
Polymorphic Templates

A design pattern for implementing agile model-to-text

transformations

Gábor Kövesdán, Márk Asztalos and László Lengyel

Budapest University of Technology and Economics, Budapest,

Hungary

{gabor.kovesdan, asztalos, lengyel}@aut.bme.hu

Abstract. Model-to-text transformations are often used to produce source code,

documentation or other textual artefacts from models. A common way of imple-

menting them is using template languages. Templates are easy to read and write,

however, they tend to become long and complex as the complexity of the meta-

model grows. This paper proposes a design pattern that allows for the decompo-

sition of complex templates with branching and conditions inside into simpler

ones. Its main idea is that the code generator does not know about the concrete

templates that are called: they are determined by the objects of the model being

traversed. The concrete template is selected through object-oriented polymor-

phism. The pattern results in a flexible code generator with simple templates,

good extensibility and separation of concerns. This agility facilitates the design

for extension and changes, which is paramount nowadays.

Keywords: Modeling · Domain-Specific Modeling · Model Transformation ·

Code Generation · Design Pattern

1 Introduction

This paper presents a design pattern that can be used to create flexible model-to-text

(M2T) transformation. The pattern is applicable on complex M2T templates and pro-

poses an object-oriented decomposition for the generator, the model objects and the

templates. This decomposition achieves reduced complexity, separation of concerns,

improved readability and most importantly improved maintainability and flexibility.

We believe that the Polymorphic Templates pattern will greatly help developers of all

kinds of M2T transformations in designing robust code generators that are easy to main-

tain and extend.

The rest of this paper is organized as follows. Section 2 briefly explains the founda-

tions of M2T transformations using template languages. Section 3 lists existing work

available on the subject. Section 4 describes the design pattern in a format that is similar

to those that are used in design pattern catalogs. Section 5 concludes.

2 Background

M2T transformations are often used for generating source code, documentation or other

artefacts in order to speed up software development. Models can be easily produced

and validated by the proper tooling so we can make sure they convey the correct infor-

mation. By using models and code generation techniques, the resulting source code can

be produced more quickly. Besides, if they are validated and the code generator is cor-

rect, we can assure that the generated code is correct as well. When using Domain-

Specific Modeling (DSM) and model processing [1-2], these benefits apply at a much

higher extent. DSMs raise the abstraction and allow for expressing the problem from a

more human-friendly viewpoint that does not require thinking in programming notions.

This makes the process less error-prone.

Because of the above reasons, the code generator is an especially important compo-

nent in model processing. To facilitate the development of code generators, so called

template languages have been developed. Generating code from conventional program-

ming languages is difficult because substitution and print instructions are intermixed

with literal fragments of the output, thus it becomes hard to read. Template languages

reverse the logic: everything written in the template goes to the output by default, only

value substitutions and conditional instructions or loops must be written with special

markup. These template languages highly simplify the development of code generators

and make the generated code easier to read and write. However, as the complexity of

the model grows, templates also become longer and more complex and these ad-

vantages can be only achieved at a limited extent. From different model objects, usually

different kinds of code fragments are generated and this requires branching instructions

in the template. If there is a high number of them, the template becomes hard to read

and maintain.

Despite that the explanation above mentions mostly code generation, other kinds of

M2T transformations, like generating reports, documentation etc. are very similar in

nature and the pattern is also applicable to them. For the sake of simplicity, throughout

the paper we will simply refer to the M2T transformations as code generators.

3 Related work

The first well-known work that proposed the reuse of working solutions to common

software engineering problems and their description in design pattern catalogs was the

one published by Gamma et al. [3]. This work was followed by the Pattern-Oriented

Software Architecture (POSA) series [4,5,6,7,8]. Apart from these general object-ori-

ented design patterns, some more specialized patterns have also been described. In the

field of Domain-Specific Languages (DSLs), [1] provides a pattern catalog, covering

several different aspects of DSLs and code generation. This is a rich source of infor-

mation but it has a more general view than this paper and does not include the pattern

described herein. Apart from this, [9] provides some practical uses of general object-

oriented design patterns in recursive descent parsers and [10] describes how a parser

generator uses object-oriented design patterns. These are specific uses of general design

patterns and these papers do not include more specialized patterns specific to DSLs and

code generation. A pattern catalog [11] of architectural design patterns that can be used

in language parsers has also been published. This is relevant for implementing DSLs.

