso Pierantonio (co-chair) Università degli Studi dell’Aquila (Italy)

Program Committee

Colin Atkinson University of Mannheim (Germany)
Paolo Bottoni Sapienza University of Rome(Italy)
Antonio Cicchetti Maalardalen University (Sweden)
Tony Clark Middlesex University (UK)
Jean-Marie Favre University of Grenoble (France)
Cesar Gonzalez-Perez Incipit CSIC (Spain)
Jeff Gray University of Alabama (USA)
Robert Hirschfeld Hasso-Plattner-Institut (Germany)
Gerti Kappel Vienna University of Technology (Austria)
Philipp Kutter Montages AG (Switzerland)
Stephen Mellor Freeter (UK)
Mark Minas Universität der Bundeswehr Mnchen (Germany)
Richard Paige University of York (UK)
Jesus Sanchez Cuadrado Universidad Autonoma de Madrid (Spain)
Bran Selic Malina Software Corp. (Canada)
Jim Steel University of Queensland (Australia)
Bernhard Rumpe (Germany)
Antonio Vallecillo Universidad de Malaga (Spain)
Vadim Zaytsev Universiteit van Amsterdam (NL)

Table of Contents

Putting Engineering into MDE: Components and contracts for models and trans-
formations .

1

Steffen Zschaler

How MAD are we? Empirical Evidence for Model-driven Agile Development . . . 2
Sebastian Hansson, Yu Zhao and Hkan Burden

Assigning Semantics to Graphical Concrete Syntaxes. 12
Athanasios Zolotas, Dimitris Kolovos, Nicholas Matragkas and Richard Paige

EMF Splitter: A Structured Approach to EMF Modularity . 22
Antonio Garmendia, Esther Guerra, Dimitrios S. Kolovos and Juan De Lara

Polymorphic Templates: A design pattern for implementing agile model-to-text
transformations. .

32

Gábor Kövesdán, Márk Asztalos and Laszlo Lengyel

Flexible and Scalable Modelling in the MONDO Project: Industrial Case Studies 42
Alessandra Bagnato, Etienne Brosse, Andrey Sadovykh, Pedro Mal, Salvador
Trujillo, Xabier Mendialdua and Xabier de Carlos

Configurable Formal Methods for Extreme Modeling . 52
Uli Fahrenberg and Axel Legay

Keynote

Putting Engineering into MDE: Components
and contracts for models and transformations

Steffen Zschaler

King’s College London

Models and model transformations are at the heart of MDE. To truly enable
model-driven engineering at scale, we need to ensure that we have the right tech-
nology in place for creating, reasoning about, and maintaining models and model
transformations. From other areas of software engineering—such as Component-
Based Software Engineering—we can learn that two principles are key for scal-
able engineering: modularity for dividing big problems into smaller ones and
a strong notion of contracts to enable independent development and modular
reasoning. In this talk, I will explore some of the work done over the past years
in developing notions of modularity and contracts for models and model trans-
formations. I will argue that the overall research agenda needs to aim towards
a theory of MDE, including a calculus of model management and sound but
flexible notions of typing for models and transformations..

Steffen Zschaler is a lecturer in software engineering at King’s College London, UK.

His research interests are in MDE, with a particular focus on modularity and reuse as

well as the modelling and analysis of non-functional properties. Most recently, he has

worked on composition of transformation-based DSL semantics and flexible notions of

typing for model-management operations. He has published around 90 scientific publica-

tions and has co-founded two series of workshops: MiSE at ICSE and NfC at MODELS.

He received his Dr. rer. nat. from Technische Universitt Dresden, Germany, in 2007.

1

How MAD are we?
Empirical Evidence for

Model-driven Agile Development

Sebastian Hansson, Yu Zhao, and H̊akan Burden

Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Sweden
gussebasha@student.gu.se, guszhaoyu@student.gu.se, burden@cse.gu.se

Abstract. Since the launch of the Agile Manifesto there has been nu-
merous propositions in how to combine agile practices with Model-driven
Development. Ideally the combination would give the benefits of agile –
e.g. rapid response to changes and shorter lead times – with the promises
of Model-driven development – such as high-level designs and automa-
tion. A commonality among the proposals is that they lack in empirical
evaluation. Our contribution is a systematic literature review to find out
to what experiences there are of Model-driven Agile Development, MAD,
from an empirical context. Among our conslusions is that MAD is sitll an
immature research area and that more experience reports from industry
are needed before we can claim to have understood the possibilities and
drawbacks of MAD.

Keywords: Systematic literature review, Agile practices, Model-driven
development

1 Introduction

Model-driven Agile Development, MAD, which aims to combine the benefits
of agile practices with the positives of Model-driven development, MDD, has
been a dream for many years. Mellor et. al. [15, 14] discuss the possibilities of
combining agile and MDA[16], proposing that many of the agile practices are just
as suitable for MDA. For MDA, executable models is a key feature for successful
MAD since they can replace code and use expressions closer to the language of
the customer. The idea that executable models serve as a better communication
media than code is supported by R. Gomes et al. [7] and Stahl and Völter
[21]. In addition, the latter claim that software is developed faster since tedious,
recurring implementation tasks are automated. Transformations will also ensure
that changes in the problem formulation are consistently propagated through the
solution much faster than in a code-centric context. Selic proposes the usage of
heterogeneous models by combining high-level modeling languages with detail-
level action languages, so that the benefits of MDD can be extended “to the full

2

development cycle, including its use in agile development techniques based on
multiple iterations” [20]. Rumpe argues that MAD will be successful since the
models will enable static analysis, rapid prototyping, code generation, automated
tests, refactoring and transformation as well as documentation [19]. Kaim, et
al. also argue that efficient model transformations are cruical if MAD is to
be achieved [21]. All contributions have in common that there is no concrete
empirical data backing the claims.

1.1 Research Topic

To see what empirical evidence there is for MAD we decided to conduct a system-
atic literature review [10]. The resulting contribution delivers an initial analysis
from the collected publications in order to answer our research questions

RQ1: What is the state of the art of MAD from an empirical point of view?
RQ2: What is lacking in the empirical literature regarding MAD?

Our results tell us that MAD is still too immature to claim wide-spread success
or a state of the art over another and that we need more reports on industrial
experiences of MAD in order to close the current gap in the literature.

1.2 Overview

The rest of our contribution is structured as follows; in the next section we will
explain our methodology, including the identification and analysis of relevant
publications. In section 3 we present our findings based on the papers that passed
both our inclusion and exclusion criteria as well as the quality criteria. Section
4 synthesises the findings in relation to the research questions while threats to
validity are given in section 5. Finally, in section 6 we conclude and propose
future work.

2 Collecting and Analysing the Publications

Following the guidelines presented by Kitchenham et al. [10] we have performed
a systematic literature review in order to answer our two research questions.

2.1 Collecting the Relevant Publications

We used three different digital libraries – IEEE explore, ACM digital library and
the SpringerLink library applying the search string (“agile” AND “model”) to
the listed titles. Publications explicitly mentioning MAD in an empirical setting
where included while publications discussing the combination of agile develop-
ment and MDD as a theoretical contribution were excluded. Only contributions
published after 2001, after the Agile manifesto was launched, were included while
those not written in English were excluded. If a publication was published in
multiple forms we selected the most comprehensive one, meaning that journals

3

Table 1. Included papers mapped to bibliographic reference and publication venue –
Journal, Conference and Workshop.

Paper Nr P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13
Bibl. ref. [25] [3] [11] [18] [12] [4] [9] [5] [17] [22] [8] [23] [24]
Venue J C C J C C C C C W C C J

had precedence over book chapters, chapters over conference preceedings which
in turn had precedence over workshops. Only peer reviewed publications were
considered.

The publications were then included or excluded in a three-step process.
First, titles and abstracts were analysed according to our inclusion/exclusion
criteria. A total of 291 publications were found – 86 publications originated
from Springerlink, ACM Digital Library yielded 84 publications while IEEE
Xplore contained 121 publications. Second, the introduction and conclusion sec-
tions of the included papers were studied to further refine the selection. This
resulted in 78 included publications. Third, the criteria were applied to the full
publications. After removing eleven duplicates and five contributions that were
published at multiple venues we ended up with thirteen papers that mention em-
pirically documented cases of MAD. We then went through all references in the
thirteen included papers, without finding any secondary studies that matched
our inclusion and exclusion criteria. The included publications are presented in
Table 1 together with their respective bibliographic reference number and type
of publication venue.

2.2 Quality Assessment of the Selected Publications

To ensure that we can get quality data from the selected papers we need suffi-
cient contextual and methodological information [6]. We therefore defined seven
quality criteria that represented 1) the aim of using MAD, 2) the strategy for
achieving MAD, 3) which agile practices that were used, 4) which MDD prac-
tices that were used, 5) details regarding the team and the project, 6) in what
kind of domain MAD was adopted, and 7) the impact in terms of MAD leading
to success or failure. The outcome of applying the quality criteria to the selected
papers is found in Table 2. Papers P4, P6, P7, P8, P10, and P12 fail to report
sufficient information about how MAD was applied, making it difficult to draw
parallels between the publications or synthesise empirical evidence of MAD. The
publication with insufficent context will not be a part of the results.

3 Results

In this section we present our findings based on the seven publications that
passed both the inclusion, exclusion and quality criteria. The focus in this section
is on the strategies that were employed, the challenges in adopting MAD and

4

Table 2. Results of applying the quality criteria to the included publications

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

Aim of MAD X X X X X X X X X X X X X
MAD strategy X X X X X X X X X X X X X
Agile practice X X X X X X X – X X X X X
MDD practice X X X X X X X X X X X X X
Team/project X X X – X – – – X – X – X
Domain X X X X X X X X X X X X X
Impact X X X X X X – – X X X X X

the impact of MAD while an overview of the quality criteria for Aim, Agile and
MDD practices, Team and Project as well as Domain is found in Table 3.

3.1 Overview

As seen in Table 3, publication P9 deploys Scrum, Model-Driven Architecture
(MDA [16]) as well as feature and mockup models to improve the handling of
variability in their accounting system. The actual implementaion was done by
an existing web design team.

Publication P1 is interesting in two different comparisons; First, P1 and P13
have both applied MAD within the telecom industry – which is not surprising
since Zhang is an author of both publications. However, the publications differ
in their motivations for MAD as well as how MAD was implemented in terms
of agile and MDD practices. The second comparison is between publications P1
and P3 which are similar in context – aim and chosen practices – but not in
domain. From the publications that passed the three sets of inclusion, exclusion
and quality criteria there is no common theme in how and why MAD was adapted
in relation to contextual factors.

3.2 MAD Strategies

The strategy used to achieve agile model-driven development differs among the
selected publications. P9 and P11 suggest to build mockup models, as a mean
of communication and for easy requirement gathering and handling requirement
changes. P11 promotes an agile way of building models, with specific tools to
easily transform the models under development. P1 suggests using iterations for
MDD and P5 wants sprints and iterations but to still have a high level design.
P13’s strategy is to have both agility and quality built into their development
process and P3 suggests a modified agile method and presents a tailored approach
to address the need of managing evolution using model-based techniques. P11
and P13 use a Test-driven development approach combined with modeling. Our
findings tell us that the common trend among the reviewed papers is to include
a more agile way into existing model-driven engineering practices. Especially
because of agile development’s advantages regarding rapid response to change

5

Table 3. The collected data for the quality criteria

Aim Agile
practices

MDD
practices

Team/Project Domain

P1 Shorten lead
time

Scrum, XP,
Iterations or
incremental
development

UML, Code
generation

New team, no
prior
experience of
agile or MDD

Telecom

P2 Respond to
change

Iterations or
incremental
development

UML Changed over
time

Legacy
system

P3 Shorten lead
time

Scrum, XP,
Iterations or
incremental
development,
Feature-
driven

Feature
models

New team Database

P5 Demanded by
domain

Scrum, XP UML Architect,
domain
expert,
coders, tester
and client

Web
application

P9 Improve
variability

Scrum MDA,
Feature
models,
Mockup
models

Web design
team

Accounting
system

P11 Involve
stakeholders

Scrum, XP,
Test-driven
development

Mockup
models

10 developers Customer
satisfaction
system

P13 Respond to
change,
Involve
stakeholders,
Improve
productivity
and quality

Test-driven
development

UML 60 people
divided into
sub-teams

Telecom

and close stakeholder involvement – a claim of MDD but where the included
publications see agile more successful.

The most interesting and comprehensive strategy we found is in P1. They
use a methodology called System Level Agile Process (SLAP). SLAP is a Scrum-
based agile methodology, constructed by Motorola that includes XP practices.
In SLAP the software lifecycle is split into short iterations, where each itera-
tion includes three sprints – requirements, architecture and development – and
then system integration feature testing. They conclude that “From MDD per-
spective the key to success is to maximize automation using the MDD tools chain
to enable mistake-free (high-quality) development and significant productivity in-

6

crease” and “From the Agile perspective, the key is to efficiently achieve end-
to-end iterations, from system engineering all the way to system testing. This
requires streamlining different process activities such as system engineering, de-
velopment, and testing”.

3.3 Challenges

Zhang et al. state in P1 that MAD “is still relatively new in real software de-
velopment. The learning curve is sharp for any new organization to adopt due
to process, culture, methodology, and other related changes. Thus, adopting a
new agile MDD process is not likely to produce a short-term benefit. But, for the
long-term, it’s ultimately worth it for large projects with multiple releases”. P12
also mentions the steep learning curve, this time for web modelling tools.

To provide lightweight-agility in development seems to be a solution for
Kulkarni et al. who in P3 argues that traditional agile development is not suited
for larger teams or projects.

3.4 Impact

When it comes to impact, publications P1, P2, P3 and P9 state that they success-
fully combined agile practices and MDD. P1 and P2 argue that the combination
could be useful for future development teams, due to the fact that the learning
curve is steep it is not likely to produce short-time benefits. P2 and P13 noticed
an increase in commitment, quality and productivity from the developers – de-
spite having different aims and strategies – while P11 report on improvements
regarding both time and satisfaction. P5 state that their approach would not be
effective on large projects while P13 states that their approach could be bene-
ficial and possible for any-size projects. Still, the overall assessment is that the
authors fail to provide detailed descriptions on what was successful and why.

4 Synthesis

The data drawn from seven publications can now be further refined into a syn-
thesis answering the research questions that motivated our systematic literature
review.

4.1 What is the State of the Art of MAD from an Empirical Point
of View?

Based on our findings, we can conclude that the area around MAD is immature
when it comes to empirical evidence and industrial experiences. To answer this
research question, it is not enough to look at the theoretical part, we need
evidence to prove any best practice or state of the art, though the evidence
seems to be lacking. The strategies used among the papers we found is in many
cases also contradictory to each other – providing information about different

7

domains, goals and strategies, making it difficult to claim any best practice
or success over someone else. Though the most common goals seem to be the
agile value of rapid response to change and contact to external stakeholders.
Another commonality is that a majority of the included publications want to
include agility into their MDD practices – and not extend agile practices with
MDD features – a situation that is seen in other areas since agile is the trend in
current software development.

Only when the area is more mature will it be possible to claim a state of the
art regarding the combinations of agile practices and MDD. Though claiming
that the area is not yet mature does not mean it is not possible to adapt. As
Zhang and Patel say in P1, MAD requires investments in both learning and
technology and the success will not be immediate. Other authors such as Lee et
al. argue in P5 that a pure agile methodology or a pure MDD approach is not
longer enough “we can not apply agile processes to web application development
directly. UML is not sufficient for modeling the navigation of Web applications”.

