Propositionalization and Redundancy Treatment

Mark-A. Krogel and Stefan Wrobel

Otto-von-Guericke-Universitét, Magdeburg, Germany
{krogel,wrobel}@iws.cs.uni-magdeburg.de

Abstract. Following the success of relational learning/inductive logic
programming on structurally complex but small problems, recently there
has been strong interest in relational methods that scale to real-world
databases (relational data mining). Transformation-based methods have
already been shown to be particularly promising approaches for robustly
and effectively handling larger relational data sets. However, these meth-
ods also pose problems: beside the cost of joins, they can produce very
large numbers of features (attributes), and among those there are pos-
sibly higher proportions of redundant features. In this paper, we inves-
tigate the extent of redundancies and approaches to dealing with them.
We present promising results from experiments in several domains.

1 Introduction

Relational databases are a widespread and commonly used technology for storing
information in business, administration, and science, among other areas. They
pose special challenges to knowledge discovery because many prominent learning
systems can only treat attribute-value or propositional data and leave transfor-
mations of relational data into that form to experienced analysts. In contrast,
methods from inductive logic programming (ILP) can directly handle problems of
relational data analysis. In particular, transformation-based approaches, which
automatically transform relational data into a form accessible to propositional
learners, have shown to be a robust and powerful method for handling relational
databases (cf. results of KDD Cup 2001 [2]). The transformation process is also
often refered to as propositionalization.

Our system RELAGGS (RELational AGGregationS) is a variant of such a
transformation-based approach that relies on facilities inspired by SQL aggre-
gation functions [7]. The approach encompasses facilities to avoid redundancies
during early phases of propositionalization. Even so, we were inspired by ir-
relevant feature elimination as presented by [10] and by another approach to
propositionalization with the help of aggregation [5] to further investigate issues
of redundancy here. We demonstrate the results of this investigation with the
help of 9 variants of learning tasks from 6 different domains, which are well-
known in the fields of machine learning and knowledge discovery in databases.
In effect, a learner could be derived that is more efficient without sacrificing
accuragcy.

The paper is organized as follows. Section 2 provides an introduction to our
approach to propositionalization and view of redundancy issues. In Section 3, we
give a short overview of redundancy treatment as presented by other authors and
our ideas for their enhancement. We present a detailed experimental evaluation
of the different approaches to redundancy treatment in Section 4. Section 5
concludes and gives pointers to future work.

2 Redundancy in the Context of Propositionalization

We gave a formal description of a framework for transformation-based learning
in [7]. This framework may accommodate approaches as manifold as the pio-
neering ILP approaches to transformation-based learning LINUS and DINUS
[9], extensions thereof [10], and also statistical approaches [6], among others. An
extension of this framework led to the development of the system RELAGGS.
The approach is described in this section from a database perspective since we
believe that this could be an interesting viewpoint as a completion to the pre-
sentation from the ILP perspective as provided in [7]. Furthermore, usage of
database management systems (DBMS) seems a valuable endeavor, especially in
order to deal with larger data sets.

Propositionalization is intended to help in solving common learning tasks
concerning relational data sets. Usually, such a learning task specifies one of the
tables of the database as the target table, which contains an attribute of interest,
the target attribute. A model has to be learned that determines the values of the
target attribute based on the values for the other attributes of the target table
and the other tables. In this paper, we deal with binary target attributes. This
can be easily extended to multi-class problems and also to regression problems.

RELAGGS takes as input a database D containing a number of relations or
tables and their descriptions (schemas) including information about attribute
names and types. In addition, one of the attributes has to be marked as the
target attribute, which also qualifies the corresponding table as the target table.
The target table is taken to describe one example or instance per line. From
foreign key information, the user can construct an ordered set of foreign links L
that specify possible natural joins originating in the target table. Foreign links
were introduced by [15] and further investigated in [16].

