A Fuzzy Language for Querying Reconciliated

Views *

Silvana Castanof Danilo Montesi® Alberto Trombettat

Abstract

The Global-As-View approach in data integration system has fo-
cused on the (semi-) automatic definition of a global schema starting
from a given set of known information sources. In this paper, we inves-
tigate how to employ concepts and techniques to model imprecision in
generating the global schema and in specifying the mappings. We pro-
pose a language for defining fuzzy-based mappings between source and
global schemas. Such mappings explicitly take into account the simi-
larities occurring between global and source schemas, thus allowing to
discard the items with low similarity and to express the relevances that
different sources may have in populating the global schema. The pro-
posed language is applied in the framework of the ARTEMIS/MOMIS

integration system.

1 Introduction

Data integration systems are composed of three main components: source
schemas, a global schema and a mapping between the two [1]. The automatic
generation of a global, integrated schema starting from a set of independent
source schemas is a well-known research problem. The approach usually

employed in trying to solve this problem is called Global-As-View (GAV).

*This work has been partially supported by D2I MURST Project

tDSI, Dept. of Computer Science, Milano, Italy, castano@dsi.unimi.it
tDCS, Dept. of Computer Science, Bologna, Italy montesi@cs.unibo.it
¥DSI, Dept. of Computer Science, Milano, Italy, trombetta@dsi.unimi.it

Such approach requires that the global schema is defined in terms of the
source schemas: every element of the global schema is expressed as a view
over the source schemas, so that its meaning is specified in terms of the
data residing at the sources [11, 1]. Thus, in addition to works dealing with
global schema, other works investigate how to specify the mappings through
views generation [8].

An exact matching among the global schema and the local sources is
rather unlikely to occur, being (possibly) the sources quite different. Thus,
most of the times there exist an intrinsic imprecision in the matching among
the different local sources. Our aim is to deploy such imprecision in order
to help in the process of populating the global schema or, alternatively, in
the rewriting of a query posed over the global schema on the local sources
(in the case that the global schema has not been populated).

Imprecision is modeled through fuzzy sets to express similarities among
source schemas and the global schema. Fuzzy sets are also used to enhance
the (semi-)automatic generation of queries over the sources populating the
global schema. As our starting point, we employ the ARTEMIS/MOMIS
system for the analysis of source schemas and the creation of the integrated
global schema [3, 2]. The fuzzy-based extensions aim at the improvement of
source data integration. The same fuzzy-based extension is used to enhance
the (semi-)automatic generation of queries over the sources populating the
global schema.

Alternatively, in the case that the global schema has not been populated
with data items coming from the sources, a query over it has to be rewritten
over the data sources and the information collected during the global schema
generation is used to properly drive such rewriting.

To capture imprecision in schema mappings we adopt in this work an ex-
tended relational algebra using fuzzy sets instead of crisp sets [4]. The paper
is organized as follows. Section 2 shows a running example motivating the
need to deal with imprecision in both global schema creation and mapping
generation. Section 3 presents the notation to model imprecision with fuzzy
sets within the data model and the query language. Section 4 concisely
surveys the ARTEMIS/MOMIS system. Section 5 presents the fuzzy-based

mapping generation algorithm. Section 6 presents the fuzzy-based global

query rewriting algorithm. Section 7 concludes the paper.

2 Motivating Example

The example motivating the need for modeling imprecision in tools defining
the queries over different sources to populate the integrated schema with
data derived from the source schemas comes from the following scenario:
consider a patient being hospitalized in a hospital facility, needing some
clinical exams. First of all, the patient is registered at the admission desk;
later on, the patient is examined by the PET laboratory and, thereafter, he
is examined by the radiology lab. After the exams, the patient is dismissed.
Every previous step requires to record information about the patient in
different, independent databases: as the patient enters the hospital facility,
his name — along with his social security number and other information —
is stored in the administrative database of the the facility. The schema of
this database contains a single table AdmissionPatientRecord storing data

about patients’ admissions.