4.2 What is Lacking in the Empirical Literature Regarding MAD?

After removing articles based on our inclusion and exclusion criteria we only
had thirteen papers left mentioning any concrete empirical evidence. This is a
rather low value for an systematic literature review, which in turn suggests that
the area is still immature. According to the publication venues, this conclusion
is supported by the fact that there are only three articles published in journals,
suggesting again that the more mature and empirical research contributions
regarding MAD are still to be written. The search for secondary studies did not
result in any additional publications that matched our inclusion, exclusion nor
quality criteria – again suggesting that more research in the area is needed.

There are authors (e.g. Ambler [1, 2]) who discuss MAD from a more abstract
empirical setting, drawing from their own experiences without giving specific
details about a certain project or case and therefore lacking information how a
certain company or a specific team adopted MAD into their existing context. Six
out of the seven papers that passed our quality criteria also fail to deliver detailed
information how they performed MAD. They barely mention their team-setup,
what practices they combined and what tools they used. Only in P5 is the team
described in detail with information about team members and roles.

Future empirical publications would contribute substantially to our under-
standing of MAD if they provided information about:

Teams/project: What was the size of the team? Which responsibilities did the
team members have? Did the team members ahve any earlier experience of
agile or MDD? For how long did the project run?

Used practices: Which agile and MDD practices were used?
Strategy: How were the agile and MDD practices combined? Were the practices

easy to combine? Which where the challenges of introducing MAD?
Tools: Which tools were used to achieve MAD? Where specific tools for MAD

develop or could off-the-shelf tools be used?

8

Impact: Was MAD a success or a failure? What succeeded/failed and why?

As Ambler himself indicates “The use of Agile methodology in model-driven
development is not prevalent yet, except tailored Agile approaches, such as Agile
model driven development” [1]. Reza Matinnejad comes to the conclusion that
MAD “is a promising research context and a great practical concept, but it is not
mature enough and is still in its infancy” [13].

5 Threats to Validity

Our results may face validity issues as our search was restricted to ACM digital
library, Springerlink and IEEE explore. There are other digital libraries which
are widely used in the software engineering field. However, these three libraries
include the journals and conferences with the highest impact factor which should
imply that they represent the most mature research. Another threat to the va-
lidity is our search string, as we did a title search on the words agile and model,
it is possible that we have missed publications discussing the combination of
agile and model-driven development while not explicitly mentioning the fact in
their title. We tried to mitigate this by searching for secondary studies among
the references in our primary studies but after applying our inclusion and exclu-
sion criteria we could not find any additional publications. This gives us some
confidence that we could not have missed many articles in our initial search.
Our inclusion and exclusion criteria and our quality assessment can also be a
threat to validity as we were searching for actual empirical cases where the au-
thors mention certain key information that we as researchers see as empirical
evidence, such as teams, project success, MDD and agile practices among others.

There are many other papers that discuss how and why you should combine
the two development methods but they lack the key information, thus not being
identified as relevant publications for our systematic literature review. The pub-
lications not passing our criteria might have important information regarding
MAD, but could not be included in our data extraction and synthesis. Also, the
publications that passed all three sets of criteria could still contribute data of
poor quality as they might pass our criteria but fail to deliver detailed informa-
tion.

6 Conclusions and Future Work

In this paper we have presented the results of a systematic literature review
about empirical evidence on Model-Driven Agile Development. In the seven pa-
pers which passed all our quality criteria, the authors wanted to combine agile
methods and MDD in a way that could draw benefits from both worlds and at
the same time avoid their respective shortcomings. In the result section, we have
presented different integrations of agile and MDD practices for various purposes.
There are multiple authors discussing different theoretical approaches for MAD
but just a handful publications describing detailed information how a company

9

or a team adopted such a practice into their existing context. Six out of the seven
publications that passed our quality criteria also fail to deliver comprehensive
information how they performed MAD. They barely mention their team-setup,
what practices they combined and what tools they used.

Discovering that the empirical contributions regarding MAD are immature
gives plenty of opportunities for future research, especially when it comes to
detailed experience reports. The empirical experiences regarding MAD are still
few and lacking details. We aim to extend this study by including more publi-
cation databases and by providing a more comprehensive analysis of the found
publications. Such an anlsyis would also seek to map the theoretical proposals
to the empirical evidence for MAD.

References

1. Ambler, S.: Agile/Lean Documentation: Strategies for Agile Software Development.
www.agilemodeling.com/essays/agileDocumentation.htm, accessed June 19th 2013

2. Ambler, S.: Agile Modeling: Effective Practices for eXtreme Programming and the
Unified Process. John Wiley & Sons, Inc., New York, NY, USA (2002)

3. Burkhardt, R., Gruhn, V.: Agile Software Engineering: A New System for an Ex-
panding Business Model at SCHUFA. In: 5th Annual International Conference on
Object-Oriented and Internet-Based Technologies, Concepts and Applications for
a Networked World. pp. 201–215. Lecture Notes in Computer Science, Springer
Berlin Heidelberg, Erfurt, Germany (September 2004)

4. Cardoso, N., Rodrigues, P., Ribeiro, O., Cabral, J., Monteiro, J., Mendes, J.,
Tavares, A.: An agile software product line model-driven design environment for
video surveillance systems. In: 2012 IEEE 17th Conference on Emerging Technolo-
gies Factory Automation (ETFA). pp. 1–8 (Sept 2012)

5. Djanatliev, A., Dulz, W., German, R., Schneider, V.: Veritas - a versatile modeling
environment for test-driven agile simulation. In: Proceedings of the 2011 Winter
Simulation Conference (WSC). pp. 3657–3666 (December 2011)

6. Dyb̊a, T., Sjøberg, D.I.K., Cruzes, D.S.: What works for whom, where, when, and
why?: on the role of context in empirical software engineering. In: Runeson, P.,
Höst, M., Mendes, E., Andrews, A.A., Harrison, R. (eds.) ESEM. pp. 19–28. ACM
(2012)

7. Gomes, R., Rivera, G., Willrich, R., Lima, C., Courtiat, J.: A Loosely Coupled Inte-
gration Environment for Collaborative Applications. Systems and Humans, IEEE
Transactions on Systems, Man and Cybernetics, Part A 41(5), 905–916 (September
2011)

8. Grigera, J., Rivero, J.M., Robles Luna, E., Giacosa, F., Rossi, G.: From Require-
ments to Web Applications in an Agile Model-Driven Approach. In: Brambilla,
M., Tokuda, T., Tolksdorf, R. (eds.) ICWE 2012, 12th International Conference
on Web Engineering, Lecture Notes in Computer Science, vol. 7387, pp. 200–214.
Springer Berlin Heidelberg (2012)

9. Huang, Y.C., Chu, C.P.: Legacy System User Interface Reengineering Based on the
Agile Model Driven Approach. In: Qian, Z., Cao, L., Su, W., Wang, T., Yang, H.
(eds.) Recent Advances in Computer Science and Information Engineering, Lecture
Notes in Electrical Engineering, vol. 125, pp. 309–314. Springer Berlin Heidelberg
(2012)

10

10. Kitchenham, B., Charters, S.: Guidelines for performing Systematic Literature
Reviews in Software Engineering. Tech. Rep. EBSE 2007-001, Keele University
and Durham University Joint Report (2007)

11. Kulkarni, V., Barat, S., Ramteerthkar, U.: Early Experience with Agile Methodol-
ogy in a Model-Driven Approach. In: MODELS 2011, 14th International Confer-
ence on Model-Driven Engineering Languages and Systems. pp. 578–590. Lecture
Notes in Computer Science, Springer Berlin Heidelberg, Wellington, New Zealand
(October 2011)

12. Lee, W., Park, S., Lee, K., Lee, C., Lee, B., Jung, W., Kim, T., Kim, H., Wu,
C.: Agile development of Web application by supporting process execution and
extended UML model. In: APSEC ’05, 12th Asia-Pacific Software Engineering
Conference (December 2005)

13. Matinnejad, R.: Agile Model Driven Development: An Intelligent Compromise.
In: SERA 2011, 9th International Conference on Software Engineering Research,
Management and Applications. pp. 197–202. IEEE Computer Society, Baltimore,
MD, USA (2011)

14. Mellor, S.J., Balcer, M.: Executable UML: A Foundation for Model-Driven Archi-
tectures. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2002)

15. Mellor, S.J., Kendall, S., Uhl, A., Weise, D.: MDA Distilled. Addison Wesley Long-
man Publishing Co., Inc., Redwood City, CA, USA (2004)

16. Miller, J., Mukerji, J.: MDA Guide Version 1.0.1. Tech. rep., Object Management
Group (2003)

17. Pohjalainen, P.: Bottom-up Modeling for a Software Product Line: An Experience
Report on Agile Modeling of Governmental Mobile Networks. In: 15th International
Software Product Line Conference (SPLC). pp. 323–332 (August 2011)

18. Ramos, A., Ferreira, J., Barcelo, J.: LITHE: An Agile Methodology for Human-
Centric Model-Based Systems Engineering. Systems, Man, and Cybernetics: Sys-
tems, IEEE Transactions on 43(3), 504–521 (May 2013)

19. Rumpe, B.: Agile modeling with the UML. In: Wirsing, M., Knapp, A., Balsamo,
S. (eds.) Radical Innovations of Software and Systems Engineering in the Future,
pp. 297–309. No. 2941 in Lecture Notes in Computer Science, Springer Berlin
Heidelberg (Jan 2004)

20. Selic, B.: Model-Driven Development: Its Essence and Opportunities. In: ISORC’06
Proceedings of the Ninth IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing. pp. 313–319. IEEE Com-
puter Society, Gyeongju, South Korea (April 2006)

21. Stahl, T., Völter, M.: Model-Driven Software Development: Technology, Engineer-
ing, Management. John Wiley & Sons Inc. (2005)

22. Urli, S., Blay-Fornarino, M., Collet, P., Mosser, S.: Using Composite Feature Mod-
els to Support Agile Software Product Line Evolution. In: Proceedings of the 6th
International Workshop on Models and Evolution. pp. 21–26. ME’12, ACM (2012)

23. Xufeng, L., Marmaridis, I., Ginige, A.: Facilitating Agile Model Driven Develop-
ment and End-User Development for EvolvingWeb-based Workflow Applications.
In: ICEBE 2007, IEEE International Conference on e-Business Engineering. pp.
231–238 (October 2007)

24. Zhang, Y.: Test-driven modeling for model-driven development. Software, IEEE
21(5), 80–86 (September 2004)

25. Zhang, Y., Patel, S.: Agile Model-Driven Development in Practice. IEEE Software
(2011)

11

Assigning Semantics to
Graphical Concrete Syntaxes

Athanasios Zolotas, Dimitrios S. Kolovos,
Nicholas Matragkas and Richard F. Paige

Department of Computer Science
University of York, York, UK

Email: {amz502, dimitris.kolovos, nicholas.matragkas, richard.paige}@york.ac.uk

Abstract. Graphical editors that are used in the domain of Model-
Driven Engineering (MDE) follow specific conventions to denote relations
between elements such as edges and containments. However, existing
research suggests that there are other visual aspects that can better
encode these relations such as the shape, the position and colour of the
elements. In this paper, we propose the use of these physical variables to
denote information regarding attributes and relations between elements.
Running examples of DSLs in which such paradigms can be of benefit
are presented.

1 Introduction

In the majority of graphical model editors, nodes are used to represent different
types and edges to denote relations between them. Some editors also allow the
use of containments to group elements that conceptually belong to the same
container while others allow the replacement of geometrical shapes with icons.

The importance of visual notation in diagrams and the impact on under-
standing them has been confirmed by different empirical studies [1], [2], [3].
Visual characteristics of the notation can help to better understand the mod-
elled concepts while changes to them affect the final understanding, even if the
semantics of the concepts have not changed. However, research on the design of
graphical concrete syntaxes for modelling languages and Domain-Specific Lan-
guages (DSLs) in general suggests that diagram-based information related to the
colour, size, location of model elements is ignored by the metamodel tools as the
majority of effort is put on the semantics of the notation rather that the visual
representation. [3]

In the emerging community of bottom-up and flexible modelling, where do-
main experts are invited to create example models of the envisioned DSL, the
traditional graphical MDE conventions are not always easy to follow. For in-
stance, in a DSL that will be used to graphically design the seating plan for
an event, a domain expert will likely place each guest close to the table he/she
belongs to. A person not familiar with the traditional MDE conventions is not
likely to use edges to connect guests to the tables or place the guests on the

12

tables to express the notion of containment nor would they create an attribute
for each guest to hold the ID of the table she belongs to. The former notation
arguably looks more natural than the latter.

Even in cases where bottom-up modelling is not used or where users are
familiar with the traditional MDE conventions, the use of such physical char-
acteristics could be beneficial. In the same example above, it would be more
natural to change the table of a guest by just moving her around different ta-
bles, rather than changing the value of the appropriate attribute, or by deleting
an existing node and drawing another node to the new table.

In this paper we argue that some of the physical characteristics of diagram
elements can be used to extract useful information about their underlying model
elements. We present examples where such information is useful. In the examples
we use a flexible modelling technique, called Muddles [4], to represent our models
benefiting from its model querying capabilities to evaluate our claims.

The rest of this paper is structured as follows. In Section 2 related work
in the field of notation design is discussed and bottom-up flexible modelling
techniques are presented. Section 3 includes a brief presentation of the Muddles
approach. In Section 4 we present an number of physical attributes and illustrate
via running-examples how can assist in extracting useful information like the
types of elements and relations between them. In Section 5 we conclude the
paper and outline plans for future work.

2 Related Work

In [3], Moody proposes a set of rules that should be followed when creating
graphical notation for a modelling language. He highlights the importance of
the physics of notations in the development of DSLs and the fact that this is a
neglected issue so far. The theory of communication by Shannon and Weaver [5],
is adapted by Moody for the domain of graphical notations: the effectiveness of
the communication of a diagram can be increased by choosing the most appro-
priate notation conventions of these that the human mind can process. In [6],
Bertin identified a set of 8 visual variables that can encode and reveal infor-
mation about the elements they represent or their relations in a graphical way.
These variables are: the horizontal position, the vertical position, the shape, the
size, the colour, the value (referred as “brightness” [3]), the orientation and the
texture.

In [7], [8] the authors propose a set of metamodels that can be used in the
classification of visual languages taking into account spatial information. In [9]
the authors present a parsing technique that can incorporated into freehand
editors and turn them into syntax-aware, using different criteria such as spatial
relationships. Finally, Baar [10], proposes the formal definition of the concrete
syntax of modelling languages.

In the field of bottom-up metamodelling, [11] proposes the use of example
models to semi-automatically infer the metamodel. In [12], the example models
created by domain experts using drawing tools can be used to construct the

13

metamodel. In [13], models that do not conform to their metamodel because the
latter evolved, can be used to recover the metamodel they are instances of. Fi-
nally, in [4], users, using a simple drawing tool, define example models which are
then amenable to programmatic model management (validation, transformation,
etc.).

In this work we implement the examples using an extended version of the
flexible modelling technique in [4]. The same process could be followed using any
other editor for flexible or traditional metamodel-based modelling.

