
EMF Splitter:
A Structured Approach to EMF Modularity

Antonio Garmendia1, Esther Guerra1, Dimitrios S. Kolovos2, and Juan de
Lara1

1 Modelling and Software Engineering Group (miso, htpp://www.miso.es)
Computer Science Department

Universidad Autónoma de Madrid (Spain)
{Antonio.Garmendia, Esther.Guerra, Juan.deLara}@uam.es

2 Enterprise Systems Group (http://www.enterprise-systems.org/)
Computer Science Department

University of York (United Kingdom)
dimitris.kolovos@york.ac.uk

Abstract. Model-Driven Engineering aims at reducing the cost of sys-
tem development by raising the level of abstraction at which developers
work. Thus, models become the main assets in this paradigm, guiding
the development until code for the final application is obtained.
However, even though domain-specific, models may become large and
complex, becoming cumbersome to edit and manipulate. In this scenario,
mechanisms helping in the agile definition and management of models in
the large are crucial. Modularity is one of such mechanisms.
In this paper, we describe a novel approach to the construction of EMF
models in a structured way. It is based on the annotation of the Ecore
meta-models with modularity concepts (like project, package and unit),
from which we generate an Eclipse plug-in that enables the editing of
models according to that structure (i.e., organized in projects and de-
composed into folders and files). The paper presents our supporting tool
and discusses benefits and future challenges.

Keywords: Meta-modelling, Modularity, Agile modelling, Eclipse Mod-
eling Framework

1 Introduction

Nowadays, many organisations use Model-Driven Engineering (MDE) [11] to
develop their systems or migrate legacy code. MDE proposes the use of models as
primary artefacts to construct software, being supported by model management
tools [2].

MDE-based solutions frequently involve the creation of Domain-Specific Lan-
guages (DSLs), which are defined by a meta-model that describes the set of
models considered valid. When a new DSL is created, there is the need to build
the corresponding modelling environment as well, in order to facilitate the con-
struction of valid models of the DSL and provide basic functionalities like model
persistence or model consistency checking.



In this respect, the Eclipse Modeling Framework (EMF) [12] is a well-known
and widely-used framework that allows the definition of meta-models and mod-
els. Starting from the definition of a meta-model, the framework generates a ba-
sic tree-editor to edit the instance models. However, models defined with these
editors are monolithic. As the requirements of a system grow over time, the
models tend to become complex and large, which results in poor comprehensi-
bility and maintainability, while their editing becomes a tedious task. Moreover,
the manipulation of large models may also affect performance in terms of model
persistence, loading, querying and transformation.

Software design and programming languages provide mechanisms to simplify
the creation of complex systems. One of these mechanisms is modularity [8],
which promotes a scalable approach to the construction of software systems
through the composition of smaller subsystems which can be implemented sepa-
rately in a simpler way. Other benefits of modularity include increased flexibility
and reuse possibilities, facilitating distributed teamwork and version control.

In MDE, models are the main assets to create software. However, models
frequently lack native modularization mechanisms, unless they are explicitly en-
coded in the modelling language and implemented in the supporting modelling
environments. Thus, we propose to apply modularity mechanisms to the con-
struction of models, allowing the definition of complex models from submodels
which are easier to process and reuse. Our approach is based on the annotation
of the meta-model elements that will play some role in the structuring and mod-
ularity of the models. We propose several structures, based on the concepts of
project, package and unit. Starting from this definition, we automatically gener-
ate a modelling environment (an Eclipse plug-in) which permits editing models
in modular way, following a similar philosophy to the Java Development Tools3

(JDT). In this way, each model corresponds to an Eclipse project, and the model
content can be organized in folders and files, with a direct mapping to the file
system. Altogether, our plug-in enables:

– the editing of models according to a given modularity structure.
– the splitting of monolithic models according to a given modularity strategy.
– the composition of parts of a model to build a monolithic one.

The remaining of this paper is organized as follows. First, Section 2 describes
our approach to incorporate modularity mechanisms to models, as well as the
modular structures we support. Then, Section 3 presents the implementation
of our approach for Eclipse and EMF. Next, Section 4 discusses related work.
Finally, Section 5 concludes the paper with some conclusions and lines of future
work.