AdmissionPatientRecord
| ssn | FullName DateAdm | AdminRef

234998491 Smith, Joe 03/03/01 23
213456776 Robson, Michael 10/04/01 35
456921320 | Wilson, Martha 10/04/01 | 3

In particular, the attribute SSN (of type integer) stores patients’ so-
cial security number and it is the primary key, the attribute FullName (of
type char(20)) stores patients’ full name, the attribute DateAdm (of type
dd/mm/yy) stores the date of patient’ admissions in the Hospital, the at-
tribute AdminRef (of type integer) stores a code related to patients that
will be processed by the hospital administration.

When the patient enters the PET laboratory, another database — storing
information about patients examined by such laboratory — is modified with
the insertion of data about his exams. Note that such database is totally

independent from the database storing data about patients’ admissions. The

schema of this database contains a sigletable PETLabRec storing data about

patients’ exams in the PET laboratory.

PetLabRec

’ code ‘ PatName ‘ DateExam ‘ DateResp | AdminCode | LabRef
10223 | A. Watson | 12/05/01 | 3 43 petb
10225 | A. Reese 12/04/01 | 3 15 petd

The attribute code is of type integer and identifies patients who took exams
in the PET lab (note that if the same patient takes two exams in this labo-
ratory, he will be given two different codes). PatName (of type char(50)) is
the patient’s name, DateExam (of type dd/mm/yy) is the date of the patient’s
exam, DateResp (of type integer) denotes the number of the week in which
the exam’s response is released, AdminCode is a foreign key referencing to at-
tribute SSN in the schema containing table AdmissionPatientRecord while
LabRef (of type char(100)) is the URL of a web page displaying informa-
tion about the PET lab. Similarly for the radiology laboratory. Whose
database contains the table RadLab.

RadLab

’ CpP ‘ Name ‘ Surname ‘ TimeEx Response | RadRef
rad754 Joe Adams 14/04/04/01 | 07/04 45rd
rad5901 | David Foley 15/04/04/01 | 07/04 57rd
rad308 William | Smith 14/23/03/01 | 26/03 79rd

The attribute CP (of type char(20)) stores a code uniquely identifying pa-
tients taking exams in the radiology lab, attributes Name and Surname (both
of type char(20)) store patients’ name and surname, the attribute TimeEx
is the exam’s date, while Response is the the release day of the exam’s
response.

Consider a situation in which the hospital facility wants to allow the
retrieval of data about patients’ exams using, for example, its web site. One
solution would be to make every database involved in the storage of patients’
dataavailable over the Web. In order to pose relevant queries, a user would
be aware of all the involved databases’ schemas.

A more flexible solution is to consider a data integration system that
semi-automatically builds an integrated global schema given the three dif-

ferent source schemas. Once the global schema has been created from the

source schemas exploiting their similarities, it must be populated (semi-
automatically) through the queries providing the mapping between the source
schemas and the global schema. This can be done considering again the sim-
ilarities occurring among source schemas and global schema — in particular,
those occurring among source attribute domains and global attribute do-
mains.

As we have already said, the generation process of the global schema
takes advantage of the similarities occurring among the source schemas. In
particular, we refer to the approach of the ARTEMIS/MOMIS system [2] to
derive the integrated global schema. Following this approach, several kind
of similarities (called affinities) occurring among different elements of the
source schemas are taken into account (see Section 4.1). The global schema
derived by ARTEMIS is crisp: no information about similarities is kept and
consequently cannot be deployed in the definition of the global schema and
the queries over the sources, whose answers populate the global schema.

Our approach exploits a fuzzy-based relational model, in order to help
the definition of such queries. In this paper, we show how a global schema
(obtained with ARTEMIS/MOMIS system) is extended in order to store
information in the global schema about source domains similarities. This
is achieved by using similarity predicates over (source and global) attribute
domain types and allowing the global schema attribute domains to be fuzzy

sets.