3 Muddles

In this section, we present the basic details that will help the reader understand
how the Muddles approach [4] works. In addition, we present the work carried
out to extend the Muddles to keep information about the visual properties of
the models.

3.1 Overview

The Muddles approach [4] proposes the use of general drawing tools, for the
construction of diagrams that are amenable to programmatic model manage-
ment. More specifically, domain experts use a GraphML-compliant drawing tool
(the yEd Editor1 in their work) to express the example models, which conform
to their envisioned metamodel. Engineers annotate these drawings to specify
types and attributes for each element. The annotated diagram is then automat-
ically transformed to an intermediate Muddle model (the Muddle metamodel
is shown in Figure 1a). The Epsilon platform [14] provides an abstraction layer
(the Epsilon Model Connectivity - EMC2) that allows access to models that
conform to a range of technologies. A driver that implements EMC’s interfaces
and allows Epsilon to consume muddles was developed. Using the driver, model
management programs (M2T transformations, Validation, etc.) can be written
and executed on the muddles.

For a better understanding of the above process the authors in [4] provided
an example which is presented here. In their example, the goal is to create a new
flowchart-like language.

The process starts with the creation of a drawing of an example flowchart
(see Figure 2). The next step is the annotation of the diagram elements with
information to allow programmatic management. For instance, in this case one
needs to declare that the type of the rectangles as an Action and the type of
the directed edges as a Transition. The types are not bound with the shape
but with each element (in another example one rectangle can be of type Action
while another one can be of type Process). Types and type-related information
like properties (attributes of the type), roles and multiplicity of edges can be
provided using the fields in the yEd’s custom properties dialog (see Figure 3).
More details about these properties are presented in [4].

1 http://www.yworks.com/en/products_yed_about.html
2 http://eclipse.org/epsilon/doc/emc/

14

(a) The Muddle metamodel (b) Changes

Fig. 1.

Fig. 2. An example diagram

This type-related information are keywords that will be used by the model
management programs to elements of the diagram. For example, writing the
following Epsilon Object Language (EOL) [15] script will return the names of
all the elements of Type Action. (In this case, name was declared as a property
of the Action node by writing String name = “...” in the Properties field of the
node.)

var ac t i on s = Action . a l l () ;
for (a in ac t i on s) {

(” Action : ” + a . name) . p r i n t l n () ;
}

Listing 1.1. EOL commands executed on the drawing

Fig. 3. Custom properties dialog

15

3.2 Extending Muddles

The current Muddles metamodel and the implementation of the EMC driver for
muddles discard information regarding graphical and spatial properties of each
element. These properties are the: x and y coordinates, the width and height, the
shape and the colour of each Muddle Element.

Firstly, we extended the muddles metamodel to allow Muddle Elements hold
the above information. The changes are shown in Figure 1b. The graphical and
spatial properties of each element are now stored as attributes in the MuddleEle-
ment class.

Secondly, we implemented the required functionality in the EMC Muddles
driver to be able to parse the GraphML file (the drawing), retrieve the infor-
mation from it and store them in the muddle model instance. Further technical
details about the new features of the EMC driver will not be discussed as they
are beyond the scope of this paper.

4 Physical Attributes and Application Scenarios

In our running examples we demonstrate how 5 physical characteristics of the
elements of graphical models can be used to extract relations and attributes.
These are:

– Proximity: the distance between two or more elements.
– Colour: the colour of the element.
– Shape: the shape of the node.
– Size: the area of the node.
– Overlap: the intersection between two or more elements.

For each example, we implemented a set of functions to calculate the desired
characteristic and executed it on the diagram using the querying capabilities of
the Epsilon platform.

4.1 Proximity

The fact that an element is closer to another than a third one may infer that
it is related to the former rather than the latter. In our scenario, we designed
an example model of an envisioned DSL where the organiser of an event needs
to assign guests to the tables and later perform model management actions on
them (e.g. M2T transformations to generate invitation letters).

A possible example model could be the one shown in Figure 4 where 24 nodes
of type Guest are assigned to 3 different nodes of type Table. Naturally, each
guest belongs to the table that he is closest to. In a traditional graphical mod-
elling editor, this relationship could be specified by creating an edge from each
guest to the table it belongs, or by placing guests inside “table containments”,
or by assigning an attribute for each guest that declares his/her table. In our ap-
proach, this assignment is done by placing them closest to the table they belong
to.

16

Fig. 4. Tables and Guests

To achieve this, an EOL function to calculate the proximity between two
elements was implemented. Using this re-usable function (calculateProximity)
we can query the models and get the relation of interest. The code for calculating
and returning the closest table is illustrated in Listing 1.2.

f unc t i on Guest getTable () {
var minDistance = ca l cu la t eProx imi ty (getCirc leCenterX (s e l f) , getCirc leCenterX (

t ab l e s . get (0)) , getCirc leCenterY (s e l f) , getCirc leCenterY (t ab l e s . get (0))) ;
theTable = tab l e s . get (0) ;
for (t in t ab l e s) {

var candidateDistance = ca l cu la t eProx imi ty (getCirc leCenterX (s e l f) ,
getCirc leCenterX (t) , getCirc leCenterY (s e l f) , getCirc leCenterY (t)) ;

i f (candidateDistance < minDistance) {
minDistance = candidateDistance ; theTable = t ;

}
}
return theTable ;

}

Listing 1.2. Get closest node of type Table

Indeed, if we query the model using the EOL statement of Listing 1.3 the
correct table is returned.

var james = Guest . a l l . se l ectOne (p |p . name = ”James ”) ;
(” James be longs to tab l e ” + james . getTable () . number + ” . ”) . p r i n t l n () ;
Output :
James be longs to tab l e 1 .

Listing 1.3. Query Guest’s Table and output

We should note that the proximity characteristic may be error prone, as there
might be cases that the user believes that a node is closer to the desired node
while in reality it is closer to another.

4.2 Colour

In some cases, the colour of nodes or edges can declare that they belong to the
same group or that they are of the same type.

In this scenario, we create an example model of an DSL that can be used
to described football line-ups (see Figure 5). Each player belongs to a team
illustrated by the colour of the node that represents each player. In a traditional
MDE manner, this property could be defined in many different ways. Among
others, one could use a string attribute for the name of the player’s team or
connect players of the same team with edges declaring a “team-mates” relation.

For this category, the function that returns the colour of the node is already
implemented as part of our extended Muddles metamodel and driver (the ex-
tended Muddle metamodel stores the colour of the Element as an attribute - see

17

Fig. 5. Players and Teams

Figure 1(b)). We can create a mapping of colour with team and then query a
Player using EOL to get his team. This is shown in Listing 1.4.

var teamsMap = new Map;
teamsMap . put(”#FF6600” , ”Nether lands ”) ;
teamsMap . put (”#333333” , ”Germany”) ;
var vanPers ie = Player . a l l . se l ectOne (f | f . name = ”Van Per s i e ”) ;
(”Van Per s i e p lays for ” + vanPers ie . getTeam ()) . p r i n t l n () ;

func t i on Player getTeam () {
var c o l o r = s e l f . getColor () ;
return tMap . get (c o l o r) ;

}
Output :
Van Per s i e p lays for Nether lands

Listing 1.4. Get Player’s team implementation and output

4.3 Shape and Size

Fig. 6. Nuclear energy production

18

In some DSLs, the shape or the size of a node may encode information about
its type or its attributes. We demonstrate that with an example DSL that can
be used to design liquid tank configurations. In this scenario, the shape that is
used to describe a tank, declares the subtype of the tank (Water, Uranium, etc.)
By creating a mapping as in the previous example, we can query the model and
identify the subtype of each tank.

In addition, the size (and the area) that each tank has can give us information
about two other attributes of each tank like the “Size Category” and “Capacity”.
We can calculate the area of the tank to find its capacity and assign it to a
predefined size category (small, medium, large). The querying code to get the
type, the size category and the capacity is given in Listing 6.

. . .
for (t in tanks) {

(t . name + ” i s a ” + t . getS izeCategory () + ” (” + t . getArea () + ” l i t r e s) ” + t .
getTankType ()) . p r i n t l n () ;

}

f unc t i on Tank getTankType () {
return shapesMapping . get (s e l f . getShape ()) ;

}

f unc t i on Tank getS izeCategory () {
i f (s e l f . getArea () <5000.0){

return ”Small ” ;
} else i f (s e l f . getArea () <20000.0) {

return ”Medium” ;
} else {

return ”Large ” ;
}

}
Output :
Tank 4 i s a Large (22500 .0 l i t r e s) Water Tank
Tank 5 i s a Small (2500 .0 l i t r e s) Water Tank
Tank 1 i s a Medium (11250 .0 l i t r e s) Steam Tank
. . .

Listing 1.5. Get tank’s type, size category and capacity implementation and output

The size characteristic can be error-prone. Mistakes can be made if the
shape’s area is close to the thresholds that defines different size categories. For
instance, one tank may look like a small tank, but in reality it is medium.

4.4 Overlap

An overlap between two or more elements can provide us with information re-
garding their types and attributes. In a DSL that allows the creation of Venn
diagrams this can be very useful. For instance, the Venn diagram of Figure 7 is
an example of a model that would be an instance of a Venn DSL. In this case,
the overlap between a node of type “Person” (yellow rectangles) with a circle
denotes that the Person belongs to that set.

For this category, we can define a function to calculate whether two elements
overlap or not. We can then re-use this function to query the model and receive,
for instance the signatures of all the members of the department as seen in
Listing 1.6.

var persons = Person . a l l ;
var raBox = RA. a l l . f i r s t () ;
var rsBox = RS. a l l . f i r s t () ;
var esBox = ES . a l l . f i r s t () ;

for (p in persons) {

19

Fig. 7. Computer Science department Venn diagram

p . getS ignature () . p r i n t l n () ;
}

f unc t i on Person getS ignature () {
i f ((s e l f . ove r l aps (raBox)) and (not (s e l f . ove r l aps (esBox)))) {

return s e l f . name + ” i s a RA in the CS Department . ” ;
} else i f ((s e l f . ove r l aps (raBox)) and (s e l f . ove r l aps (esBox))) {

return s e l f . name + ” i s a RA in the CS Department and member o f the ES group . ” ;
} else i f ((s e l f . ove r l aps (rsBox)) and (s e l f . ove r l aps (esBox))) {

return s e l f . name + ” i s a RS in the CS Department and member o f the ES group . ” ;
} else i f ((s e l f . ove r l aps (rsBox)) and (not (s e l f . ove r l aps (esBox)))) {

return s e l f . name + ” i s a RS in the CS Department . ” ;
} else i f ((not (s e l f . ove r l aps (rsBox))) and (not (s e l f . ove r l aps (esBox))) and (not (

s e l f . ove r l aps (raBox)))) {
return s e l f . name + ” i s member o f the CS Department . ” ;

} else i f ((not (s e l f . ove r l aps (rsBox))) and (s e l f . ove r l aps (esBox)) and (not (s e l f .
ove r l aps (raBox)))) {

return s e l f . name + ” i s member o f the CS Department and member o f the ES group . ” ;
}

}
Output :
James i s a RA in the CS Department and member o f the ES group .
Andy i s member o f the CS Department .
Chris i s a RS in the CS Department .
. . .

Listing 1.6. Get person’s signature implementation and output

5 Conclusions and Future Work

Physical characteristics included in graphical models can be used to extract
meaningful information about the models and their elements. In this work, we
presented examples demonstrating how they can be utilised to extend the current
conventions for representing relations and attributes of model elements.

We believe that such an approach can be useful especially in the flexible
modelling area were the involvement of stakeholders who are unfamiliar with
the traditional conventions is common.

In the future, we plan to investigate how other physical attributes (like tex-
ture or orientation) that can, according to the literature, encode information
about the diagram be used in MDE to help us represent better relations and
attributes of elements.

20

Acknowledgments

This work was carried out in cooperation with Digital Lightspeed Solutions
Ltd, and was part supported by the Engineering and Physical Sciences Research
Council (EPSRC) through the Large Scale Complex IT Systems (LSCITS) ini-
tiative, and by the EU, through the MONDO FP7 STREP project (#611125).

References

1. Nordbotten, J.C., Crosby, M.E.: The effect of graphic style on data model inter-
pretation. Information Systems Journal 9(2) (1999) 139–155

2. Hitchman, S.: The details of conceptual modelling notations are important-a com-
parison of relationship normative language. Communications of the Association
for Information Systems 9(1) (2002) 10

3. Moody, D.L.: The physics of notations: toward a scientific basis for constructing
visual notations in software engineering. Software Engineering, IEEE Transactions
on 35(6) (2009) 756–779

4. Kolovos, D.S., Matragkas, N., Rodŕıguez, H.H., Paige, R.F.: Programmatic muddle
management. XM 2013–Extreme Modeling Workshop (2013) 2

5. Shannon, C.E., Weaver, W.: The mathematical theory of communication. (2002)
6. Bertin, J.: Semiology of graphics: diagrams, networks, maps. (1983)
7. Bottoni, P., Grau, A.: A suite of metamodels as a basis for a classification of

visual languages. In: Visual Languages and Human Centric Computing, 2004 IEEE
Symposium on, IEEE (2004) 83–90

8. Bottoni, P., Costagliola, G.: On the definition of visual languages and their editors.
In: Diagrammatic Representation and Inference. Springer (2002) 305–319

9. Costagliola, G., Deufemia, V., Polese, G., Risi, M.: Building syntax-aware editors
for visual languages. Journal of Visual Languages & Computing 16(6) (2005)
508–540

10. Baar, T.: Correctly defined concrete syntax for visual modeling languages. In:
Model Driven Engineering Languages and Systems. Springer (2006) 111–125

11. Cho, H., Gray, J., Syriani, E.: Creating visual domain-specific modeling languages
from end-user demonstration. In: Modeling in Software Engineering (MISE), 2012
ICSE Workshop on, IEEE (2012) 22–28

12. Sánchez-Cuadrado, J., De Lara, J., Guerra, E.: Bottom-up meta-modelling: An
interactive approach. Springer (2012)

13. Javed, F., Mernik, M., Gray, J., Bryant, B.R.: Mars: A metamodel recovery system
using grammar inference. Information and Software Technology 50(9) (2008) 948–
968

14. Paige, R.F., Kolovos, D.S., Rose, L.M., Drivalos, N., Polack, F.A.: The design
of a conceptual framework and technical infrastructure for model management
language engineering. In: Engineering of Complex Computer Systems, 2009 14th
IEEE International Conference on, IEEE (2009) 162–171

15. Kolovos, D.S., Paige, R.F., Polack, F.A.: The epsilon object language (eol). In:
Model Driven Architecture–Foundations and Applications, Springer (2006) 128–
142

21

EMF Splitter:
A Structured Approach to EMF Modularity

Antonio Garmendia1, Esther Guerra1, Dimitrios S. Kolovos2, and Juan de
Lara1

1 Modelling and Software Engineering Group (miso, htpp://www.miso.es)
Computer Science Department

Universidad Autónoma de Madrid (Spain)
{Antonio.Garmendia, Esther.Guerra, Juan.deLara}@uam.es

2 Enterprise Systems Group (http://www.enterprise-systems.org/)
Computer Science Department

University of York (United Kingdom)
dimitris.kolovos@york.ac.uk

Abstract. Model-Driven Engineering aims at reducing the cost of sys-
tem development by raising the level of abstraction at which developers
work. Thus, models become the main assets in this paradigm, guiding
the development until code for the final application is obtained.
However, even though domain-specific, models may become large and
complex, becoming cumbersome to edit and manipulate. In this scenario,
mechanisms helping in the agile definition and management of models in
the large are crucial. Modularity is one of such mechanisms.
In this paper, we describe a novel approach to the construction of EMF
models in a structured way. It is based on the annotation of the Ecore
meta-models with modularity concepts (like project, package and unit),
from which we generate an Eclipse plug-in that enables the editing of
models according to that structure (i.e., organized in projects and de-
composed into folders and files). The paper presents our supporting tool
and discusses benefits and future challenges.