2 Specifying the Modular Structure of Models

We propose a modular structure for models, based on the philosophy of the
Eclipse JDT and how Eclipse organizes Java projects. Eclipse projects are orga-

3 http://www.eclipse.org/jdt/



nized hierarchically, defining a root node which contains a tree view of the project
content. In this way, the compilation units of the project (e.g., Java classes) are
organized into different types of folders (e.g., source folders) and packages, which
can be nested. This modular organization facilitates the structuring of projects,
the provision of scoping mechanisms, and the use of indexes to enable load-on-
demand, incremental builds and efficient resolution of cross-references, among
other advantages.

Inspired by this framework, we propose a notion of modularity for models
based on the concepts of project, package and (compilation) unit. The upper
frame in Figure 1 shows a simplified version of the pattern that formalizes these
concepts, as well as their relations. Thus, the main modularity concepts in our
approach are Project, Package and Unit. Project is the root that contains
the rest of the elements, which can be of any of the other types. Objects of
type Package can contain units as well as other packages (i.e., it implements the
Composite object-oriented design pattern [3]). Finally, objects of type Unit can
be defined either inside of packages, or directly inside a project.

Container

Project Package Unit

*
contents

Containee
Modularity
pattern

dsl1

:Project

structuralUnit:

Unit

behUnit:

Unit

dsl2

:Project

structuralUnit: Unit

smUnit: Unit

structural: Package

deploymentConf: Unit

behavioural: Package

collabUnit: Unit

Modularity strategy 1 Modularity strategy 2

Fig. 1: Pattern to describe the modular structure of a meta-model (top). Two
possible modularity strategies, as instances of the pattern (bottom).

This pattern allows for the configuration of different structures or ways of
organizing a model. For instance, we can have projects that do not contain
packages but units are directly placed in the project root node, projects that
consider different types of packages containing different types of units and where
package nesting might be allowed or not, or a mix of both. Conceptually, if we
interpret the pattern in Figure 1 as a meta-model, then the possible structures



that can be applied to a particular DSL can be seen as instances of this meta-
model, as shown to the bottom of the same figure.

While the modularity pattern allows configuring a particular modularity
strategy, in addition, the strategy needs to be mapped to a particular meta-
model. That is, we need to select the class playing the role of Project, and
the classes for the different Packages and Units. Conceptually, it is natural to
consider the application of the pattern to the meta-model of a DSL as a case
of multi-level modelling [1], where the modularity pattern meta-model is inter-
preted as a partial type for the DSL meta-model, as Figure 2 shows. We refrain
from introducing the full details of multi-level modelling here, which can be found
in [1], and only present the information needed to understand how the pattern
application works. The complete modularity pattern is shown in this figure. In
particular, projects, packages and units have a descriptive name, as well as an
icon which will be used in the modelling environment to identify them. On their
side, units have an extension that will be used by the corresponding system
files.

The particular structure to be used for the models of a DSL is determined
by annotating which elements of the DSL meta-model will play the roles of
project, package and root of a unit. Conceptually, this is equivalent to typing
some elements of the DSL meta-model with the types offered by the modularity
pattern. This typing is partial, because some elements of the DSL meta-model
may be not typed by any pattern element. However, as shown in Figure 1, it
is useful to consider the relation between the meta-models of the DSL and the
pattern as a typing relation (and not just as annotations) because the typing
rules ensure a correct annotation of the DSL meta-model.

The middle frame in Figure 2 shows the annotation (represented with dotted
arrows) of an example meta-model with our modularity concepts. The annota-
tion must respect the modular structure of the pattern, given by instantiation
rules. In this example, the ComponentSystem class is annotated as Project,
and the attribute sysID is bound to the project name. The SubSystem class is
annotated as Package; this is possible because there is a composition relation
from ComponentSystem (the project) to SubSystem, as the pattern demands
by means of the relation contents. While this annotation permits creating
SubSystem packages inside projects, it does not allow the nesting of subsystems
inside subsystems, for which the meta-model would need to define an appropriate
containment relation. Finally, both classes Component and Behaviour are anno-
tated as Unit (i.e., we instantiate Unit twice). This means that the instances of
Component and Behaviour, as well as the objects they contain through contain-
ment relationships (e.g., Port in the case of Components) will be stored in the
same unit (i.e., in the same file).