L induces a tree on the tables of D with the target relation as its root. Each
subtree with the same root specifies a possibility to join the corresponding tables.
With the parameter branching factor set to 0, not all these subtrees are consid-
ered, but only paths within these subtrees having the target relation as their
first node. RELAGGS performs these joins for each instance given in the target
table. The join results are then treated corresponding to the types of attributes
contained. Equivalent functions to SQL avg, max, min, and sum are applied to
numeric columns, while for nominal values, a new column is introduced for each
possible value, and these columns are filled with the number of occurrences of
the possible values. If the parameter cardinality is set to n, nominal attributes
with more than n distinct possible values are ignored. In addition, the sizes of

the joins are recorded. Thus, for each join and instance, a single tuple of values
is produced. These are concatenated in the same order as the elements of L
into one tuple for each instance and combined with the identifier (for reasons of
reference) and with the class information of the instance. The set of these tuples
form the output of RELAGGS.

Ezample 1. As an example, we take the East-West challenge [11,10]. In this do-
main, we can easily demonstrate the kind of representation of the data chosen
as the input for RELAGGS and the effects of the bias that results from using
aggregation functions. This way, comparisons to other approaches may be sim-
plified. The learning task is to discover models that classify trains as eastbound
or westbound. The problem is illustrated in Figure 1.

: v HgogHR)

2 [ool\=/ s [2 [o T

» [v 1<a>to b] » Lo T[]

v Ol \a Y s \o/ o o]

s [=) la) 0 s oo gy

Fig. 1. The ten train East-West challenge [11,10]

We chose to represent the information about trains in a relational database
that contains 3 relations (tables) as depicted in Figure 2. Tables are shown here
with their name in the first line, the attribute names in the second, and the
values of the attributes below. Dashed arrows indicate foreign key relationships,
always pointing from the foreign key attribute to the primary key attribute. The
target attribute is bound.

From the foreign key relationships, two foreign links can be derived, as de-
picted by the solid arrows in Figure 2. The tree induced by the foreign links
gives rise to natural joins with the following tables in the from-part of the cor-
responding SQL clauses:

J1: train, car
J2: train, car, load

These joins are computed first for the train with t_.id = 1. The numeric and
categorical attributes of those joins are aggregated and thus transformed into

Train Car Load

t id |bound| |t_id |[c_id |shape |length|wall |roof |wheels |_id |c_id |shape
1 east 1 1 rect |short |single|no |2 1 1 circle
2 east 1 2 rect |long |[single|no (3 2 2 hexa
3 |east 1 |3 |rect |short |single|peak|2 3 |3 |tria

Fig. 2. A relational database for trains

single lines, which are in turn concatenated and enriched with identifier and class
information for the example at hand. The tuples for all the examples are finally
the RELAGGS output as shown in Table 1.

Table 1. The propositionalized trains

t_id|count_J1|car_shape_rect_J1|...|car_wheels_sum_J1|...|load _shape_circle_J2|bound
1 4 4... 9[... 1| east

2 3 1]... 6|... 2| east
10 2 1]... 4|... 0| west

When we use the concept redundancy here, we do not refer to duplication of
information as it is in many cases the motivation for normalization of relational
databases. In a stricter sense, we understand redundancy here first of all as
identical columns in the propositionalized table. In a broader sense, we also
include into this concept of redundancy certain irrelevant parts of the data and
knowledge representations, which are not able to contribute to the models to be
learned or to their performance.

Those redundancies may occur at different stages of propositionalization pro-
cesses. They may concern the original relational data, their propositionalization,
and also the models derived from propositionalized data. The main focus and
starting point here are redundancies within propositionalized tables. However,
the aim should be to detect redundancies as early as possible to arrive at more
efficient approaches to propositionalization.

Beside identical columns in the propositionalized tables that can be regarded
as redundant, as mentioned above, there are also the trivial cases of columns
containing just one distinct value, possibly mixed with NULL values, such that
these attributes cannot contribute to the effective discrimination of positive and
negative examples. Furthermore, attributes that are not completely identical but
highly correlated may also be taken as redundant.