Keywords: Meta-modelling, Modularity, Agile modelling, Eclipse Mod-
eling Framework

1 Introduction

Nowadays, many organisations use Model-Driven Engineering (MDE) [11] to
develop their systems or migrate legacy code. MDE proposes the use of models as
primary artefacts to construct software, being supported by model management
tools [2].

MDE-based solutions frequently involve the creation of Domain-Specific Lan-
guages (DSLs), which are defined by a meta-model that describes the set of
models considered valid. When a new DSL is created, there is the need to build
the corresponding modelling environment as well, in order to facilitate the con-
struction of valid models of the DSL and provide basic functionalities like model
persistence or model consistency checking.

22

In this respect, the Eclipse Modeling Framework (EMF) [12] is a well-known
and widely-used framework that allows the definition of meta-models and mod-
els. Starting from the definition of a meta-model, the framework generates a ba-
sic tree-editor to edit the instance models. However, models defined with these
editors are monolithic. As the requirements of a system grow over time, the
models tend to become complex and large, which results in poor comprehensi-
bility and maintainability, while their editing becomes a tedious task. Moreover,
the manipulation of large models may also affect performance in terms of model
persistence, loading, querying and transformation.

Software design and programming languages provide mechanisms to simplify
the creation of complex systems. One of these mechanisms is modularity [8],
which promotes a scalable approach to the construction of software systems
through the composition of smaller subsystems which can be implemented sepa-
rately in a simpler way. Other benefits of modularity include increased flexibility
and reuse possibilities, facilitating distributed teamwork and version control.

In MDE, models are the main assets to create software. However, models
frequently lack native modularization mechanisms, unless they are explicitly en-
coded in the modelling language and implemented in the supporting modelling
environments. Thus, we propose to apply modularity mechanisms to the con-
struction of models, allowing the definition of complex models from submodels
which are easier to process and reuse. Our approach is based on the annotation
of the meta-model elements that will play some role in the structuring and mod-
ularity of the models. We propose several structures, based on the concepts of
project, package and unit. Starting from this definition, we automatically gener-
ate a modelling environment (an Eclipse plug-in) which permits editing models
in modular way, following a similar philosophy to the Java Development Tools3

(JDT). In this way, each model corresponds to an Eclipse project, and the model
content can be organized in folders and files, with a direct mapping to the file
system. Altogether, our plug-in enables:

– the editing of models according to a given modularity structure.
– the splitting of monolithic models according to a given modularity strategy.
– the composition of parts of a model to build a monolithic one.

The remaining of this paper is organized as follows. First, Section 2 describes
our approach to incorporate modularity mechanisms to models, as well as the
modular structures we support. Then, Section 3 presents the implementation
of our approach for Eclipse and EMF. Next, Section 4 discusses related work.
Finally, Section 5 concludes the paper with some conclusions and lines of future
work.

2 Specifying the Modular Structure of Models

We propose a modular structure for models, based on the philosophy of the
Eclipse JDT and how Eclipse organizes Java projects. Eclipse projects are orga-

3 http://www.eclipse.org/jdt/

23

nized hierarchically, defining a root node which contains a tree view of the project
content. In this way, the compilation units of the project (e.g., Java classes) are
organized into different types of folders (e.g., source folders) and packages, which
can be nested. This modular organization facilitates the structuring of projects,
the provision of scoping mechanisms, and the use of indexes to enable load-on-
demand, incremental builds and efficient resolution of cross-references, among
other advantages.

Inspired by this framework, we propose a notion of modularity for models
based on the concepts of project, package and (compilation) unit. The upper
frame in Figure 1 shows a simplified version of the pattern that formalizes these
concepts, as well as their relations. Thus, the main modularity concepts in our
approach are Project, Package and Unit. Project is the root that contains
the rest of the elements, which can be of any of the other types. Objects of
type Package can contain units as well as other packages (i.e., it implements the
Composite object-oriented design pattern [3]). Finally, objects of type Unit can
be defined either inside of packages, or directly inside a project.

Container

Project Package Unit

*
contents

Containee
Modularity
pattern

dsl1

:Project

structuralUnit:

Unit

behUnit:

Unit

dsl2

:Project

structuralUnit: Unit

smUnit: Unit

structural: Package

deploymentConf: Unit

behavioural: Package

collabUnit: Unit

Modularity strategy 1 Modularity strategy 2

Fig. 1: Pattern to describe the modular structure of a meta-model (top). Two
possible modularity strategies, as instances of the pattern (bottom).

This pattern allows for the configuration of different structures or ways of
organizing a model. For instance, we can have projects that do not contain
packages but units are directly placed in the project root node, projects that
consider different types of packages containing different types of units and where
package nesting might be allowed or not, or a mix of both. Conceptually, if we
interpret the pattern in Figure 1 as a meta-model, then the possible structures

24

that can be applied to a particular DSL can be seen as instances of this meta-
model, as shown to the bottom of the same figure.

While the modularity pattern allows configuring a particular modularity
strategy, in addition, the strategy needs to be mapped to a particular meta-
model. That is, we need to select the class playing the role of Project, and
the classes for the different Packages and Units. Conceptually, it is natural to
consider the application of the pattern to the meta-model of a DSL as a case
of multi-level modelling [1], where the modularity pattern meta-model is inter-
preted as a partial type for the DSL meta-model, as Figure 2 shows. We refrain
from introducing the full details of multi-level modelling here, which can be found
in [1], and only present the information needed to understand how the pattern
application works. The complete modularity pattern is shown in this figure. In
particular, projects, packages and units have a descriptive name, as well as an
icon which will be used in the modelling environment to identify them. On their
side, units have an extension that will be used by the corresponding system
files.

The particular structure to be used for the models of a DSL is determined
by annotating which elements of the DSL meta-model will play the roles of
project, package and root of a unit. Conceptually, this is equivalent to typing
some elements of the DSL meta-model with the types offered by the modularity
pattern. This typing is partial, because some elements of the DSL meta-model
may be not typed by any pattern element. However, as shown in Figure 1, it
is useful to consider the relation between the meta-models of the DSL and the
pattern as a typing relation (and not just as annotations) because the typing
rules ensure a correct annotation of the DSL meta-model.

The middle frame in Figure 2 shows the annotation (represented with dotted
arrows) of an example meta-model with our modularity concepts. The annota-
tion must respect the modular structure of the pattern, given by instantiation
rules. In this example, the ComponentSystem class is annotated as Project,
and the attribute sysID is bound to the project name. The SubSystem class is
annotated as Package; this is possible because there is a composition relation
from ComponentSystem (the project) to SubSystem, as the pattern demands
by means of the relation contents. While this annotation permits creating
SubSystem packages inside projects, it does not allow the nesting of subsystems
inside subsystems, for which the meta-model would need to define an appropriate
containment relation. Finally, both classes Component and Behaviour are anno-
tated as Unit (i.e., we instantiate Unit twice). This means that the instances of
Component and Behaviour, as well as the objects they contain through contain-
ment relationships (e.g., Port in the case of Components) will be stored in the
same unit (i.e., in the same file).

A remark is interesting here. Some attributes in the modularity pattern, like
the icons to be used in the modelling environment or the file extension for units,
need to receive a value in the DSL meta-model. Using multi-level terminology,
we say that such attributes have potency 1, as they receive a value in the meta-
level right below the pattern. Other attributes, like name, need to be bound to

25

Fig. 2: Pattern to describe the modular structure of a meta-model (top). Appli-
cation of pattern to a meta-model (middle). A structured model and its physical
deployment (bottom).

some class attribute of the DSL meta-model, and only take a value at the model
level (i.e., two levels below from the pattern point of view). Hence, we say that
such attributes have potency 2. In the modularity pattern, every element has
potency 2 (indicated by the @2 of the meta-model), except attributes icon and
extension, which have an explicit potency 1.

Once the DSL meta-model is annotated with the desired structure, an au-
tomated process generates the machinery to split existing monolithic models
according to the chosen structure, and it also generates a modelling environ-
ment that permits building models according to that structure. The bottom
of Figure 2 shows an illustration of a modular model, the corresponding Eclipse
project structure, and how the modular structure is physically mapped to the file
system. Hence, the model root (the instance of ComponentSys) is mapped to the
project root, the two instances of SubSystem are mapped to two folders, and the

26

Component instance is mapped into a file. As discussed in the following section,
hidden XMI (XML Metadata Interchange) files are also created for the project
root and the packages, storing the properties of the corresponding objects, and
allowing their manipulation by means of the Property view of Eclipse, so that
the user has the impression of manipulating folders with different properties.
Next, we explain the tool support implementing this modularity machinery.

3 Tool Support: EMF Splitter

This section describes our tool, called EMF Splitter4, supporting the modular
structure for EMF models proposed in the previous section. The main function-
ality of this tool is to, given an annotated Ecore model, generate an Eclipse
plug-in that allows: (a) the creation of instance models according to the speci-
fied modularity strategy, (b) the decomposition of an existing monolithic model
according to the modularity strategy, and (c) the composition of a single model
out of a project consisting of folders and units. We have implemented this tool
using Acceleo5, a code generation language based on the Object Management
Group (OMG) MOF Model to Text Language (MTL) standard.

Figure 3 shows the steps to create an Eclipse modular project for editing the
instances of an Ecore meta-model. The first step is to annotate the meta-model
classes with the concepts of project, package and unit. To facilitate this task,
we have developed a graphical environment that allows building and annotating
meta-models graphically according to different predefined patterns (in this case,
according to our modularity pattern). In a second step, the annotated meta-
model is fed into EMF Splitter. This tool automatically produces a genmodel
configuration file, which is used to generate code implementing the chosen mod-
ularity strategy, and that is distributed as an Eclipse plug-in. Finally, tool users
may use the generated plug-in to create models as dedicated Eclipse projects.

The generated plug-in provides functionalities to structure a model in sev-
eral XMI files. This organization is transparent to the user, and can be useful
for reusing parts of the models which can be nested. Each instance of a class an-
notated with project or package has an associated XMI file with the value of its
attributes and cross-references to the objects it contains. These files are filtered
and hidden to the user, who can edit the properties of such objects using the
Property view of Eclipse when the corresponding folder or the root of the project
is selected. Each instance of a class annotated as unit is stored in an XMI file,
together with the objects it contains. These files can be modified through the
generated standard tree editors.

Next, we present an example that makes use of the annotated meta-model
from Section 2 and the corresponding plug-in generated using EMF Splitter. To
show the benefits of the generated plug-in, we start from a synthetic, monolithic
model which is shown in Figure 4(a). In practice, the model could be much larger,
so that once decomposed into folders and smaller units, its parts would be easier

4 See its web page at http://www.miso.es/tools/EMFSplitter.html
5 http://www.eclipse.org/acceleo/

27

Fig. 3: Process overview of EMF Splitter.

to edit, navigate and comprehend. Thus, we first create a modular project using
the plug-in. The plug-in offers a creation wizard with two alternatives, as shown
in Figure 4(b). In the first one, we can create a model from scratch, giving
values to the root class (Project) attributes. The wizard has input controls to
introduce values for the attributes of the root object, which in this case is of
type ComponentSystem. As the sysId attribute was mapped to the name of the
project, the value introduced in this field is used as project name.

The second option of the wizard is to provide the path of an existing model.
In that case, the wizard creates a new modular project, where the initial model
is decomposed according to the selected modularization strategy. For the devel-
opment of this example, we use the second option. As a result, we obtain the
modelling environment shown in Figure 5. The Package Explorer view shows the
structure of the containment hierarchy, made of all the objects that belong to
the model, represented physically as folders and files within the project. In the
top-right, a submodel (i.e., file) of the project is being edited using the tree-based
editor. As we have explained previously, the root of the tree can be an instance
of a class annotated with unit. At the bottom, the figure shows the edition of the
attributes of a package using the Property view. While these attributes are actu-

28

(a) Example of model. (b) Wizard to create the Model Project.

Fig. 4: Generating a modular project from a model.

Fig. 5: Modelling environment in action.

ally stored in an XMI file, this is transparent to the user, who has the impression
of editing properties of a folder.

The decomposition of a model into an Eclipse project offers many advantages.
For example, we can include any kind of artefact (like documentation or source
code) inside the folders, facilitating, e.g., the traceability from model elements to
external artefacts. Moreover, we no longer have a monolithic model, but the di-
vision and organization into folders permits shorter loading times (of a fragment
w.r.t. loading the complete monolithic model) and facilitates comprehensibility,
reusability, distributed teamwork and version control.

4 Related Work

Our main goal is to provide a tool that allows building models in a structured
way. For this purpose, we start by annotating the meta-model with the mod-
ularity concepts formalised in a pattern. Next, we compare with related works
addressing model modularity, fragmentation and model slicing.

Although introducing modularity in ad-hoc ways into existing DSLs can de-
liver benefits, it is also costly [7]. Hence, it is desirable to have mechanisms to
achieve modularity in a generic, automated way.

29

Due to the need to process large models, some authors have proposed to
split models for solving different tasks. For instance, Scheidgen and Zubow [10]
propose a persistence framework that allows automatic and transparent frag-
mentation to add, edit and update EMF models. This process is executed at
runtime, with considerable performance gains. However, the user does not have
a view of the different fragments as we have in EMF Splitter, which could help
improving the comprehensibility of the fragments.

Other works [6, 13] decompose models into submodels for enhancing their
comprehensibility. For example, in [6], the authors propose an algorithm to frag-
ment a model into submodels (actually they can build a lattice of submodels),
where each submodel is conformant to the original meta-model. The algorithm
considers cardinality constraints but not general OCL constraints, and there is
no tool support. Other works use Information Retrieval (IR) algorithms to split
a model based on the relevance of its elements [13]. Therefore, splitting models
that belong to the same meta-model can produce different structures.

Other works directed to define model composition mechanisms [4, 5, 14] are
intrusive. These papers [4,14] present techniques for model composition and re-
alize the importance of modularity in models as a research topic to minimise the
effort. Strüber et. al [5] present a structured process for model-driven distributed
software development which is based on split, edit and merge models for code
generation.

Hence, altogether, while techniques for model modularization have been pro-
posed in the context of MDE, to the best of our knowledge, EMF Splitter is
unique in its way to generate structured model editors from meta-models.

5 Conclusions and Future Work

The MDE paradigm is gradually being established for the production of software,
giving rise to the problem that if the systems are complex, they may lead to large
models, making their management more difficult and increasing the development
costs. Our goal is to provide developers with tools that help in defining the way
to structure models, facilitating distributed development through division into
layers, which improve comprehension. To achieve these objectives, EMF Splitter
permits defining a modularity strategy and generates an Eclipse plug-in that
allows developers to build their models in a structured way, as well as split
existing models according to the defined modularity strategy.