A remark is interesting here. Some attributes in the modularity pattern, like
the icons to be used in the modelling environment or the file extension for units,
need to receive a value in the DSL meta-model. Using multi-level terminology,
we say that such attributes have potency 1, as they receive a value in the meta-
level right below the pattern. Other attributes, like name, need to be bound to



Fig. 2: Pattern to describe the modular structure of a meta-model (top). Appli-
cation of pattern to a meta-model (middle). A structured model and its physical
deployment (bottom).

some class attribute of the DSL meta-model, and only take a value at the model
level (i.e., two levels below from the pattern point of view). Hence, we say that
such attributes have potency 2. In the modularity pattern, every element has
potency 2 (indicated by the @2 of the meta-model), except attributes icon and
extension, which have an explicit potency 1.

Once the DSL meta-model is annotated with the desired structure, an au-
tomated process generates the machinery to split existing monolithic models
according to the chosen structure, and it also generates a modelling environ-
ment that permits building models according to that structure. The bottom
of Figure 2 shows an illustration of a modular model, the corresponding Eclipse
project structure, and how the modular structure is physically mapped to the file
system. Hence, the model root (the instance of ComponentSys) is mapped to the
project root, the two instances of SubSystem are mapped to two folders, and the



Component instance is mapped into a file. As discussed in the following section,
hidden XMI (XML Metadata Interchange) files are also created for the project
root and the packages, storing the properties of the corresponding objects, and
allowing their manipulation by means of the Property view of Eclipse, so that
the user has the impression of manipulating folders with different properties.
Next, we explain the tool support implementing this modularity machinery.

3 Tool Support: EMF Splitter

This section describes our tool, called EMF Splitter4, supporting the modular
structure for EMF models proposed in the previous section. The main function-
ality of this tool is to, given an annotated Ecore model, generate an Eclipse
plug-in that allows: (a) the creation of instance models according to the speci-
fied modularity strategy, (b) the decomposition of an existing monolithic model
according to the modularity strategy, and (c) the composition of a single model
out of a project consisting of folders and units. We have implemented this tool
using Acceleo5, a code generation language based on the Object Management
Group (OMG) MOF Model to Text Language (MTL) standard.

Figure 3 shows the steps to create an Eclipse modular project for editing the
instances of an Ecore meta-model. The first step is to annotate the meta-model
classes with the concepts of project, package and unit. To facilitate this task,
we have developed a graphical environment that allows building and annotating
meta-models graphically according to different predefined patterns (in this case,
according to our modularity pattern). In a second step, the annotated meta-
model is fed into EMF Splitter. This tool automatically produces a genmodel
configuration file, which is used to generate code implementing the chosen mod-
ularity strategy, and that is distributed as an Eclipse plug-in. Finally, tool users
may use the generated plug-in to create models as dedicated Eclipse projects.

The generated plug-in provides functionalities to structure a model in sev-
eral XMI files. This organization is transparent to the user, and can be useful
for reusing parts of the models which can be nested. Each instance of a class an-
notated with project or package has an associated XMI file with the value of its
attributes and cross-references to the objects it contains. These files are filtered
and hidden to the user, who can edit the properties of such objects using the
Property view of Eclipse when the corresponding folder or the root of the project
is selected. Each instance of a class annotated as unit is stored in an XMI file,
together with the objects it contains. These files can be modified through the
generated standard tree editors.