3 The Fuzzy Data Model

Aim of this section is to provide a brief introduction to a fuzzy based rela-
tional model [4], suitable for the explicit representation of similarities occur-
ring whether at attribute level or at relation level. The choice of an extended
relational model is motivated by the wide diffusion of the relational model
and by the fact that it is possible to extend the operators of the corre-
sponding relational algebra with similarity based query capabilities, as well
as introduce new operators expressing very powerful queries over similarity

based data. We begin introducing few fundamental concepts from fuzzy set

theory, then we proceed defining our extended relational model and finally
we briefly introduce the corresponding extended relational algebra, on which
the query language presented in Section5 is based.

We now briefly introduce some standard notation and definitions. Given
a non-empty domain D, a fuzzy (sub)set S of D is denoted by its character-

istic function
ps : D —[0,1]

assigning to every element d € D its fuzzy membership score p € [0, 1] to the
fuzzy set S. We say that d belongs to S with score p and write d €, S (or
d: p if S is clear from the context). If ;4 = 0, we say that d does not belong
to S. As we have seen in Section 1, we represent global attribute domains
as fuzzy sets. The elements’ scores of a global attribute domain denote how
much the global attribute domain and the source attribute domains (from
which the global attribute domain elements are taken) are similar. In this

way, the global attribute domain
DEzamResponse = {1,2, . .,30,01/01,02/01,...,31/12}

contains elements coming from two source attribute domains Dpgseresp, and
DResponse- The similarities of such domains (with respect with the global
attribute domain) are represented as the membership scores of the corre-
sponding elements coming from such source domains.

Given a set of attribute names, A, and a function dom which associates
to each A € A a value domain, D = dom(A), a (named) relation schema is
formed by a relation name, R, a subset of attributes X = {A4;,...,A,} C A,
along with their corresponding domains {Dj,...,D,}, and it is written as
R(A1(D1),...,An(Dy)). A tuple t = (t1,...,t,) over R(X) is any element
of dom(X) = dom(Ay) x ... x dom(Ay), and t.A; denotes the value of A; in
t.

The data model presented in [4] extends the relational one by allowing
both fuzzy attributes and fuzzy relations. Imprecision at the attribute level

is captured by the notion of fuzzy subset previously presented.

We say that A; is a fuzzy attribute if its values are pairs of the form v; :
i, where v; is an element of a fuzzy subset of the attribute domain and p; €
[0,1] is the corresponding score. The two components of A; can be referred
to as A? (the “value”) and AY (the “score”), respectively. Intuitively, given
a tuple t, t.A; is interpreted as “t fits A; with score u”. Imprecision can
also occur at the whole tuple level, and motivates the introduction of fuzzy
relations. A fuzzy relation r over R(X) is defined as a fuzzy subset of
dom(X), characterized by a membership function p, (or simply p if r is
clear from the context) which assigns to each tuple ¢ a grade pu(t) € [0, 1].
The notation t.p will be used with the same meaning of p(t). We say that
t belongs to r (t € r) iff t.u > 0, and r is called a crisp instance iff t.u =1
for each t € r. A fuzzy database schema R is a set of fuzzy relation schemas,
R = {Ry,...,R,}. Note that the difference between a classical relational
schema and a fuzzy relational schema lies in the fact that the former has
only crisp instances, while the latter can have also fuzzy instances. A fuzzy
database R is a set of fuzzy relations r = {ry,...,r,}, where each r; is a
fuzzy set of fuzzy tuples ti,...,t,, instance of the corresponding schema
R;. The values of the attributes Ay,..., A, of r; range over fuzzy domains
Di,...,Dy.

3.1 The Query Language

Our SQL-like query language extends the well-known Web query language
WebSQL [7] with fuzzy based query capabilities and answer restructuring
capabilities [12]. Here we give a brief overview of the features of our query
language that are employed by the extended ARTEMIS/MOMIS system
for the definition of the mappings between source and global schemas pre-
sented in Section 5. Aside from classical selection conditions, the query lan-
guage bases the answer’s items retrieval also on their membership degrees
in the fuzzy relations specified in the queries and on their relevance. Such
non-classical features contribute in the definition of the answer satisfaction
degrees of the items.