In the near future, we plan to assess the performance of the tool when han-
dling large models, compared with using a monolithic model. We are working on
the idea of using Concordance6, an indexing mechanism to manage and reconcile
EMF references when models are updated or deleted [9]. We are also working on
heuristics to propose good modularization strategies for a meta-model and a set
of (large) models. In the long term, we plan to generate more advanced editors,
e.g., graphical ones, as an alternative to the tree-editors for the units. Moreover,

6 http://www.eclipse.org/epsilon/doc/concordance/

30

we would like to enhance our modularity pattern, e.g., by including scoping and
access rules, to allow enabling or disabling references between model elements in
units that belong to different packages, or to define visibility rules for elements
inside units.
Acknowledgements. Work supported by the Spanish Ministry of Economy and
Competitivity with project Go-Lite (TIN2011-24139) and the EU commission
with project MONDO (FP7-ICT-2013-10, #611125).

References

1. C. Atkinson and T. Kühne. Rearchitecting the UML infrastructure. ACM Trans.
Model. Comput. Simul., 12(4):290–321, 2002.

2. P. Baker, S. Loh, and F. Weil. Model-driven engineering in a large industrial
context - Motorola case study. In Proceedings of MoDELS’05, volume 3713 of
Lecture Notes in Computer Science, pages 476–491. Springer, 2005.

3. E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns. Elements
of Reusable Object-Oriented Software. Addison Wesley, 1994.

4. F. Heidenreich, J. Henriksson, J. Johannes, and S. Zschaler. On language-
independent model modularisation. T. Aspect-Oriented Software Development VI,
6:39–82, 2009.

5. P. Kelsen and Q. Ma. A modular model composition technique. In Proceedings
of FASE’10, volume 6013 of Lecture Notes in Computer Science, pages 173–187.
Springer, 2010.

6. P. Kelsen, Q. Ma, and C. Glodt. Models within models: Taming model complexity
using the sub-model lattice. In Proceedings of FASE’11, volume 6603 of Lecture
Notes in Computer Science, pages 171–185. Springer, 2011.

7. J. L. Lawall, H. Duchesne, G. Muller, and A.-F. L. Meur. Bossa nova: Introducing
modularity into the bossa domain-specific language. In Proceedings of GPCE’05,
volume 3676 of Lecture Notes in Computer Science, pages 78–93. Springer, 2005.

8. D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Commun. ACM, 15(12):1053–1058, 1972.

9. L. M. Rose, D. S. Kolovos, N. Drivalos, J. R. Williams, R. F. Paige, F. A. C. Polack,
and K. J. Fernandes. Concordance: A framework for managing model integrity.
In Proceedings of ECMFA’10, volume 6138 of Lecture Notes in Computer Science,
pages 245–260. Springer, 2010.

10. M. Scheidgen, A. Zubow, J. Fischer, and T. H. Kolbe. Automated and transparent
model fragmentation for persisting large models. In Proceedings of MoDELS’12,
volume 7590 of Lecture Notes in Computer Science, pages 102–118. Springer, 2012.

11. T. Stahl, M. Voelter, and K. Czarnecki. Model-Driven Software Development:
Technology, Engineering, Management. John Wiley & Sons, 2006.

12. D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling
Framework, 2nd Edition. Addison-Wesley Professional, 2008. See also http://

www.eclipse.org/modeling/emf/.
13. D. Strüber, J. Rubin, G. Taentzer, and M. Chechik. Splitting models using in-

formation retrieval and model crawling techniques. In Proceedings of FASE’14,
volume 8411 of Lecture Notes in Computer Science, pages 47–62. Springer, 2014.

14. D. Strüber, G. Taentzer, S. Jurack, and T. Schäfer. Towards a distributed modeling
process based on composite models. In Proceedings of FASE’13, volume 7793 of
Lecture Notes in Computer Science, pages 6–20. Springer, 2013.

31

Polymorphic Templates

A design pattern for implementing agile model-to-text

transformations

Gábor Kövesdán, Márk Asztalos and László Lengyel

Budapest University of Technology and Economics, Budapest,

Hungary

{gabor.kovesdan, asztalos, lengyel}@aut.bme.hu

Abstract. Model-to-text transformations are often used to produce source code,

documentation or other textual artefacts from models. A common way of imple-

menting them is using template languages. Templates are easy to read and write,

however, they tend to become long and complex as the complexity of the meta-

model grows. This paper proposes a design pattern that allows for the decompo-

sition of complex templates with branching and conditions inside into simpler

ones. Its main idea is that the code generator does not know about the concrete

templates that are called: they are determined by the objects of the model being

traversed. The concrete template is selected through object-oriented polymor-

phism. The pattern results in a flexible code generator with simple templates,

good extensibility and separation of concerns. This agility facilitates the design

for extension and changes, which is paramount nowadays.

Keywords: Modeling · Domain-Specific Modeling · Model Transformation ·

Code Generation · Design Pattern

1 Introduction

This paper presents a design pattern that can be used to create flexible model-to-text

(M2T) transformation. The pattern is applicable on complex M2T templates and pro-

poses an object-oriented decomposition for the generator, the model objects and the

templates. This decomposition achieves reduced complexity, separation of concerns,

improved readability and most importantly improved maintainability and flexibility.

We believe that the Polymorphic Templates pattern will greatly help developers of all

kinds of M2T transformations in designing robust code generators that are easy to main-

tain and extend.

The rest of this paper is organized as follows. Section 2 briefly explains the founda-

tions of M2T transformations using template languages. Section 3 lists existing work

available on the subject. Section 4 describes the design pattern in a format that is similar

to those that are used in design pattern catalogs. Section 5 concludes.

32

2 Background

M2T transformations are often used for generating source code, documentation or other

artefacts in order to speed up software development. Models can be easily produced

and validated by the proper tooling so we can make sure they convey the correct infor-

mation. By using models and code generation techniques, the resulting source code can

be produced more quickly. Besides, if they are validated and the code generator is cor-

rect, we can assure that the generated code is correct as well. When using Domain-

Specific Modeling (DSM) and model processing [1-2], these benefits apply at a much

higher extent. DSMs raise the abstraction and allow for expressing the problem from a

more human-friendly viewpoint that does not require thinking in programming notions.

This makes the process less error-prone.

Because of the above reasons, the code generator is an especially important compo-

nent in model processing. To facilitate the development of code generators, so called

template languages have been developed. Generating code from conventional program-

ming languages is difficult because substitution and print instructions are intermixed

with literal fragments of the output, thus it becomes hard to read. Template languages

reverse the logic: everything written in the template goes to the output by default, only

value substitutions and conditional instructions or loops must be written with special

markup. These template languages highly simplify the development of code generators

and make the generated code easier to read and write. However, as the complexity of

the model grows, templates also become longer and more complex and these ad-

vantages can be only achieved at a limited extent. From different model objects, usually

different kinds of code fragments are generated and this requires branching instructions

in the template. If there is a high number of them, the template becomes hard to read

and maintain.

Despite that the explanation above mentions mostly code generation, other kinds of

M2T transformations, like generating reports, documentation etc. are very similar in

nature and the pattern is also applicable to them. For the sake of simplicity, throughout

the paper we will simply refer to the M2T transformations as code generators.

3 Related work

The first well-known work that proposed the reuse of working solutions to common

software engineering problems and their description in design pattern catalogs was the

one published by Gamma et al. [3]. This work was followed by the Pattern-Oriented

Software Architecture (POSA) series [4,5,6,7,8]. Apart from these general object-ori-

ented design patterns, some more specialized patterns have also been described. In the

field of Domain-Specific Languages (DSLs), [1] provides a pattern catalog, covering

several different aspects of DSLs and code generation. This is a rich source of infor-

mation but it has a more general view than this paper and does not include the pattern

described herein. Apart from this, [9] provides some practical uses of general object-

oriented design patterns in recursive descent parsers and [10] describes how a parser

generator uses object-oriented design patterns. These are specific uses of general design

33

patterns and these papers do not include more specialized patterns specific to DSLs and

code generation. A pattern catalog [11] of architectural design patterns that can be used

in language parsers has also been published. This is relevant for implementing DSLs.

Beside the movement of collecting solutions of common problems in design pattern

catalogs, Yu and Mylopoulos emphasized [12] that research of software engineer-

ing had focused more on the what and the how rather than on the why. Their

contribution justifies the need for more work that deals with understanding the

requirements. There are also publications that collect the intents of using specific soft-

ware techniques in so called intent catalogs. These are similar in nature to design pat-

terns but they describe common motivations behind applying a specific solution. The

intents behind DSLs have been described in [13]. Amrani et al. has published an intent

catalog behind using model transformations [14].

There are several existing template engines that allow for the decomposition of tem-

plates into smaller units. These make it possible to organize template code into separate

methods and files. By using these tools, each model class can have its own template

associated and template code can be further cut down to methods that generate a spe-

cific feature from the model class. For example, such template implementations are

Xtend [15] and Microsoft T4 [16]. The pattern presented in this paper provides a method

for using these tools efficiently.

The technique of incremental model transformation [17] is related to this work in

that it also deals with changes in the code generation process. However, this approach

handles changes in the input model and is able to update parts of the generated model

based on the changes in the input model. By not having to rerun the entire transfor-

mation, it saves computational time. In contrast, the design pattern presented herein

facilitates the evolution of the M2T transformation itself. As the tool evolves and more

features are supported by the code generator, the templates also becoming more com-

plex. The proposed solution decomposes the templates into highly cohesive, flexible

units to facilitate changes and extension. So the two techniques address different issues

and are not mutually exclusive.

4 The Polymorphic Templates Design Pattern

This section describes the design pattern in catalog format similar to what is used in the

POSA series. Namely, the following sections are applied:

· Example: a concrete use case in which the pattern has been applied.

· Context: the context in which the design pattern is applicable.

· Problem: the challenges that suggest the application of the pattern.

· Solution: the way how the pattern solves or mitigates the problems.

· Structure: the main participants and their relationships and responsibilities in the

pattern.

· Dynamics: the interaction of the participants of the pattern.

· Implementation: techniques and considerations for implementing the pattern.

· Consequences: advantages and disadvantages that the application of the pattern im-

plies.

34

· Example Resolved: the short description of how the initially presented example has

been resolved by using the pattern.

The Known Uses and the See Also sections are omitted due to lack of space and related

patterns.

Example

The ProtoKit tool [18] is a DSL and an accompanying code generator for describing

the message structure of application-level binary network protocols. Object-oriented

general purpose programming languages (GPLs) can represent messages as classes, be-

ing the member variables the different fields encompassed in the message. However,

several features of these protocols are difficult to support in this way, such as bitfields,

encoded fields or length fields of variable-length fields. ProtoKit generates the classes,

member variables and accessors with the boilerplate code to support the above men-

tioned features. In the generated code, different fields of the message will result in

different variable definitions, initialization code snippets and accessor methods. Be-

cause of this, the template of the generated code contains several loops that iterate over

the fields and each iteration includes several instanceof checks. Because of the looping

and branching markup in the template, the actual output is hard to read among the lines.

Besides, the template is rapidly growing as new features and model classes are added.

Parts of the template are not decomposed according to what feature they generate or

what model object they process. This makes it difficult to locate and modify the gener-

ated code of a specific feature.

Context

Model-to-text transformations that use templates to produce textual output and have a

type hierarchy in the input model.

Problem

When complex models are processed from template languages a number of problems

arise:

· High complexity. The template class can be decomposed into several methods that

are responsible for generating different features but the template that processes the

model remains highly complex.

· Lack of encapsulation and separation of concerns. Code fragments for generating

different features from the same model class are separated by branching instructions

and thus are scattered through the template. Logically coherent code fragments are

not encapsulated into highly cohesive classes.

· Poor readability. Because the output code is intermixed with conditions and branch-

ing instructions that generate the proper code fragment from each model object that

35

is traversed, the main goal of using a template language – good readability – does

not apply.

· Poor maintainability and extensibility. Because of the lack of encapsulation and the

branching instructions that add syntactic noise, several isolated parts of the generator

must be modified in order to modify the behavior. Similarly, extension requires add-

ing new code fragments to several places inside the same template.

Solution

Decompose templates on a per model class and per feature basis. The code fragment

generated for a specific feature and from a specific model class will be encapsulated in

its own template. The generator accesses templates via their common interfaces and

does not know about concrete template types. Determining the template to call for a

specific feature is the responsibility of the model object being traversed.

Structure

A possible structure of the pattern is depicted in Figure 1. To keep the diagram com-

prehensible, only one feature, feature A is depicted. Of course, the pattern supports

multiple features by having multiple feature hierarchies. The pattern has the following

participants:

· ModelClass: an abstract type of the model elements processed by the generator.

· ConcreteModelClass1 and ConcreteModelClass2: concrete types with different se-

mantics that are instantiated in the model. They usually result in different output.

· FeatureATemplate: an interface for the polymorphic templates that generate

feature A for concrete instances of ModelClass.

· ConcreteFeatureATemplate1 and ConcreteFeatureATemplate2: concrete templates

that generate “feature A” for ConcreteModelClass1 and ConcreteModelClass2, re-

spectively.

· Generator: the entry point of the code generator. This component traverses concrete

instances of ModelClass in the model and calls the corresponding templates.

· Application: the main application that obtains the model (depicted as a set of aggre-

gated ModelClass instances) and calls the code generator.

Dynamics

The Generator component has knowledge of what features must be generated and in

what order. This is specific to the domain. Generating features involves the traversal of

model objects in the input model. When a specific model object is visited, the Generator

first calls the getATemplate() method on the model object to obtain an instance of the

template to use. Then the Generator calls the generateA() method on the template in-

stance obtained from the visited model object. This is depicted in Figure 2.

36

Fig. 1. A possible structure of the participants in the Polymorphic Templates pattern

Fig. 2. The interaction of the participants in the Polymorphic Templates pattern

Implementation

The following techniques should be considered for the implementation of the pattern:

· Model classes may return template references in three different forms:

(a) As object references. This is the most object-oriented, the most efficient and the

safest option. The code generator directly retrieves a reference and uses it to call

37

the template. To apply this solution, the modeling framework must support ref-

erences to classes that are not part of the model. Several modeling frameworks

support this by importing external data types.

(b) As the class name. The class name is returned as a string to the code generator

and before calling the template, the code generator must instantiate the template

class using reflection. Reflection has some performance hit and the class name is

easy to mistype. However, this is a viable option if the modeling framework does

not support external data types.

(c) As an identifier. An arbitrary identifier that is used to obtain a reference for the

concrete template class. For example, it may be a key for a hash table. This option

eliminates the performance hit of reflection but the validity of the identifiers still

must be guaranteed by the implementor. This solution requires an extra effort to

implement the lookup mechanism.

· Deciding what is an independent feature is a crucial point in applying this patterns.

This determines the number of templates and how cohesive individual templates will

be. This latter greatly affects flexibility and extensibility. It does not only include

identifying features per a single class hierarchy but deciding on cases like whether a

single template will be provided for aggregating elements or it will be chunked down

to separate ones, one per each aggregate.

· If the template references are obtained by instance methods, template inheritance

can be leveraged. In case a parent and a child model class generate the same code

for a specific feature, the template can be inherited. It is not necessary to define a

new template for the child, nor to repeat the template reference.

· The pattern can be implemented through model refinement if the modeling environ-

ment supports it. In this scenario there are two layers of models. The lower layer

contains information that is strictly the model without template associations. The

upper layer refines the lower layer, adding references to templates. If there are sev-

eral target languages, it is a viable solution to define a separate upper layer for each

of them.