3 Approaches to the Treatment of Redundancy

3.1 An Approach in the LINUS Tradition

Within our approach to propositionalization, we had already proposed to make
use of functional dependencies between relations in order to avoid redundancies
that occur when applying local propositionalization functions [7]. This should
be enhanced by further measures to avoid redundancy as will be demonstrated
in the experimental section below.

One line of research into dealing with irrelevancy can be found in the context
of work on the transformation-based learner LINUS [9] and extensions thereof
[10]. While in LINUS, the focus is on the elimination of irrelevant literals and
clauses within the models learned, the extended transformation approach men-
tioned above concentrates on the treatment of propositionalized tables. The ap-
proach is restricted to boolean tables, i.e. with truth-values for the attributes.
Attributes can be identified as irrelevant based on their coverage of pairs of
positive and negative examples.

It seems worthwhile to extend at least parts of that approach to the more
general case of numerical instead of boolean tables. However, the exhaustive
treatment of pairs of positive and negative examples will pose problems for
larger data sets. Here, we do not adopt this strategy. Instead, as a first step to
find out about the extent of redundancy, we use an algorithm that we proposed
earlier for unsupervised feature selection and that we call FEASEBLE (FEAture
SElection By cLustEring) [8], cf. Table 2.

Table 2. FEASEBLE algorithm

1. Accept as input: [-1, 1]-range-normalized propositionalization result R;,, number
of steps s, allowed deviation d
2. Initialize a list Ly of similar attributes with all attribute names from R;,, initialize
L as list of lists of similar attributes with the single element L, initialize Lyeqwiist
with empty list
3. Fori:=1tos
(a) Draw an instance I; from R;, at random without replacement
(b) For all elements Ly of L
i. For all elements of Ly
A. Compute Ly_npewiist as list of sublists from L where all elements of
each sublist, i.e. corresponding attribute values for I;, fulfill condition
of difference less or equal to d
B. Add elements of Li_newiist t0 Lnewiist
(c) Replace L by Lnewiist, €mpty Lnewiist
4. Output first element of each list in L

This algorithm originated from attempts to detect identical columns in propo-
sitionalized tables, i.e. strictly redundant features. A first naive approach of a

pairwise comparison of columns of tables handled by DBMS turned out to be
not efficient enough with the program running for several hours on the proposi-
tionalized PKDD99-00 financial data set that is described below. With the new
algorithm, the detection of redundant attributes could be accomplished in a few
minutes. Parameter settings have to be chosen here as s = number of examples
and d = 0. We call this application FEASEBLE-red here in order to distinguish
it from former different applications.

Note that although FEASEBLE-red first of all eliminates copies of identical
columns from propositionalized tables, it also alleviates situations with one-value
columns and highly correlated columns because of range-normalization accom-
plished beforehand by RELAGGS [7]. Results of the application of FEASEBLE-
red are intended to lead to information about the sources of redundancies within
the original data sets.

3.2 An Approach in the Line of Polka

For the system Polka [5], the same approach of using aggregate functions during
propositionalization was taken as for RELAGGS. However, there are differences
in the algorithmic approaches. RELAGGS first computes for each example all
(natural inner) joins that follow from the foreign link declarations. Then, these
joins are compressed with the help of aggregate functions. The results of com-
pression are concatenated as sketched above.

Polka also uses a graph structure induced onto the set of relations by their
foreign key relationships. A parameter d is used to bound the length of paths
along which relations are used. This is here especially important in case of cycles
in the graph. Then, the relations on these paths that are most distant from the
target relation are first aggregated and then joined to their parents with the help
of outer joins, in a recursive way, such that the result is again a propositionalized
table. This procedure is more efficient than RELAGGS wrt. both time and space,
however, Polka may miss relevant information since it does not use all possible
joins.

Concerning this last point, the question arises if this is really an important
issue for empirical data analyses. Below, we show that the effects of using less
information as done by Polka are not strong and even positive. That is why
we propose an even more radical approach, viz. the usage of each relation just
once (ERJO) in the sense that the attributes of relations occuring in several
joins as used by RELAGGS so far are only used by aggregate functions at the
occasion of their first occurrence. Following the example presented above, the
car relation would be used for propositionalization just once, viz. based upon its
first occurence, which is in join J1.