Beside the movement of collecting solutions of common problems in design pattern

catalogs, Yu and Mylopoulos emphasized [12] that research of software engineer-

ing had focused more on the what and the how rather than on the why. Their

contribution justifies the need for more work that deals with understanding the

requirements. There are also publications that collect the intents of using specific soft-

ware techniques in so called intent catalogs. These are similar in nature to design pat-

terns but they describe common motivations behind applying a specific solution. The

intents behind DSLs have been described in [13]. Amrani et al. has published an intent

catalog behind using model transformations [14].

There are several existing template engines that allow for the decomposition of tem-

plates into smaller units. These make it possible to organize template code into separate

methods and files. By using these tools, each model class can have its own template

associated and template code can be further cut down to methods that generate a spe-

cific feature from the model class. For example, such template implementations are

Xtend [15] and Microsoft T4 [16]. The pattern presented in this paper provides a method

for using these tools efficiently.

The technique of incremental model transformation [17] is related to this work in

that it also deals with changes in the code generation process. However, this approach

handles changes in the input model and is able to update parts of the generated model

based on the changes in the input model. By not having to rerun the entire transfor-

mation, it saves computational time. In contrast, the design pattern presented herein

facilitates the evolution of the M2T transformation itself. As the tool evolves and more

features are supported by the code generator, the templates also becoming more com-

plex. The proposed solution decomposes the templates into highly cohesive, flexible

units to facilitate changes and extension. So the two techniques address different issues

and are not mutually exclusive.

4 The Polymorphic Templates Design Pattern

This section describes the design pattern in catalog format similar to what is used in the

POSA series. Namely, the following sections are applied:

· Example: a concrete use case in which the pattern has been applied.

· Context: the context in which the design pattern is applicable.

· Problem: the challenges that suggest the application of the pattern.

· Solution: the way how the pattern solves or mitigates the problems.

· Structure: the main participants and their relationships and responsibilities in the

pattern.

· Dynamics: the interaction of the participants of the pattern.

· Implementation: techniques and considerations for implementing the pattern.

· Consequences: advantages and disadvantages that the application of the pattern im-

plies.

· Example Resolved: the short description of how the initially presented example has

been resolved by using the pattern.

The Known Uses and the See Also sections are omitted due to lack of space and related

patterns.

Example

The ProtoKit tool [18] is a DSL and an accompanying code generator for describing

the message structure of application-level binary network protocols. Object-oriented

general purpose programming languages (GPLs) can represent messages as classes, be-

ing the member variables the different fields encompassed in the message. However,

several features of these protocols are difficult to support in this way, such as bitfields,

encoded fields or length fields of variable-length fields. ProtoKit generates the classes,

member variables and accessors with the boilerplate code to support the above men-

tioned features. In the generated code, different fields of the message will result in

different variable definitions, initialization code snippets and accessor methods. Be-

cause of this, the template of the generated code contains several loops that iterate over

the fields and each iteration includes several instanceof checks. Because of the looping

and branching markup in the template, the actual output is hard to read among the lines.

Besides, the template is rapidly growing as new features and model classes are added.

Parts of the template are not decomposed according to what feature they generate or

what model object they process. This makes it difficult to locate and modify the gener-

ated code of a specific feature.

Context

Model-to-text transformations that use templates to produce textual output and have a

type hierarchy in the input model.

Problem

When complex models are processed from template languages a number of problems

arise:

· High complexity. The template class can be decomposed into several methods that

are responsible for generating different features but the template that processes the

model remains highly complex.

· Lack of encapsulation and separation of concerns. Code fragments for generating

different features from the same model class are separated by branching instructions

and thus are scattered through the template. Logically coherent code fragments are

not encapsulated into highly cohesive classes.

· Poor readability. Because the output code is intermixed with conditions and branch-

ing instructions that generate the proper code fragment from each model object that

is traversed, the main goal of using a template language – good readability – does

not apply.