Consequences

The pattern achieves the following advantages:

· Reduced complexity of the templates. The complexity of templates is reduced by

decomposing long and complex ones that contain conditions and branching markup

into several shorter “flat” templates.

· Separation of concerns in the code generator. Each template is responsible for the

generation of a specific feature using a specific model class.

· Improved readability. The eliminated branching instructions make templates more

readable. Code is not intermixed with control statements therefore the actual code to

be emitted is easier to understand. A good abstraction of features and template hier-

archy helps to factor templates in a way that each of them contains an intuitively

comprehensible unit of code fragment. This further improves readability.

38

· Improved extensibility. The implementation of a concrete feature regarding a con-

crete model element is encapsulated into a concrete template class. This, combined

with an intuitive and consistent naming convention, makes it easy to locate the code

that must be modified. As a result, modifications of a specific feature are constrained

to a small set of templates or even a single template if it only affects a single concrete

model class. The generator itself or templates of other features or unaffected concrete

model classes never need modifications. Extensions are similarly straightforward.

The only necessary steps are creating the templates for features of the newly added

concrete model class and associating them with the new class. Since the generator

only has knowledge of the common interface and calls the concrete templates

through polymorphism, it is not necessary to modify the generator in any way.

The application of the pattern also has some disadvantages:

· Mixing model and implementation details. Although the pattern achieves good sep-

aration of concerns in the code generator, it mixes some implementation details with

the model. The pattern associates templates with model classes despite that the latter

should be part of the code generator itself since it conveys implementation details

for the generator. On the other hand, it can be argued that the features generated from

model classes has to do with their behavior, which in turn, fits into the model. De-

velopers that apply the pattern should consider whether it is a problem for them that

such details are stored in the model. If there is no benefit in separating them from

the model, this issue should not be blindly considered as a severe problem just be-

cause best practices warrant of separating model and implementation. However, if

there is a high number of features or there are several supported target languages,

models may become flooded by template references.

· Increased number of template classes. Since templates are decomposed on a per fea-

ture and a per concrete model class basis, their number increases significantly. This

is a direct consequence of decomposition so it is not considered as a real disad-

vantage. Besides, the number of classes depends on the choice of feature abstraction

and the use of template inheritance, therefore it can be slightly adjusted by choosing

the right abstractions.

· Difficult to deal with cross-cutting features. It is not trivial how to apply the pattern

with cross-cutting features that are not associated to a single model class but to sev-

eral ones. If there is an aggregate that references the involved model classes, it can

be considered to associate the features to that model class.

Example Resolved

In the ProtoKit1 tool, several features have been identified: (1) variable definition, (2)

initialization code, (3) accessor methods, (4) equals expression to compare the gener-

ated variables, (5) hashcode expression to generate a hash for the variable and (5) clone

code for the variable. For the implementation of the tool, the Eclipse Modeling Frame-

work (EMF) [19] has been used. EMF leverages round-trip code generation and allows

1 Source code available at https://github.com/gaborbsd/ProtoKit.

39

for defining methods on model classes by writing their Java code. The abstract Field

model class is the superclass of all fields that can be used in a message definition and

it defines the methods that return an instance of the template to use for the concrete

Field instance. The templates are implementations of the FieldGenerator interface. It

is imported to the EMF model as a data type so that the methods can be modelled. The

interface only defines a generate() method that takes the a Field instance as an argu-

ment. This generates the code fragment of a specific feature from the specified Field.

The implementations of the interface implement this method and do not store state so

they use the Singleton [3] pattern to facilitate the reuse of instances. The templates have

been decomposed on a per field per feature basis as the Polymorphic Templates pattern

suggests. Not all of the Field types require their own template, some templates are re-

used. For example, Fields that generate a primitive Java variable all share an empty

template for the cloning feature since Java’s clone() method inherited from Object takes

care of them. Referential variables all cloned in the same way, so they also share a

template.

The application of the design pattern has highly improved the readability and the

flexibility of the tool. It became easier to add new Field types and to modify existing

functionality. The increased number of the templates do not cause a problem and they

have been grouped to Java packages based on the feature they generate. Because of

EMF allowing method definitions on model classes and the moderate number of fea-

tures on the type hierarchy of Fields, mixing models and implementation did not mean

any disadvantage either. In the tool, there were no cross-cutting features so the pattern

was easy to apply.

5 Conclusion

The paper has presented a novel design pattern for implementing agile M2T transfor-

mations. This solution has been identified in our DSL-based tools that leverage code

generation to help software development. It has been chosen to publish this solution as

a design pattern to facilitate its reuse. The catalog format enables developers to easily

understand the context of the application, the problems that arise in this context and

how the application of the design pattern addresses these issues. Implementation ideas

are also provided. These help developers to decide, which variant fits better their needs.

A real-life application of the pattern will be published in our future papers.

We believe that the Polymorphic Templates design pattern will be of great use for

other software developers who use M2T transformations. It is a potential tool for cre-

ating agile code generators and thus is highly demanded in nowadays’ software envi-

ronments.

Acknowledgments. This work was partially supported by the European Union and the

European Social Fund through project FuturICT.hu (grant no.: TAMOP-4.2.2.C-

11/1/KONV-2012-0013) organized by VIKING Zrt. Balatonfüred. This work was par-

tially supported by the Hungarian Government, managed by the National Development

40

Agency, and financed by the Research and Technology Innovation Fund (grant no.:

KMR_12-1-2012-0441).

References

1. Fowler, M.: Domain-Specific Languages, Addison-Wesley (2010)

2. Kelly, S., Tolvanen, J.: Domain-Specific Modeling: Enabling Full Code Generation, Wiley -

IEEE Computer Society Publications (2008)

3. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Ob-

ject-Oriented Software, Addison-Wesley (1995)

4. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented Software

Architecture Volume 1: A System of Patterns, Wiley (1996)

5. Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Pattern-oriented Software Architecture

Volume 2: Patterns for Concurrent and Networked Objects, John Wiley & Sons (2000)

6. Kircher, M., Jain, P.: Pattern-Oriented Software Architecture Volume 3: Patterns for Resource

Management, Wiley (2004)

7. Buschmann, F., Henney, K., Schmidt, D.C.: Pattern-Oriented Software Architecture Volume

4: A Pattern Language for Distributed Computing, Wiley (2007)

8. Buschmann, F., Henney, K., Schmidt, D.C.: Pattern Oriented Software Architecture Volume

5: On Patterns and Pattern Languages, Wiley (2007)

9. Nguyen, D., Ricken, M., Wong, S.: Design Patterns for Parsing, In: 36th SIGCSE Technical

Symposium on Computer Science Education, pp. 477–48, ACM, New York (2005)

10. Schreiner, A.T., Heliotis, J.E.: Design Patterns in Parsing, In: 10th IEEE International Sym-

posium on High Performance Distributed Computing, pp. 181–184, IEEE Press, New York

(2001)

11. Kövesdán, G., Asztalos, M., Lengyel, L.: Architectural Design Patterns for Language Parsers,

Acta Polytechnica Hungarica, vol. 11, no. 5, pp. 39–57 (2014)

12. Yu, E.S.K., Mylopoulos, J.: Understanding ‘why’ in software process modelling, analysis,

and design, In: Proceedings of 16th International Conference on Software Engineering, pp.

159–168., IEEE Computer Society Press (1994)

13. Kövesdán, G., Asztalos, M., Lengyel, L.: A classification of domain-specific language intents,

International Journal of Modeling and Optimization, vol. 1, no. 4, pp. 67–73 (2014)

14. Amrani, M., Dingel, J., Lambers, L., Lúcio, L., Salay, R., Selim, G., Syriani, E., Wimmer,

M.: Towards a model transformation intent catalog, In: Proceedings of the First Workshop

on the Analysis of Model Transformations, pp. 3-8, ACM (2012)

15. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend, Packt Publish-

ing (2013)

16. Vogel, P.: Practical Code Generation in .NET, Addison-Wesley (2010)

17. Hearnden, D., Lawley, M., Raymond, K.: Incremental Model Transformation for the Evolu-

tion of Model-Driven Systems. In: Model Driven Engineering Languages and Systems, Lec-

ture Notes in Computer Science, vol. 4199, pp. 321-335 (2006)

18. Kövesdán, G., Asztalos, M., Lengyel, L.: Modeling Cloud Messaging with a Domain-Specific

Modeling Language, In: CloudMDE, A Workshop to Explore Combining Model-Driven En-

gineering and Cloud Computing. In conjunction with MoDELS 2014. In press.

19. Steinberg D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework,

2nd Edition, Addison-Wesley Professional (2008)

41

Flexible and Scalable Modelling in the MONDO

Project: Industrial Case Studies

Alessandra Bagnato
1
, Pedro Malo

2
, Salvador Trujillo

3
, Xabier Mendialdua

3
, Xabier de

Carlos
3
, Etienne Brosse

1
, Andrey Sadovykh

1
.

1 SOFTEAM, 8 Parc Ariane 78284 Guyancourt, France

{alessandra.bagnato, etienne.brosse, andrey.sadovykh}@softeam.fr,
2 UNINOVA, Pedro Maló, Campus da FCT/UNL, Caparica, Portugal

pmm@uninova.pt,
3 IKERLAN Paseo J.M. Arizmendiarrieta 2, 20500 Mondragon, Spain

{ STrujillo, XMendialdua, XDeCarlos}@ ikerlan.es

Abstract. Today, system designs and their management are crucial parts of

most systems development processes. To stay competitive engineers from

several expertise domains use Model-Based engineering (MBE) to design the

systems they intend to implement in order to specify, test, simulate, validate

and iterate their design as soon as possible. System designs are living and

evolving artefacts this imply to be able to manage them in an efficient and agile

way. The MONDO FP7 EU project aims to comprehensively tackle the

challenge of scalability in system design and management by developing the

theoretical foundations and an open-source implementation of a platform and

will offer to Model-Driven Engineering (MDE) users advanced flexibility in

their different modeling approaches. This paper describes three different

industrial demonstrators and three different modelling approaches that will be

utilised to evaluate the capabilities of the MONDO technologies. For each

demonstrator the interests of the industrial user partners are described along

with their current and desired improvements in technologies to support MBE in

a much more flexible way. Specific evaluation scenarios are specified for each

of the targeted industrial domains as well.

Keywords: scalable modelling, Model-Driven Engineering, software

engineering, qualitative evaluation..

1 Introduction

 Model-Driven Engineering (MDE) has been shown to increase productivity and

reuse and it has significantly enhanced important aspects of software engineering

development such as consistency, maintainability and traceability [5]. MDE is

therefore increasingly applied to larger and more complex systems. However, the

current generation of modelling and model management technologies is being

stressed to their limits in terms of their capacity to accommodate, in an agile way,

collaborative development, efficient management and persistence of large models (

larger than a few hundreds of megabytes in size) . Thus, recent research has focused

42

on scalability and flexibility across the MDE technical space to enable MDE to

remain relevant and to continue delivering its widely recognized productivity, quality

and maintainability benefits. The MONDO [1] project proposes to look into the

scalability issues for MDE in order to give more flexibility in processes and to help

into the agile definition and management of large models. The purpose of this paper is

to provide a description of the challenges targeted by three of the industrial

demonstrators that will be utilised to evaluate the capabilities of the MONDO

technologies. The selected demonstrators are depicting typical MDE issues found in

industry and describe the the benefits to be achieved in the selected scenarios.

The Use Cases that will be described herewith are the following:

• Use Case for Modelling Tool domain.

• Use Case for the Offshore Wind Power domain.

• Use Case for Open-BIM Construction domain.

In the next sections we briefly outline the challenges tackled by the MONDO

project. We then describe three of the MONDO case studies and summarize the

general feedback received from the three industries on the expected benefits to be put

in place within the different contexts to achieve better flexibility during engineering

and storage of large models. Finally, the paper is concluded along with plans on our

future work.

2 The MONDO project

Typically, achieving scalability involves being able to construct large models and

associated DSLs or meta-models in a systematic manner; enabling large teams of

modellers to construct and refine large models in a collaborative manner; advancing

the state of the art in model querying and transformations tools so that they can cope

with large models (of the order millions of model elements); and providing an

infrastructure for efficient storage, indexing and retrieval of such models [5]. In

particular, the maintenance and manipulation of large models unique scenarios

addressed by a novel class of model transformations (MT) able to extend the

capabilities of traditional MT approaches is under study within the MONDO project

[13] and a prototype tool supporting scalable concrete visual syntax enabling the rapid

construction of Domain Specific Languages (DSLs) with built-in capabilities to

navigate, explore and abstract large models is foreseen and under study by the project.

The MONDO research roadmap towards achieving scalability in model driven

engineering is described in [4] and briefly summarized in Figure 1. The project builds

on MDE research issues aiming at dealing with industrial scale models that need to

be persisted in a way that allows for their seamless and efficient manipulation [6][7],

often by multiple stakeholders simultaneously and will tackle scalable queries and

transformations, scalable DSLs, scalable collaborative modelling [10][11][12] within

scalable model persistence [6]. All the project advances will be reported within the

main project web site at [1] for the whole project duration and all technologies

developed by research partners will be released as open-source software under EPL

[9]. As such, industrial partners within the project and outside it will be able develop

43

proprietary extensions on top of this infrastructure without having to open-source

them.

Fig. 1. Tackling the challenge of scalability in MDE

As part of the MONDO project, this paper looks closely into the needed efficient and

flexible engineering, storage, indexing and retrieval of large models within three

different industrial case studies selected to evaluate the project results.

2 The Modelling Tool domain case study

SOFTEAM aims at applying scalability in MDE technologies within the SOFTEAM

Modelio [2] modelling tool. Modelio is an open source modelling tool, providing

support for many kind of modelling e.g. UML2 modelling, Enterprise Architecture

modelling, Business Process modelling, and SOA modelling. The MONDO

technologies are expected to make possible to enhance Modelio capabilities in an

agile way and to allow it to manage very large models by gaining speed in the overall

design carried out. In particular the production chain that includes, the DSL

engineering, the DSL persistence, the model (conforms to a given DSL) engineering

and the model persistence, that is currently in place within Modelio and the Eclipse

Modeling Framework (EMF)[14] world is considered too much rigid and constrained

by MDE users e.g. modellers, architect and developers.

The MONDO research and results will be key to meet the increasing need from

SOFTEAM customers to support a more agile production chain that considers larger

and larger models, and larger teams of developers.

44

SOFTEAM will evaluate the MONDO improvements through an modelled

application called Voyages Discount. This modelled application uses TOGAF

modelling [3] which aims at improving business efficiency ensuring consistent

standards, methods, and communication among enterprise architecture professionals.

The model has been chosen since it provides an industrial business process that

required multiple stockholders communications to be completed where the modelling

flexibility provided within MONDO will be helpful.

Currently the Modelio Teamwork Manager feature endows Modelio with a

distributed collaborative modelling environment through a Subversion (SVN)

repository. The model fragments [8], composing the Modelio project, are managed

by Modelio Teamwork Manager and the enhancement of an improved collaboration

environment will be very helpful in increasing productivity.

In Table 1 we present and summarize the expected targeted flexibility benefits and

we consider in particular the need to reduce the time to complete the production chain

above mentioned by means of structured EMF modularity and collaborations.