Behind this procedure, there are the assumption that each relation has the
strongest influence on the examples when not weighted by relations following it
in the induced graph, and the assumption that those weighted attributes would
be redundant in the weak sense that they often in practice can not contribute
significantly to the models to be learned. Table 3 shows a sketch of the proposed
algorithm

Table 3. A sketch of the RELAGGS-ERJO algorithm

1. Accept as input: database D, declarations of target attribute ¢ and foreign links
L
2. Initialize two sets Joy+ and J with the target relation schema containing ¢ from
D, and a set R with all other relation schemas from D, and let Jyefore = @ and
Rhandied = 0
3. While R # 0 and J # Jyefore do
(a) Let Jocfore = J
(b) Determine all relations in R reachable via foreign links from L in one step
from the last relations of join definitions in J and add their schemas to Rpgndied
(c) Add elements of Rpgndieq Once as last elements to appropriate joins in J
(d) Add elements of J to Jout
) Remove elements of Rirgndied from R
(f) Let Rhandiea =0
4. Convert elements of J,,: to the form of clauses C' with a literal produced from
the target relation schema as head and the other relations of joins as literals in the
body in the same order as in the join definitions
5. Use the resulting set of clauses C as done in the original RELAGGS algorithm [7],
however, make use of only the last literal of each clause for propositionalization

We can do here without a depth parameter d since circles in the graph pose no
problems and the number of relations of D is finite. This is also an advantage over
the original RELAGGS that could only treat trees induced on the set of relations
by foreign link declarations. However, a depth parameter d might be useful based
on the assumption that relations closer to the target relation should have a higher
influence and more distant relations could be included into the analysis on a step
by step basis with further advantages for the learner’s performance.

4 Experimental Evaluation

We evaluated the effects of redundancy treatment for propositionalization with
the help of 9 data sets/learning tasks from 6 domains. All the learning tasks aim
at predictive models for binary classification.

4.1 Data sets and Learning Tasks

The Trains domain and learning task is described above, cf. Example 1.

For the Mutagenesis problem, which evolved into one of the most impor-
tant ILP benchmarks, [13] present among others a variant of the original data
named NS+S2 that contains information about chemical concepts relevant to
a special kind of drugs, the drugs’ atoms and the bonds between those atoms.
This variant is also known in the literature as B4. We could establish a single
relation describing drugs. This single table joins and thus replaces a number of
two-argument predicates with exclusively one-to-one relationships of the items

described. Finally, three relations (drugs, atoms, bonds) are the input for RE-
LAGGS. The Mutagenesis learning task is to predict whether a drug is muta-
genic or not. The separation of data into “regression-friendly” (188 instances)
and “regression-unfriendly” (42 instances) subsets as described by [13] is kept
here.

For the KDD-Sisyphus I Workshop at the ECML98, a data set based on a
data warehouse of a Swiss insurance company was issued, described and inves-
tigated on several occasions such as [4]. The data within 10 relations describe
the company’s customers (“partners”), their households and their insurance con-
tracts. Two learning tasks were provided with the data; they involve learning
classifications of partners and households. For RELAGGS with branching factor
0 as used in [7], 12,772 partners (those of class 1 or 2 and with household in-
formation) and 7,329 households (those of class 1 or 2) were treated. We had to
apply a further parameter here, viz. cardinality of categorical attributes, set to
50, in order to arrive at column numbers that could be handled by the DBMS
used in the process of analysis and its preparations. Further, we use random
samples from the partner and household tables, representing 997 instances each.

The PKDD Challenges in 1999 and 2000 offered a data set from a Czech bank
[1]. The data set comprises of 8 relations that describe accounts, their transac-
tions, orders, and loans, as well as customers including personal, credit card
ownership, and socio-demographic data. A learning task was not explicitly given
for the challenges. We compare problematic to non-problematic loans regardless
if the loan projects are finished or not. The data describes 682 loans.