· Poor maintainability and extensibility. Because of the lack of encapsulation and the

branching instructions that add syntactic noise, several isolated parts of the generator

must be modified in order to modify the behavior. Similarly, extension requires add-

ing new code fragments to several places inside the same template.

Solution

Decompose templates on a per model class and per feature basis. The code fragment

generated for a specific feature and from a specific model class will be encapsulated in

its own template. The generator accesses templates via their common interfaces and

does not know about concrete template types. Determining the template to call for a

specific feature is the responsibility of the model object being traversed.

Structure

A possible structure of the pattern is depicted in Figure 1. To keep the diagram com-

prehensible, only one feature, feature A is depicted. Of course, the pattern supports

multiple features by having multiple feature hierarchies. The pattern has the following

participants:

· ModelClass: an abstract type of the model elements processed by the generator.

· ConcreteModelClass1 and ConcreteModelClass2: concrete types with different se-

mantics that are instantiated in the model. They usually result in different output.

· FeatureATemplate: an interface for the polymorphic templates that generate

feature A for concrete instances of ModelClass.

· ConcreteFeatureATemplate1 and ConcreteFeatureATemplate2: concrete templates

that generate “feature A” for ConcreteModelClass1 and ConcreteModelClass2, re-

spectively.

· Generator: the entry point of the code generator. This component traverses concrete

instances of ModelClass in the model and calls the corresponding templates.

· Application: the main application that obtains the model (depicted as a set of aggre-

gated ModelClass instances) and calls the code generator.

Dynamics

The Generator component has knowledge of what features must be generated and in

what order. This is specific to the domain. Generating features involves the traversal of

model objects in the input model. When a specific model object is visited, the Generator

first calls the getATemplate() method on the model object to obtain an instance of the

template to use. Then the Generator calls the generateA() method on the template in-

stance obtained from the visited model object. This is depicted in Figure 2.

Fig. 1. A possible structure of the participants in the Polymorphic Templates pattern

Fig. 2. The interaction of the participants in the Polymorphic Templates pattern

Implementation

The following techniques should be considered for the implementation of the pattern:

· Model classes may return template references in three different forms:

(a) As object references. This is the most object-oriented, the most efficient and the

safest option. The code generator directly retrieves a reference and uses it to call

the template. To apply this solution, the modeling framework must support ref-

erences to classes that are not part of the model. Several modeling frameworks

support this by importing external data types.

(b) As the class name. The class name is returned as a string to the code generator

and before calling the template, the code generator must instantiate the template

class using reflection. Reflection has some performance hit and the class name is

easy to mistype. However, this is a viable option if the modeling framework does

not support external data types.

(c) As an identifier. An arbitrary identifier that is used to obtain a reference for the

concrete template class. For example, it may be a key for a hash table. This option

eliminates the performance hit of reflection but the validity of the identifiers still

must be guaranteed by the implementor. This solution requires an extra effort to

implement the lookup mechanism.

· Deciding what is an independent feature is a crucial point in applying this patterns.

This determines the number of templates and how cohesive individual templates will

be. This latter greatly affects flexibility and extensibility. It does not only include

identifying features per a single class hierarchy but deciding on cases like whether a

single template will be provided for aggregating elements or it will be chunked down

to separate ones, one per each aggregate.

· If the template references are obtained by instance methods, template inheritance

can be leveraged. In case a parent and a child model class generate the same code

for a specific feature, the template can be inherited. It is not necessary to define a

new template for the child, nor to repeat the template reference.

· The pattern can be implemented through model refinement if the modeling environ-

ment supports it. In this scenario there are two layers of models. The lower layer

contains information that is strictly the model without template associations. The

upper layer refines the lower layer, adding references to templates. If there are sev-

eral target languages, it is a viable solution to define a separate upper layer for each

of them.

Consequences

The pattern achieves the following advantages:

· Reduced complexity of the templates. The complexity of templates is reduced by

decomposing long and complex ones that contain conditions and branching markup

into several shorter “flat” templates.

· Separation of concerns in the code generator. Each template is responsible for the

generation of a specific feature using a specific model class.