Table 1. Overview of the scenarios within Modelling Tool use case of MONDO.

Scenario Purpose Specific expected

MONDO/Extreme Modelling

benefits

Scenario 1:

MONDO

framework

querying

facility

This scenario focusses on the

comparison of the query facilities and

performances provided by both

Modelio and MONDO frameworks. In

the MBE approach, queries are often

defined and performed to extract

specific and relevant information from

model. Modelio store offers a set of

predefined scripts among thus the

“Simple Statistics Reporting” script

provides model statistics on objects

present under selected element. This

latter will be used as reference to

compare both technologies in terms of

querying.

MONDO technology will

improve the Modelio querying

facilities to better meet end user’s

needs in terms of performance

(time and memory). A

methodology

whereby the performance of

model queries can be

systematically

evaluated, and relevant

performance predictor metrics

can be identified is under study

within MONDO [15]. More

advances in this direction are also

under study within [10][11][12].

 Scenario 2:

MONDO

framework

collaborating

modelling

The actual model usage across several

domains, several teams and several

peoples implies to be able to

collaborate during the model

specification. This scenario aims at

integrating the MONDO technologies

within the Modelio modelling tool for

supporting large and complex models

and large collaborating teams.

MONDO technology will

improve end users’ experience of

modelling gaining speed in the

overall design in large team and

large model context. MONDO

will provide management

techniques for collaborative

modelling adapted from version

control systems including

locking, transaction handling

with commit, conflict

management and resolution

[10][11][12].

Scenario 3: Specification and execution of MONDO technology will

45

MONDO

framework

support in

transforming

model to text.

ModelToText transformations are the

aim of this third evaluation scenario.

Capability provided by both

environment (MONDO and Modelio

tool) will be evaluated in term of

possibility, performance and easiness

to use. Modelio document publisher

extension provides by default a set of

existing transformation including the

analysis and design one’s which will

be used as benchmark.

overcome the lack of

documentation by improving the

scalability and performances of

Modelio ModelToText

transformations in a large model

context. First results in this

direction can be found at [13].

Scenario 4:
MONDO

framework

support in

transforming

model to

another

model.

The purpose of this scenario is to

compare the ModelToModel

transformation support by both

frameworks. Among all existing

ModelToModel transformation

specified inside Modelio or its

extension, the performance analysis

will take EMF UML2 XMI

import/export facilities as reference.

MONDO technology will

improve the scalability and

performances of Modelio

ModelToModel transformations

in a large model context by

reducing the amount of needed

time and ressources . An EMF

Splitter with a structured

Approach to EMF modularity is

under study within the project to

bring more agility in the overall

production chain and will be

evaluated.

3 The Offshore Wind Power domain case study

MONDO technology is designed to support collaborative domain specific modelling

for offshore wind turbines. Modelling tools will enable engineers to specify

concurrently control systems of wind turbines and to share different specifications

(model versions). This is expected to raise productivity during the development and

customization of software for wind turbine control systems.

Wind turbines are complex systems composed by a set of physical subsystems.

Different subsystems must work in a coordinated manner to transform wind energy

into electrical energy. The purpose of a wind turbine control system is to supervise

and control all those subsystems for their correct operation.

The Wind Turbine Control System Modelling Tool is a tool that the engineers use

for specifying behaviour of the system that will control the wind turbine. Software

code responsible for turbine control will be generated automatically from models.

Control system development entails collaboration between engineers of different

disciplines. Engineers of each discipline have different skills and they develop

specific-parts of the wind turbine subsystems. Consequently, model specification

implies the use of collaborative modelling tools. Moreover, since wind turbines’

control models are large and complex, modelling tools should be scalable and provide

agile mechanisms for model development (i.e. advanced queries, load-on-demand,

partial load of models, etc.).

Wind Turbine Control System Modeling Tool has been developed based on

existing Open-source Eclipse modeling technology. Unfortunately, existing modeling

46

frameworks in which tools are based are not conceived to be used in an agile and

collaborative manner. This is the case of the design of a wind turbine in which several

engineers collaborate together step by step to define, integrate and validate models

incrementally that form subsystems and then complete systems.

In contrast to the work process described above, existing tools are conceived for a

single engineer to work on a complete specification, preventing collaboration beyond

the tool and the engineer. MONDO pursues to expand existing tools to support such

collaborative modeling of teams of engineers working together. MONDO

collaborative tools are expected to foster agility and collaboration in the modeling of

wind turbines.

Results obtained on the MONDO Project will be the key to provide collaborative

modelling tools enabling to turn the wind turbine design process into a more agile and

flexible process. MONDO Project will enable to add new features to the modelling

tools such as concurrent model edition, partial load of models, advanced querying

capabilities, etc. Additionally, technology developed within the MONDO Project will

support modelling from mobile devices. It will allow performing modelling activities

also in environments where the conditions are not bests (in-situ maintenance of the

wind turbine).

Table 2. Overview of the scenarios within Offshore Wind Power use case of MONDO.

Scenario Purpose Specific expected

MONDO/Extreme Modelling

benefits

Scenario 1:

Wind turbine

control system

collaborative

modelling

This scenario is focused on the design of

wind turbines’ control systems. Several

system engineers participate at the same

time on the specification of wind turbine

control system. Generally, each system

engineer focuses in one subsystem and

specifies the control of the subsystem.

All those parts together specify the

behaviour of the control system that is

responsible to control and supervise the

wind turbine.

Technology provided by

MONDO will provide

mechanisms that allow working

concurrently on model

elements. This will provide the

flexibility for different

modeling engineers to work at

the same time on different

subsystems or even on the

same subsystem. As a result,

this will ease teamwork when

modeling a complete system.

Apart from improving

communication among

engineers, it will favor an early

identification of potential

design flaws.

Scenario 2:

Partial load

and load-on-

demand of

models related

to subsystems

This scenario is focused on the wind

turbine commissioning process in which

different physical subsystems (or sets of

subsystems) are commissioned

separately.

This entails a scenario that from the

view-point of system control, only a

fragment of the whole model must be

taken into account. System engineer only

MONDO technology will allow

system engineers to work only

with specific parts of the

model, providing features that

allow partial load and

load/unload on demand of parts

of the model where different

subsystems are specified.

MONDO will provide

47

needs the part of the model concerning

to the subsystem.

Therefore, system engineers involved on

the subsystem commissioning must be

able to work with a partial view of the

whole model, having the ability to load

and unload models fragments concerning

to subsystems or parts of a subsystem.

technology to enable a team of

engineers to work on parts of

models that can be validated

partially. Enabling partial work

will make the process more

agile and flexible.

Scenario 3:

Modelling

from mobile

devices

This scenario is located on the

installation and maintenance activities

performed within a wind farm. Often

during these activities, wind turbine

control systems require small

adjustments (i.e. modify parameters’

values or activation/deactivation of non-

critical control algorithms). These

adjustments will be performed using

handy devices. However, these changes

imply also (i) re-generate code for the

control system and (ii) add the new

model version to the repository.

MONDO technology will

provide engineers solutions to

perform installation and

maintenance activities of the

wind turbines within a wind

farm.

These solutions should support

modelling from lightweight

devices such as mobiles or

tablets. In this way, these

solutions will facilitate

fieldwork where commonly

conditions are not good.

Besides Offshore Wind Power domain, IKERLAN-IK4 also plans to use technology

developed within the MONDO Project on other domains such as transportation and

capital goods.

4 The Open-BIM Construction domain case study

A Building Information Model (BIM) is an instance of a populated data model of

buildings that contains multi-disciplinary data specific to a particular building, which

it describes unambiguously. BIM offers easier use of interoperable industry software

tools, fewer errors and omissions, and time and cost savings that can cumulatively

result in earlier building delivery. It can facilitate discussion, checking, analysis and

communication about a project much earlier and in much clearer and precise terms

than standard practice.

The IFC (Industry Foundation Classes aka Information For Construction) is the

neutral and freely available specification (model) to describe, exchange and share

information typically used within the building and facility management industry

sector. As such, the IFC provides an Open-BIM as any single vendor or group of

vendors does not control it, is openly accessible and used free of charge, and it is a

standard de facto (in industry) and de jure (ISO 16739). BIM is a key enabler for

Model-Based Engineering in construction-related ICT industries. ICT solutions for

construction industries take advantage of MBE methods and practices to properly

manage and exploit BIM models. The key solution to take advantage of MBE in BIM

is the so-called Model Servers. Model Servers are a technological concept that was

coined by the AECO software industry that designates a specialised ICT solution

48

capable of providing BIM capabilities and services. A Model Server provides

supports for modelling, storing, sharing, inspect, visualise, and operate BIM models.

Model Servers of today are generically using the Open-BIM IFC model. An Open-

BIM/IFC Model Server is thus a data repository/store with supporting services that

provide multi-user access, storage and management, and allow the use of the IFC data

model as the underlying representation structure (schema).

A BIM-IFC data model of a not-so-complex building comprehends a huge number

of modelling elements (to the millions scale). A comprehensive building information

model enclosing all the building disciplines can rapidly go from few millions to many

dozens of million modelling elements. Moreover, BIM-IFC data models are shared

(serialized) using the text-based ISO10303 STEP Part#21 representations that rapidly

escalate file sizes to many Megabytes to Gigabytes.

The trouble is that today’s breed of Model Servers exhibits problems in presence of

big-to-huge BIM data models. Tools considerably degrade performance in presence of

large-size BIM models (i.e. with some few millions of modelling elements) or simply

“break” in presence of huge-size BIM models (in the scale of tens of millions of

modelling elements). This led to very inefficient solutions for BIM-based

collaboration like sharing partial models done by construction project designers and

engineers that then requires time consuming model aggregation by some person

(“model coordinator”) and make it difficult for model users (model

designers/engineers but also model clients) to get a comprehensive integral view of

the model (building or set of buildings in a landscape).

The idea is for MONDO technologies to be able to take charge of addressing the

performance and scalability issues of BIM data models that are presently dealt

directly by its users (designers, engineers). The vision is that of a solution that enables

an efficient management and exploitation of BIM large-to-huge-scale data models by

both using best-of-breed MBE solutions and incorporating AECO domain knowledge

for the best possibly experience and performance.

Table 3. Overview of the scenarios within Open-BIM Construction case study.

Scenario Purpose Specific expected

MONDO/Extreme

Modelling benefits

Scenario 1:

File- (huge-)

based

collaboration

The file-based collaboration scenario is one

where model designers work on separate

models and share models (as huge files) with

a model coordinator (that aggregates models

altogether) and then with some model

clients. Here the Heterogeneous Model

Server exists especially at the Model

Coordinator that can “upload” models and

merge models together as well as doing

some validations and checks to provided

models. Data models are then exported in

designated formats to be shared with model

clients.

Technology provided by

MONDO will allow

designers & engineers to

work on a specific part of

the model, but with the

added flexibility of having

all parts merged together

within a single model.

Technology is to allow

users to perform off-line

work and then be able to

readily reconvene for

review and development.

Scenario 2:

Shared-

The shared-model collaboration scenario is

one where all users (model designers, model,

MONDO technology will

allow system engineers to

49

(huge-) model

collaboration

model coordinator, model clients) interact

using a share-model hosted in a Model

Server. Users are provided with data models

views of the huge data models in the Model

Server and can check-in/check-off model

parts for off-line manipulation.

work only with specific

parts of the model, with the

added flexibility of

providing features that

allow partial load and

load/unload on demand of

parts of the model where

different subsystems are

specified.

Scenario 3:

Quantity

Take-Off

(QTO) in

huge IFC

models

Quantity take-off’s (QTO) is a key process

in construction. QTO are a detailed

measurement of the materials needed to

complete a construction project. These

measurements are used to format a bid on

the scope of construction. Estimators review

drawings and specifications to find these

quantities, which is a very time consuming,

and erroneous process. BIM provides a

direct way to extract the quantities of a

building. It is done using a complex query to

the BIM model.

On huge BIM data models

performing QTO is a non-

trivial task due to the

complexity of the query

and need to traverse the

whole of the data model.

The scenario tests then the

ability of MONDO to

report out of large-to-huge

data models using complex

queries situations.[10] [11]

[12]

5 Conclusion and future work

The case studies and evaluation scenarios selection presented herein was performed

during the first ten months of the MONDO project (with a total duration of 30

months). As a general conclusion from the use case and scenario descriptions and the

subsequent requirement gathering and prioritization phase form industry, it is believed

that adopting MONDO technologies will bring benefits to the current software

development processes used by all the involved industries, helping designers to work

with large models.

In particular the MONDO technologies are expected to enable the Modelio tool to

provide scalability in modelling, being able to construct large models and to enable

large teams of modelers to construct and refine large models in a collaborative

manner. Moreover, MONDO technologies will provide a solution for collaborative

modelling within modelling tools to specify control systems for wind turbines. In this

way these modelling tools will support features that ease collaboration. Finally

MONDO technologies will be utilized within all the three case studies in the context

of large model transformations. More specifically being able to generate

documentation and to apply transformation on large models have been found as key

aspects of scalable Model-Based Engineering.

The MONDO technologies evaluations within is planned for the end of second

year of MONDO Project (October 2015). These will be both a qualitative and

quantitative evaluations aimed at assessing the usefulness and ease of use when

actually performing scalable modelling on real case studies through supporting tools.

50

Acknowledgements

The research leading to these results has received funding from the European

Community Seventh Framework Programme (FP7/2007-2013) under grant agreement

no FP7-611125. We would also like to acknowledge all the members of the MONDO

Consortium for their valuable help and in particular Scott Hansen (The Open Group),

and Dimitris Kolovos (University of York) for their support in the case studies

scenarios and expected benefits definition.

References

1. MONDO Project Consortium: MONDO Project Homepage, http://www.mondo-project.org

2. Modelio Modelling Tool: Homepage, http://www.modeliosoft.com

3. TOGAF® Version 9.1 Enterprise Edition Web Site:

http://www.opengroup.org/togaf/
4. Dimitrios S. Kolovos, Louis M. Rose, Nicholas Matragkas, Richard F. Paige, Esther Guerra,

Jesús Sánchez Cuadrado, Juan De Lara, István Ráth, Dániel Varró, Massimo Tisi, and Jordi

Cabot. 2013. A research roadmap towards achieving scalability in model driven engineering. In

Proceedings of the Workshop on Scalability in Model Driven Engineering (BigMDE '13)

5. Mohagheghi, P., Fernandez, M., Martell, J., Fritzsche, M., Gilani, W.: MDE Adoption in

Industry: Challenges and Success Criteria. In: Models in Software Engineering. Volume 5421

of Lecture Notes in Computer Science. Springer (2009) 54–59

6. Comparative analysis of data persistence technologies for large-scale models, K. Barmpis,

Dimitrios S. Kolovos, Proceeding XM '12 Proceedings of the 2012 Extreme Modeling

Workshop Pages 33-38 ACM New York, NY, USA ©2012

7. Hawk: towards a scalable model indexing architecture, K. Barmpis, D. Kolovos, BigMDE

'13 Proceedings of the Workshop on Scalability in Model Driven Engineering Article No. 6

ACM New York, NY, USA ©2013

8. OMG: World Wide Modeling: The Agility of the Web Applied to Model Repositories

SOFTEAM-Modelio: http://www.omg.org/news/member-news/SOFTEAM-ModelioWhite-

Paper-WorldWideModeling.pdf

9. Eclipse Public License - v 1.0 - http://www.eclipse.org/org/documents/epl-v10.php

10. Ujhelyi, Z., Bergmann, G., Hegedüs, Á., Horváth, Á., Izsó, B., Ráth, I., Szatmári, Z., and

Varró, D., "EMF-IncQuery: An Integrated Development Environment for Live Model Queries",

Science of Computer Programming, 2014.