The PKDD Challenges from 1999 to 2001 provided another data set originat-
ing from a Japanese hospital specialized in the treatment of collagen diseases. A
description of the data set may be found in [17]. We concentrate on the group of
patients followed by the hospital and provided with both laboratory and special
examination results. This group includes 417 patients. RELAGGS was applied
here with branching factor 0.

The KDD Cup 2001 [2] tasks 2 and 3 asked for the prediction of gene function
and gene localization, respectively. From these non-binary classification tasks, we
extracted two binary tasks, viz. the prediction whether a gene codes for a protein
that serves cell growth, cell division and DNA synthesis or not and the prediction
whether the protein produced by the gene described would be allocated in the
nucleus or not. RELAGGS treated all 862 examples from the Cup’s training set
with branching factor 0.

4.2 Procedure

The experiments were carried out on a PC with a Pentium II11/500 MHz processor
and 128 MB RAM. We decided to utilize the data mining system WEKA [14]
with data prepared by our Java tools that in turn process data stored by the
DBMS MySQL. Both WEKA and MySQL are freely available on the Web. The
SQL scripts and ARFF files as well as Java code relevant for the presented
experiments are available on request from the first author.

As input to the experiments, we take the results produced by RELAGGS.
We include the application of WEKA’s ZeroR to the input data. This provides
a baseline for comparisons equivalent to the default error rates that occur when
the more frequent class is always assumed as well as a basis for t-tests.

The main learning algorithm from WEKA that we apply in the experiments
is J48, which largely corresponds to C4.5 [12]. J48 is applied directly to the
RELAGGS results (“J48direct”). This is compared to the application of J48 to
the RELAGGS results that were treated before by FEASEBLE-red and ERJO,
respectively. All WEKA tools are applied with default parameter settings, in-
cluding stratified 10-fold cross-validation for classification learning. Exceptions
are the treatment of the domains Trains and Mutagenesis where we applied a
leave-one-out scheme for learning with WEKA’s J48 and PART, a rule induction
algorithm.

4.3 Results

For Trains/Train.bound, PART produced the following rule from the RELAGGS
result: if load_shape_tria_J3 > 0 and car_wall single_ J2 > 2 then east else west.
This rule misclassifies train 5. FEASEBLE-red (redundancy elimination) and
ERJO (each relation just once) did not produce different results for Trains.

For Mutagenesis/Drug42.active, the J48 model reached a prediction accuracy
of 83.3%, while ERJO achieved 85.7%. For Mutagenesis/Drugl88.active, the J48
model arrived at a prediction accuracy of 85.1% and with ERJO at 90.4%. It
had taken RELAGGS 28 seconds on a Sun UltraSPARC-II to arrive at the
propositionalized table, and a single training run took less than 1 second, back
on the PC.

Table 4 shows, for the remaining data sets and tasks and for each of the
experimental conditions, the average error across the ten folds and the standard
deviation; the best result on each task is marked in bold.

As a rule, RELAGGS conditions are significantly better than Zero-R ac-
cording to a paired t-test at level @ = 0.05, but there are no significances of
differences between RELAGGS conditions. There are a few exceptions to this
rule, where there are no statistical significances to be observed at all such as
for the PKDD99-01 Patient.thrombosis task. Differences of accuracy between
the J48direct and FEASEBLE-red conditions are due to the special handling
of NULL values that are taken here not to prevent equality of attribute values
while there is at the same time a random component in the choice of attributes
by FEASEBLE.

Table 5 shows the attribute numbers under the different conditions; the small-
est number on each task is marked in bold.

Learning was faster under the ERJO condition compared to the J48direct
condition. We did not yet use an implementation of the algorithm proposed above
but eliminated the appropriate attributes using WEKA’s AttributeFilter on the
complete RELAGGS result. Further improvements of efficiency can be expected
from the application of RELAGGS-ERJO. FEASEBLE-red was slower than the
other approaches due to the time it took to eliminate redundant attributes here.