· Improved readability. The eliminated branching instructions make templates more

readable. Code is not intermixed with control statements therefore the actual code to

be emitted is easier to understand. A good abstraction of features and template hier-

archy helps to factor templates in a way that each of them contains an intuitively

comprehensible unit of code fragment. This further improves readability.

· Improved extensibility. The implementation of a concrete feature regarding a con-

crete model element is encapsulated into a concrete template class. This, combined

with an intuitive and consistent naming convention, makes it easy to locate the code

that must be modified. As a result, modifications of a specific feature are constrained

to a small set of templates or even a single template if it only affects a single concrete

model class. The generator itself or templates of other features or unaffected concrete

model classes never need modifications. Extensions are similarly straightforward.

The only necessary steps are creating the templates for features of the newly added

concrete model class and associating them with the new class. Since the generator

only has knowledge of the common interface and calls the concrete templates

through polymorphism, it is not necessary to modify the generator in any way.

The application of the pattern also has some disadvantages:

· Mixing model and implementation details. Although the pattern achieves good sep-

aration of concerns in the code generator, it mixes some implementation details with

the model. The pattern associates templates with model classes despite that the latter

should be part of the code generator itself since it conveys implementation details

for the generator. On the other hand, it can be argued that the features generated from

model classes has to do with their behavior, which in turn, fits into the model. De-

velopers that apply the pattern should consider whether it is a problem for them that

such details are stored in the model. If there is no benefit in separating them from

the model, this issue should not be blindly considered as a severe problem just be-

cause best practices warrant of separating model and implementation. However, if

there is a high number of features or there are several supported target languages,

models may become flooded by template references.

· Increased number of template classes. Since templates are decomposed on a per fea-

ture and a per concrete model class basis, their number increases significantly. This

is a direct consequence of decomposition so it is not considered as a real disad-

vantage. Besides, the number of classes depends on the choice of feature abstraction

and the use of template inheritance, therefore it can be slightly adjusted by choosing

the right abstractions.

· Difficult to deal with cross-cutting features. It is not trivial how to apply the pattern

with cross-cutting features that are not associated to a single model class but to sev-

eral ones. If there is an aggregate that references the involved model classes, it can

be considered to associate the features to that model class.

Example Resolved

In the ProtoKit1 tool, several features have been identified: (1) variable definition, (2)

initialization code, (3) accessor methods, (4) equals expression to compare the gener-

ated variables, (5) hashcode expression to generate a hash for the variable and (5) clone

code for the variable. For the implementation of the tool, the Eclipse Modeling Frame-

work (EMF) [19] has been used. EMF leverages round-trip code generation and allows

1 Source code available at https://github.com/gaborbsd/ProtoKit.

for defining methods on model classes by writing their Java code. The abstract Field

model class is the superclass of all fields that can be used in a message definition and

it defines the methods that return an instance of the template to use for the concrete

Field instance. The templates are implementations of the FieldGenerator interface. It

is imported to the EMF model as a data type so that the methods can be modelled. The

interface only defines a generate() method that takes the a Field instance as an argu-

ment. This generates the code fragment of a specific feature from the specified Field.

The implementations of the interface implement this method and do not store state so

they use the Singleton [3] pattern to facilitate the reuse of instances. The templates have

been decomposed on a per field per feature basis as the Polymorphic Templates pattern

suggests. Not all of the Field types require their own template, some templates are re-

used. For example, Fields that generate a primitive Java variable all share an empty

template for the cloning feature since Java’s clone() method inherited from Object takes

care of them. Referential variables all cloned in the same way, so they also share a

template.

The application of the design pattern has highly improved the readability and the

flexibility of the tool. It became easier to add new Field types and to modify existing

functionality. The increased number of the templates do not cause a problem and they

have been grouped to Java packages based on the feature they generate. Because of

EMF allowing method definitions on model classes and the moderate number of fea-

tures on the type hierarchy of Fields, mixing models and implementation did not mean

any disadvantage either. In the tool, there were no cross-cutting features so the pattern

was easy to apply.

5 Conclusion

The paper has presented a novel design pattern for implementing agile M2T transfor-

mations. This solution has been identified in our DSL-based tools that leverage code

generation to help software development. It has been chosen to publish this solution as

a design pattern to facilitate its reuse. The catalog format enables developers to easily

understand the context of the application, the problems that arise in this context and

how the application of the design pattern addresses these issues. Implementation ideas

are also provided. These help developers to decide, which variant fits better their needs.