Next, we present an example that makes use of the annotated meta-model
from Section 2 and the corresponding plug-in generated using EMF Splitter. To
show the benefits of the generated plug-in, we start from a synthetic, monolithic
model which is shown in Figure 4(a). In practice, the model could be much larger,
so that once decomposed into folders and smaller units, its parts would be easier

4 See its web page at http://www.miso.es/tools/EMFSplitter.html
5 http://www.eclipse.org/acceleo/



Fig. 3: Process overview of EMF Splitter.

to edit, navigate and comprehend. Thus, we first create a modular project using
the plug-in. The plug-in offers a creation wizard with two alternatives, as shown
in Figure 4(b). In the first one, we can create a model from scratch, giving
values to the root class (Project) attributes. The wizard has input controls to
introduce values for the attributes of the root object, which in this case is of
type ComponentSystem. As the sysId attribute was mapped to the name of the
project, the value introduced in this field is used as project name.

The second option of the wizard is to provide the path of an existing model.
In that case, the wizard creates a new modular project, where the initial model
is decomposed according to the selected modularization strategy. For the devel-
opment of this example, we use the second option. As a result, we obtain the
modelling environment shown in Figure 5. The Package Explorer view shows the
structure of the containment hierarchy, made of all the objects that belong to
the model, represented physically as folders and files within the project. In the
top-right, a submodel (i.e., file) of the project is being edited using the tree-based
editor. As we have explained previously, the root of the tree can be an instance
of a class annotated with unit. At the bottom, the figure shows the edition of the
attributes of a package using the Property view. While these attributes are actu-



(a) Example of model. (b) Wizard to create the Model Project.

Fig. 4: Generating a modular project from a model.

Fig. 5: Modelling environment in action.

ally stored in an XMI file, this is transparent to the user, who has the impression
of editing properties of a folder.

The decomposition of a model into an Eclipse project offers many advantages.
For example, we can include any kind of artefact (like documentation or source
code) inside the folders, facilitating, e.g., the traceability from model elements to
external artefacts. Moreover, we no longer have a monolithic model, but the di-
vision and organization into folders permits shorter loading times (of a fragment
w.r.t. loading the complete monolithic model) and facilitates comprehensibility,
reusability, distributed teamwork and version control.

4 Related Work

Our main goal is to provide a tool that allows building models in a structured
way. For this purpose, we start by annotating the meta-model with the mod-
ularity concepts formalised in a pattern. Next, we compare with related works
addressing model modularity, fragmentation and model slicing.

Although introducing modularity in ad-hoc ways into existing DSLs can de-
liver benefits, it is also costly [7]. Hence, it is desirable to have mechanisms to
achieve modularity in a generic, automated way.



Due to the need to process large models, some authors have proposed to
split models for solving different tasks. For instance, Scheidgen and Zubow [10]
propose a persistence framework that allows automatic and transparent frag-
mentation to add, edit and update EMF models. This process is executed at
runtime, with considerable performance gains. However, the user does not have
a view of the different fragments as we have in EMF Splitter, which could help
improving the comprehensibility of the fragments.

Other works [6, 13] decompose models into submodels for enhancing their
comprehensibility. For example, in [6], the authors propose an algorithm to frag-
ment a model into submodels (actually they can build a lattice of submodels),
where each submodel is conformant to the original meta-model. The algorithm
considers cardinality constraints but not general OCL constraints, and there is
no tool support. Other works use Information Retrieval (IR) algorithms to split
a model based on the relevance of its elements [13]. Therefore, splitting models
that belong to the same meta-model can produce different structures.

Other works directed to define model composition mechanisms [4, 5, 14] are
intrusive. These papers [4,14] present techniques for model composition and re-
alize the importance of modularity in models as a research topic to minimise the
effort. Strüber et. al [5] present a structured process for model-driven distributed
software development which is based on split, edit and merge models for code
generation.

Hence, altogether, while techniques for model modularization have been pro-
posed in the context of MDE, to the best of our knowledge, EMF Splitter is
unique in its way to generate structured model editors from meta-models.

5 Conclusions and Future Work

The MDE paradigm is gradually being established for the production of software,
giving rise to the problem that if the systems are complex, they may lead to large
models, making their management more difficult and increasing the development
costs. Our goal is to provide developers with tools that help in defining the way
to structure models, facilitating distributed development through division into
layers, which improve comprehension. To achieve these objectives, EMF Splitter
permits defining a modularity strategy and generates an Eclipse plug-in that
allows developers to build their models in a structured way, as well as split
existing models according to the defined modularity strategy.