11. Debreceni, C., Horváth, Á., Hegedüs, Á., Ujhelyi, Z., Ráth, I., and Varró, D., "Query-driven

incremental synchronization of view models", Proceedings of the 2nd Workshop on View-

Based, Aspect-Oriented and Orthographic Software Modelling, York, ACM, pp. 31, 07/2014.

12. Szárnyas, G., Ráth, I., and Varró, D., "Scalable Query Evaluation in the Cloud", STAF

Doctoral Symposium, 07/2014.

13. Dávid, I., Ráth, I., and Varró, D., "Streaming Model Transformations By Complex Event

Processing", ACM/IEEE 17th International Conference on Model Driven Engineering

Languages and Systems, MODELS 2014, Valencia, Spain, Springer, 2014.

14. The Eclipse Project, “Eclipse Modeling Framework,” http://www.eclipse.org/emf/.

15. Izsó, B., Szatmári, Z., Bergmann, G., Horváth, Á., and Ráth, I., "Towards Precise Metrics

for Predicting Graph Query Performance", 2013 IEEE/ACM 28th International Conference on

Automated Software Engineering (ASE), Silicon Valley, CA, USA, IEEE, pp. 412--431,

11/2013.

51

Configurable Formal Methods
for Extreme Modeling

Position Paper

Uli Fahrenberg and Axel Legay

IRISA / Inria Rennes

Abstract. Reliable model transformations are essential for agile model-
ing. We propose to employ a configurable-semantics approach to develop
automatic model transformations which are correct by design and can
be integrated smoothly into existing tools and work flows.

Model management is an essential activity in a model-driven development
process. This is especially true in an agile context where models are continuously
refined, iterated and combined.

It is a common misunderstanding that development by stepwise refinement,
or use of component algebras, requires using a highly planned and waterfall-like
development process. See for example the following quote:

An important variant of the waterfall model is formal system develop-
ment, where a mathematical model of a system specification is created.
This model is then refined, using mathematical transformations that pre-
serve its consistency, into executable code. Based on the assumption that
your mathematical transformations are correct, you can therefore make
a strong argument that a program generated in this way is consistent
with its specification. [30, p.32]

We will argue below that methods from model management and formal sys-
tem development, when combined with and inspired by approaches originating
in the area of formal interface and specification theories, can play an important
role also in an agile context.

Within the context of model-driven engineering, automated model transfor-
mations such as merging, differencing and slicing are of great importance. This
is especially true in the industrial context where models can easily get so large
that the engineers only see them through viewpoints, or slices; indeed, an explicit
system model may not even exist, so that the general model is only implicitly
given as a collection of viewpoints.

When the system model is so complex that no single engineer has a compre-
hensive view, it can be very challenging to ensure correctness of an applied model
transformation by inspection. (Even when the system model is less complex, en-
suring correctness by inspection may be a difficult and error-prone process and

52

require advanced tooling.) The use of model transformations which are correct-
by-design, or at least checkable-by-design, hence becomes increasingly important.
This point of view has also been argued in [1, 6, 24,27].

A good example is given by one of the case studies in the MERgE ITEA2
project [28]. This consists of a large system model with multiple (more than
twenty) viewpoints, each detailing a different aspect of the model. The involved
engineers are only working with the model through these viewpoints, as the
whole model is too complex to be worked with directly. Now when a model
transformation is applied to the model (e.g. a new subsystem is added through
model merging), the engineers can inspect at their respective viewpoints whether,
locally, the model transformation has been applied correctly. But can we be sure
that this implies that the transformation is also globally correct? Can we design
a procedure which allows such kind of local-to-global reasoning?

To put it succinctly, it is an important problem in model-driven engineering
to ensure that model transformations are semantically correct or that, at least,
their semantic correctness can be inferred by a combination of slicing and local
inspection.

One basic model transformation is the one of differencing, i.e. assessing dif-
ferences between models. This is an important ingredient in version control and
essential in three-way merging, but can also be applied, more elementarily, to
inspect related models for their common points and differences. Semantically
correct differencing procedures, for class diagrams and activity diagrams respec-
tively, have been proposed in [24–26]. However, these procedures rely on a com-
plete, formal semantics of the modeling formalism in question, which for most
cases is unrealistic: in practice, engineers use modeling tools which do not have
a formal semantics, or where an existing formal semantics is too complex to be
practically useful.

It is our point of view that any “bottom-up” approach to correct model trans-
formations which uses a complete formal semantics as a starting point, such as
the above-cited, is of doubtful use in practice. In practice, engineers develop
models according to an intuitive understanding of how things work, and not
according to a complete formal semantics (if indeed it exists at all).

Apart from being correct-by-design or checkable-by-design, we have also ar-
gued in [18] that it is important that model transformations return an object
of the same type as the inputs. Hence, the merge of two class diagrams, for in-
stance, should again be a class diagram, the difference of two feature diagrams
should again be a feature diagram, etc. This allows developers to visualize the
transformation and to manipulate it using the usual tools for working with mod-
els; the transformation integrates smoothly into existing tools and work flows.
Figure 1 shows an example of such a work flow which necessitates that the
difference between two models is again a model of the same kind.

[24–26] propose semantic difference operators for class diagrams and activity
diagrams, respectively, however, their approaches are enumerative in nature:
their output is a (potentially infinite) list of object models which witness the
difference between the input diagrams. The output language is thus different

53

M1

M2

M3

diff

merge

Fig. 1. Example of a work flow where the changes (“diff”) between models M1 and M2

are automatically applied (“merge”) to M3. Note that a simplistic “diff” is not always
the correct approach; it can be important to e.g., tell the difference between renaming
an entity and a deletion followed by an addition.

from the input language, which makes it impossible to integrate their tool into
a standard work flow without additional processing steps.

Within the subject of interface and specification theories in formal meth-
ods, semantic model transformations exist for many types of low-level behav-
ioral models [3–5, 7–9, 11–14, 20, 22, 23]. In recent work, we have developed a
generalization of these approaches in which the semantics of models is config-
urable [2,16,17]: When models and specifications contain quantities such as tim-
ing information or resource use, the precise behavior of model transformations
depends on the type of quantities and on the application. Hence, the precise
definitions and properties of model transformations depend on the quantitative
semantics, and our generalization offers a generic way of configuring the trans-
formations and properties according to the semantics.

Similarly in spirit, Maoz et.al. have in [10, 27] introduced techniques for se-
mantically configurable analysis of some high-level models, viz. class diagrams
and scenario specifications. They use feature diagrams [21,29] for configurability,
so that the analysis depends on the selection of features.

We have in [15, 18] introduced semantically correct model transformations
for feature diagrams and class diagrams, see Figures 2 and 3 for some examples.
These operators’ return types are the same as their input types, so that they
can be integrated smoothly into existing tools and work flows, but they rely on
a complete formal semantics. We believe that these approaches can be combined
with the configurability of [10, 27] to yield model transformations which are
automatic and correct-by-design, yet flexible enough to be practically useful.

Conclusion

We propose to employ a configurable-semantics approach, using feature dia-
grams, to develop automatic model transformations which are correct by design
and can be integrated smoothly into existing tools and work flows. Such model
transformations are important for agile modeling methods.

54

Employee

Manager Car

manages

managedBy 0..1

1..7

1 1

Employee

Manager

Task

manages

managedBy 0..2

*

1 0..2

Employee

Manager

Task

Car

manages

managedBy 0..1

1..7

1 0..2

1 1

Fig. 2. Two class diagrams (above) and their merge (below), cf. [15].

As an example, consider the following scenario: An engineer wants to perform
a three-way merge of two models which have evolved from a common ancestor.
She will first use her development tools to attempt an entirely syntactic merge,
which will detect some conflicts which are inessential because they only amount
to syntactic differences while being semantically equivalent (given the develop-
ers’ intuitive understanding of the semantics). These she can easily detect, and
she can adjust her merge tool to take them into account (hence applying a par-
tial semantics). However, due to semantic effects which propagate through the
models, also the reverse may happen: there may be semantic conflicts which go
undetected by the syntactic approach. These are more difficult to detect and
require that even a merge which is syntactically correct be carefully checked by
applying possibly several different semantics.

References

1. Kerstin Altmanninger. Models in conflict - towards a semantically enhanced version
control system for models. In Holger Giese, editor, MODELS Workshops, volume
5002 of LNCS, pages 293–304. Springer, 2007.

2. Sebastian S. Bauer, Uli Fahrenberg, Axel Legay, and Claus R. Thrane. General
quantitative specification theories with modalities. In Edward A. Hirsch, Juhani
Karhumäki, Arto Lepistö, and Michail Prilutskii, editors, CSR, volume 7353 of
LNCS, pages 18–30. Springer, 2012.

3. Sebastian S. Bauer, Line Juhl, Kim G. Larsen, Axel Legay, and Jiří Srba. Extend-
ing modal transition systems with structured labels. Math. Struct. Comput. Sci.,
22(4):581–617, 2012.

4. Sebastian S. Bauer, Kim G. Larsen, Axel Legay, Ulrik Nyman, and Andrzej Wą-
sowski. A modal specification theory for components with data. Sci. Comput.
Program., 83:106–128, 2014.

55

applet

stopdestroy

paint init

must-override

start

(d =⇒ i) ∧ (t =⇒ i)

applet

stopdestroypaint

initmust-override

start

(¬m =⇒ i)

applet

stopdestroypaint

initmust-override

start

(¬m =⇒ i)

Fig. 3. Two feature diagrams and an over-approximation of their difference, cf. [18].

5. Nikola Beneš, Jan Křetínský, Kim G. Larsen, Mikael H. Møller, and Jiří Srba.
Dual-priced modal transition systems with time durations. In Nikolaj Bjørner and
Andrei Voronkov, editors, LPAR, volume 7180 of LNCS, pages 122–137. Springer,
2012.

6. Greg Brunet, Marsha Chechik, Steve Easterbrook, Shiva Nejati, Nan Niu, and
Mehrdad Sabetzadeh. A manifesto for model merging. In GAMMA, pages 5–12.
ACM, 2006.

7. Benoît Caillaud, Benoît Delahaye, Kim G. Larsen, Axel Legay, Mikkel L. Ped-
ersen, and Andrzej Wąsowski. Constraint Markov chains. Theor. Comput. Sci.,
412(34):4373–4404, 2011.

8. Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Freddy Y. C.
Mang. Synchronous and bidirectional component interfaces. In Ed Brinksma
and Kim Guldstrand Larsen, editors, CAV, volume 2404 of LNCS, pages 414–427.
Springer, 2002.

9. Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Mariëlle
Stoelinga. Resource interfaces. In Rajeev Alur and Insup Lee, editors, EMSOFT,
volume 2855 of LNCS, pages 117–133. Springer, 2003.

10. Barak Cohen and Shahar Maoz. Semantically configurable analysis of scenario-
based specifications. In Gnesi and Rensink [19], pages 185–199.

11. Alexandre David, Kim G. Larsen, Axel Legay, Mikael H. Møller, Ulrik Nyman,
Anders P. Ravn, Arne Skou, and Andrzej Wąsowski. Compositional verification
of real-time systems using Ecdar. J. Softw. Tools Techn. Transfer, 14(6):703–720,
2012.

12. Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Nyman, and Andrzej Wą-
sowski. Timed I/O automata: a complete specification theory for real-time sys-
tems. In Karl Henrik Johansson and Wang Yi, editors, HSCC, pages 91–100. ACM,
2010.

13. Benoît Delahaye, Benoît Caillaud, and Axel Legay. Probabilistic contracts: a com-
positional reasoning methodology for the design of systems with stochastic and/or
non-deterministic aspects. Formal Meth. Syst. Design, 38(1):1–32, 2011.

14. Benoît Delahaye, Joost-Pieter Katoen, Kim G. Larsen, Axel Legay, Mikkel L. Ped-
ersen, Falak Sher, and Andrzej Wąsowski. Abstract probabilistic automata. In
Ranjit Jhala and David A. Schmidt, editors, VMCAI, volume 6538 of LNCS, pages
324–339. Springer, 2011.

15. Uli Fahrenberg, Mathieu Acher, Axel Legay, and Andrzej Wąsowski. Sound merg-
ing and differencing for class diagrams. In Gnesi and Rensink [19], pages 63–78.

16. Uli Fahrenberg and Axel Legay. General quantitative specification theories with
modal transition systems. Acta Inf., 51(5):261–295, 2014.

17. Uli Fahrenberg and Axel Legay. The quantitative linear-time-branching-time spec-
trum. Theor. Comput. Sci., 538:54–69, 2014.

56

18. Uli Fahrenberg, Axel Legay, and Andrzej Wąsowski. Make a difference! (Semanti-
cally). In Whittle et al. [31], pages 490–500.

19. Stefania Gnesi and Arend Rensink, editors. Fundamental Approaches to Software
Engineering - 17th Int. Conf., FASE 2014. Proceedings, volume 8411 of LNCS.
Springer, 2014.

20. Line Juhl, Kim G. Larsen, and Jiří Srba. Modal transition systems with weight
intervals. J. Log. Algebr. Program., 81(4):408–421, 2012.

21. Kyo Kang, Sholom Cohen, James Hess, William Nowak, and Spencer Peterson.
Feature-oriented domain analysis (FODA) feasibility study. Technical Report
CMU/SEI-90-TR-21, CMU, 1990.

22. Kim G. Larsen. Modal specifications. In Joseph Sifakis, editor, Automatic Ver-
ification Methods for Finite State Systems, volume 407 of LNCS, pages 232–246.
Springer, 1989.

23. Kim G. Larsen, Axel Legay, Louis-Marie Traonouez, and Andrzej Wąsowski. Ro-
bust synthesis for real-time systems. Theor. Comput. Sci., 515:96–122, 2014.

24. Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. A manifesto for seman-
tic model differencing. In Jürgen Dingel and Arnor Solberg, editors, MODELS
Workshops, volume 6627 of LNCS, pages 194–203. Springer, 2010.

25. Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. ADDiff: Semantic dif-
ferencing for activity diagrams. In Tibor Gyimóthy and Andreas Zeller, editors,
SIGSOFT FSE, pages 179–189. ACM, 2011.

26. Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CDDiff: Semantic differ-
encing for class diagrams. In Mira Mezini, editor, ECOOP, volume 6813 of LNCS,
pages 230–254. Springer, 2011.

27. Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Semantically configurable
consistency analysis for class and object diagrams. In Whittle et al. [31], pages
153–167.

28. MERgE ITEA2 project. http://merge-itea-project.irisa.fr/.
29. Pierre-Yves Schobbens, Patrick Heymans, and Jean-Christophe Trigaux. Feature

diagrams: A survey and a formal semantics. In RE, pages 136–145. IEEE Computer
Society, 2006.

30. Ian Sommerville. Software Engineering. International computer science series.
Addison-Wesley, 9th edition, 2010.

31. Jon Whittle, Tony Clark, and Thomas Kühne, editors. Model Driven Engineering
Languages and Systems, 14th Int. Conf., MODELS 2011. Proceedings, volume 6981
of LNCS. Springer, 2011.

57