Table 4. Error rate averages and standard deviations from 10-fold cross-validation

Data set/Task ZeroR|J48direct| FEASEBLE-red ERJO
ECML98/ 17.2 15.6 15.0 15.4
Partner.class + 04 + 3.2 + 26| +2.7
ECML98/ 47.6 9.1 9.1 9.0
Household.class + 0.4 + 2.9 + 2.7 +£2.8
PKDD99—00/ 11.1 7.8 7.6 6.2
Loan.status + 0.7 + 3.5 + 34| +£24
PKDD99—01/ 15.8 13.4 13.4| 13.4
Patient.thrombosis | + 1.1 + 4.7 + 4.7 +4.7
KDDOl/ 31.9 16.9 17.2| 16.9
Gene.fctCellGrowth| =+ 0.6 + 3.3 + 3.1 +£3.3
KDDO01/ 42.6 12.9 12.8 13.0
Gene.locNucleus + 0.5 + 2.3 + 22| +£2.3

Table 5. Numbers of attributes

Data set/Task J48direct FEASEBLE-red ERJO
Trains/Train.bound 45 33 28
Mutagenesis/Drugl88.active 130 96 73
Mutagenesis/Drugd2.active 130 81 73
ECML98/Partner.class 824 517| 557
ECML98/Household.class 933 562| 531
PKDD99-00/Loan.status 937 563| 159
PKDD99-01/Patient.thrombosis 297 263| 297
KDDO01/Gene.fctCellGrowth 895 586 860
KDDO01/Gene.locNucleus 895 548| 860

We could observe a tendency to simpler models under both the FEASEBLE-red
and ERJO conditions.

4.4 Discussion

For the Trains domain, the bias used for the LINUS extension [10] was obviously
more effective yielding the better Prolog rule

eastbound (T,true) :-hasShortCar(T) ,hasClosedCar(T) .

Actually, without taking load into account, we arrived with PART at the fol-
lowing rule: if count_jl > 2 and car_roof_jagged <= 0 then east else west. This
rule makes no mistakes on the 10 trains and it demonstrates the value of count-
ing, here for the number of cars per train, which was not included in the LINUS
extension examples, and the way to express negation under the RELAGGS bias,
here as a part of the rule stating that the train has no car with a jagged roof.

For the Mutagenesis tasks, our approaches reach accuracies in the same or-
der as extended LINUS (83% on Drugd2.active [10]) and Polka (up to 89% on
Drugl88.active [5], as well as other learners. To our knowledge, the RELAGGS
approach is the most efficient so far [3].

In general, there was no loss in accuracy under the ERJO condition as it
might have been expected, on the contrary. We understand this as an empirical
justification of this approach as well as similar variants of propositionalization
as instantiated by Polka.

The missing efficiency of FEASEBLE-red in combination with the partly sig-
nificant numbers of redundant attributes in the propositionalized tables points
to the importance of the original objective of the investigation, i.e. the treatment
of redundancy as early as possible. Apart from trivial cases such as one-value
columns in the RELAGGS input data or not occurring categorical values despite
of their enumeration in database documentations or because of sampling, redun-
dancies in the RELAGGS output can be caused by more complicated situations
such as one-to-one relationships of tables as manifested by the data contained
in them, not by their foreign key relationships, or by certain categorical values
occuring in the same extent for all examples, positive and negative. Here, fur-
ther work has to be done to find out about efficient possibilities to treat these
situations.

5 Conclusion

We have shown that redundancy is an important matter during propositionaliza-
tion and pointed to approaches to its treatment. Further, we empirically justified
heuristic approaches of non-exhaustive feature generation. This way, we could
arrive at an improvement wrt. both accuracy and efficiency of our award-winning
system RELAGGS.

In our future work, we plan to investigate a unified approach including both
feature selection methods that we investigated elsewhere [8] and the methods

to deal with redundancy proposed in this paper. Furthermore, we will apply
the extended LINUS [10] to data sets listed in Table 4 in order to allow for
a more detailed comparison and possibly research into a combination of the
types of bias used there and within our approach. We also intend to treat larger
data sets bearing real-life properties with propositionalization, to include other
aggregation functions into RELAGGS [7], and to apply sampling techniques
during propositionalization to further increase scalability and as a step towards
a variant of active learning.