In the near future, we plan to assess the performance of the tool when han-
dling large models, compared with using a monolithic model. We are working on
the idea of using Concordance6, an indexing mechanism to manage and reconcile
EMF references when models are updated or deleted [9]. We are also working on
heuristics to propose good modularization strategies for a meta-model and a set
of (large) models. In the long term, we plan to generate more advanced editors,
e.g., graphical ones, as an alternative to the tree-editors for the units. Moreover,

6 http://www.eclipse.org/epsilon/doc/concordance/



we would like to enhance our modularity pattern, e.g., by including scoping and
access rules, to allow enabling or disabling references between model elements in
units that belong to different packages, or to define visibility rules for elements
inside units.
Acknowledgements. Work supported by the Spanish Ministry of Economy and
Competitivity with project Go-Lite (TIN2011-24139) and the EU commission
with project MONDO (FP7-ICT-2013-10, #611125).

References

1. C. Atkinson and T. Kühne. Rearchitecting the UML infrastructure. ACM Trans.
Model. Comput. Simul., 12(4):290–321, 2002.

2. P. Baker, S. Loh, and F. Weil. Model-driven engineering in a large industrial
context - Motorola case study. In Proceedings of MoDELS’05, volume 3713 of
Lecture Notes in Computer Science, pages 476–491. Springer, 2005.

3. E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns. Elements
of Reusable Object-Oriented Software. Addison Wesley, 1994.

4. F. Heidenreich, J. Henriksson, J. Johannes, and S. Zschaler. On language-
independent model modularisation. T. Aspect-Oriented Software Development VI,
6:39–82, 2009.

5. P. Kelsen and Q. Ma. A modular model composition technique. In Proceedings
of FASE’10, volume 6013 of Lecture Notes in Computer Science, pages 173–187.
Springer, 2010.

6. P. Kelsen, Q. Ma, and C. Glodt. Models within models: Taming model complexity
using the sub-model lattice. In Proceedings of FASE’11, volume 6603 of Lecture
Notes in Computer Science, pages 171–185. Springer, 2011.

7. J. L. Lawall, H. Duchesne, G. Muller, and A.-F. L. Meur. Bossa nova: Introducing
modularity into the bossa domain-specific language. In Proceedings of GPCE’05,
volume 3676 of Lecture Notes in Computer Science, pages 78–93. Springer, 2005.

8. D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Commun. ACM, 15(12):1053–1058, 1972.

9. L. M. Rose, D. S. Kolovos, N. Drivalos, J. R. Williams, R. F. Paige, F. A. C. Polack,
and K. J. Fernandes. Concordance: A framework for managing model integrity.
In Proceedings of ECMFA’10, volume 6138 of Lecture Notes in Computer Science,
pages 245–260. Springer, 2010.

10. M. Scheidgen, A. Zubow, J. Fischer, and T. H. Kolbe. Automated and transparent
model fragmentation for persisting large models. In Proceedings of MoDELS’12,
volume 7590 of Lecture Notes in Computer Science, pages 102–118. Springer, 2012.

11. T. Stahl, M. Voelter, and K. Czarnecki. Model-Driven Software Development:
Technology, Engineering, Management. John Wiley & Sons, 2006.

12. D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling
Framework, 2nd Edition. Addison-Wesley Professional, 2008. See also http://

www.eclipse.org/modeling/emf/.
13. D. Strüber, J. Rubin, G. Taentzer, and M. Chechik. Splitting models using in-

formation retrieval and model crawling techniques. In Proceedings of FASE’14,
volume 8411 of Lecture Notes in Computer Science, pages 47–62. Springer, 2014.

14. D. Strüber, G. Taentzer, S. Jurack, and T. Schäfer. Towards a distributed modeling
process based on composite models. In Proceedings of FASE’13, volume 7793 of
Lecture Notes in Computer Science, pages 6–20. Springer, 2013.