A real-life application of the pattern will be published in our future papers.

We believe that the Polymorphic Templates design pattern will be of great use for

other software developers who use M2T transformations. It is a potential tool for cre-

ating agile code generators and thus is highly demanded in nowadays’ software envi-

ronments.

Acknowledgments. This work was partially supported by the European Union and the

European Social Fund through project FuturICT.hu (grant no.: TAMOP-4.2.2.C-

11/1/KONV-2012-0013) organized by VIKING Zrt. Balatonfüred. This work was par-

tially supported by the Hungarian Government, managed by the National Development

Agency, and financed by the Research and Technology Innovation Fund (grant no.:

KMR_12-1-2012-0441).

References

1. Fowler, M.: Domain-Specific Languages, Addison-Wesley (2010)

2. Kelly, S., Tolvanen, J.: Domain-Specific Modeling: Enabling Full Code Generation, Wiley -

IEEE Computer Society Publications (2008)

3. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Ob-

ject-Oriented Software, Addison-Wesley (1995)

4. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented Software

Architecture Volume 1: A System of Patterns, Wiley (1996)

5. Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Pattern-oriented Software Architecture

Volume 2: Patterns for Concurrent and Networked Objects, John Wiley & Sons (2000)

6. Kircher, M., Jain, P.: Pattern-Oriented Software Architecture Volume 3: Patterns for Resource

Management, Wiley (2004)

7. Buschmann, F., Henney, K., Schmidt, D.C.: Pattern-Oriented Software Architecture Volume

4: A Pattern Language for Distributed Computing, Wiley (2007)

8. Buschmann, F., Henney, K., Schmidt, D.C.: Pattern Oriented Software Architecture Volume

5: On Patterns and Pattern Languages, Wiley (2007)

9. Nguyen, D., Ricken, M., Wong, S.: Design Patterns for Parsing, In: 36th SIGCSE Technical

Symposium on Computer Science Education, pp. 477–48, ACM, New York (2005)

10. Schreiner, A.T., Heliotis, J.E.: Design Patterns in Parsing, In: 10th IEEE International Sym-

posium on High Performance Distributed Computing, pp. 181–184, IEEE Press, New York

(2001)

11. Kövesdán, G., Asztalos, M., Lengyel, L.: Architectural Design Patterns for Language Parsers,

Acta Polytechnica Hungarica, vol. 11, no. 5, pp. 39–57 (2014)

12. Yu, E.S.K., Mylopoulos, J.: Understanding ‘why’ in software process modelling, analysis,

and design, In: Proceedings of 16th International Conference on Software Engineering, pp.

159–168., IEEE Computer Society Press (1994)

13. Kövesdán, G., Asztalos, M., Lengyel, L.: A classification of domain-specific language intents,

International Journal of Modeling and Optimization, vol. 1, no. 4, pp. 67–73 (2014)

14. Amrani, M., Dingel, J., Lambers, L., Lúcio, L., Salay, R., Selim, G., Syriani, E., Wimmer,

M.: Towards a model transformation intent catalog, In: Proceedings of the First Workshop

on the Analysis of Model Transformations, pp. 3-8, ACM (2012)

15. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend, Packt Publish-

ing (2013)

16. Vogel, P.: Practical Code Generation in .NET, Addison-Wesley (2010)

17. Hearnden, D., Lawley, M., Raymond, K.: Incremental Model Transformation for the Evolu-

tion of Model-Driven Systems. In: Model Driven Engineering Languages and Systems, Lec-

ture Notes in Computer Science, vol. 4199, pp. 321-335 (2006)

18. Kövesdán, G., Asztalos, M., Lengyel, L.: Modeling Cloud Messaging with a Domain-Specific

Modeling Language, In: CloudMDE, A Workshop to Explore Combining Model-Driven En-

gineering and Cloud Computing. In conjunction with MoDELS 2014. In press.

19. Steinberg D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework,

2nd Edition, Addison-Wesley Professional (2008)