Acknowledgements

We would like to thank the WEKA development team for their tool, which
proved very useful and pleasant to work with for us. Special thanks to Nada
Lavra¢ and Peter Flach for their support. Thanks to our colleague Susanne
Hoche for a preparation of the Mutagenesis data for Mipos and her C2RIB,
which could be reused for the application of RELAGGS. This work was partially
supported by the DFG (German Science Foundation), project FOR345/1-1TP6.

References

1. P. Berka. Guide to the Financial Data Set. In A. Siebes and P. Berka, editors,
PKDD2000 Discovery Challenge, 2000.

2. J. Cheng, C. Hatzis, H. Hayashi, M.-A. Krogel, S. Morishita, D. Page, and J. Sese.
KDD Cup 2001 Report. SIGKDD Ezplorations, 3(2):47-64, 2002.

3. S. Hoche and S. Wrobel. Scaling Boosting by Margin-Based Inclusion of Features
and Relations. In submitted, 2002.

4. J.-U. Kietz, R. Ziicker, and A. Vaduva. MINING MART: Combining Case-Based
Reasoning and Multistrategy Learning into a Framework for Reusing KDD-
Applications. In R. S. Michalski and P. Brazdil, editors, Proceedings of the Fifth
International Workshop on Multistrategy Learning (MSL), 2000.

5. A. J. Knobbe, M. de Haas, and A. Siebes. Propositionalisation and Aggregates. In
L. de Raedt and A. Siebes, editors, Proceedings of the Fifth European Conference
on Principles of Data Mining and Knowledge Disovery (PKDD). Springer-Verlag,
2001.

6. S. Kramer, B. Pfahringer, and C. Helma. Stochastic Propositionalization of Non-
Determinate Background Knowledge. In D. Page, editor, Proceedings of the Eighth
International Conference on Inductive Logic Programming (ILP). Springer-Verlag,
1998.

7. M.-A. Krogel and S. Wrobel. Transformation-Based Learning Using Multire-
lational Aggregation. In C. Rouveirol and M. Sebag, editors, Proceedings of
the Eleventh International Conference on Inductive Logic Programming (ILP).
Springer-Verlag, 2001.

8. M.-A. Krogel and S. Wrobel. Propositionalization and Feature Selection. In sub-
mitted, 2002.

9. N. Lavra¢ and S. Dzeroski. Inductive Logic Programming: Techniques and Appli-
cations. Ellis Horwood, 1993.

10

11.

12.

13.

14.

15.

16.

17.

N. Lavra¢ and P. A. Flach. An extended transformation approach to Inductive
Logic Programming. ACM Transactions on Computational Logic, 2(4):458-494,
2001.

R. S. Michalski. Pattern Recognition as Rule-guided Inference. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2(4):349-361, 1980.

R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

A. Srinivasan, S. H. Muggleton, M. J. E. Sternberg, and R. D. King. Theories
for mutagenicity: a study in first-order and feature-based induction. Artificial
Intelligence, 85(1,2):277-299, 1996.

I. H. Witten and E. Frank. Data Mining — Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kaufmann, 2000.

S. Wrobel. An algorithm for multi-relational discovery of subgroups. In J. Ko-
morowski and J. Zytkow, editors, Proceedings of the First European Symposium on
Principles of Data Mining and Knowledge Discovery (PKDD). Springer-Verlag,
1997.

S. Wrobel. Inductive Logic Progamming for Knowledge Discovery in Databases.
In N. Lavra¢ and S. Dzeroski, editors, Relational Data Mining. Springer-Verlag,
Berlin, New York, 2001.

J. Zytkow and S. Gupta. Guide to Medical Data on Collagen Disease and Throm-
bosis. In P. Berka, editor, PKDD2001 Discovery Challenge on Thrombosis Data,
2001.