A query in our extended WebSQL language is written using a classical
SELECT - FROM - WHERE construct appropriately extended in order to ex-

press non-classical features, such as membership drees and relevances. More

precisely, a query in the extended WebSQL query language has the form:

SELECT Ai,As,..., A,

FROM Ry,..., Ry

WHERE Cond

HAVING RELEVANCE Threshold

In the SELECT clause, A;, 1 < ¢ < n denotes either an attribute from
one relation mentioned in the FROM clause or its fuzzy membership de-
gree. The syntax of the WHERE clause is extented with the construct HAVING
RELEVANCE, that drops from the answer the tuples having membership de-
gree lower than the specified value Threshold.

As in the classical case, the results of two queries ()1 and Q2 can be
merged using the UNION operator. The fuzzy membership degrees of the tu-
ples contained both in in the answers of ()1 and ()2 is the maximum between
their fuzzy membership degrees in the answers of ()1 and @2, respectively.

Unlike the classical case, it is possible to express the different relevance
that tuples satisfying different queries may have. If we consider two queries
()1 and 2, the relevance of the tuples contained in their answers is denoted
with weights 61 and 0. The higher the relevance of the tuples satisfying a
query, the higher the corresponding weight. This relevance clearly influences
the fuzzy membership degrees of the tuples contained in the answer of the
weighted union. How this actually happens is explained in [5].

Given two queries 1, Q2 and weights 01, 62 (both of them between 0

and 1)), the syntax of the weihted union operator is the following:

(21 WITH WEIGHT 6; UNION Q)2 WITH WEIGHT 6o

4 Global Schema Definition

The definition of the global schema, starting from various, independent

source schemas is based on the ARTEMIS tool environment [2]. In Section

4.1, we will give a brief overview of ARTEMIS. However, since ARTEMIS
defines a crisp global schema, we extend it in order to define global schemas
whose attributes take values over fuzzy domains. We show our extensions
to ARTEMIS in Section 4.2.

4.1 ARTEMIS Overview

The ARTEMIS system provides a theoretical framework and an associ-
ated tool environment for the analysis of semantic heterogeneity of source
schemas and for their proper reconciliation into in an integrated, unified
schema. Although ARTEMIS can manage information sources defined in
various data models (e.g. relational, object-oriented, XML), we limit our-
selves in considering only the relational setting. The main features of the

ARTEMIS approach can be summarized in the following three points:

e Analysis of source schema elements, to identify similar elements in
different source schemas. Similarities among different schema ele-
ments are derived from the terminology and structure of elements
of source schemas. Term semantic is usually provided by thesauri
and taxonomies: terms are grouped according to their meaning us-
ing terminological binary relationships, such as SYN (synonym of), BT
(broader term) or NT (narrower term). ARTEMIS explores a thesaurus
of terminological relationships properly strenghtened to evaluate affin-
ity coefficients for schema elements, returning values between 0 and 1.
Such values are computed for various source schemas elements based
on their names (Name Affinity), as well as on their structure, in terms
of cardinalities (Structural Affinity). Such kind of similarities among
schema elements are combined into a Global Affinity value. A detailed

description of the affinity evaluation process is given in [2].

o Clustering of source schema elements, to group elements by affinity
values so that their different source schema representations can be
analyzed for unification in the global schema. The clustering procedure

builds clusters by merging elements based on their affinity values.

e Construction of the global schema, to build a unified representation for
schema elements in a similarity cluster. The global schema obtained in
this way is read-only, following conventional mediator-based architec-
tures [6], and is used for query at the global level. The global schema is
crisp: no information about similarities among source schema elements

is represented in the global schema.

4.2 Fuzzy Global Schema

The global schema produced by ARTEMIS/MOMIS is crisp, although its
definition process is thoroughly driven by similarities among schema ele-
ments, such as similarities among source relation names, among source at-
tribute names or among source domains. We now show how to obtain a
fuzzy global schema.

The extensions proposed to this purpose are the following:

e During the global schema construction phase, the information about
the similarites existing among sources’ schemas — gathered during the
analysis phase and employed in the clustering phase — is stored in a
fuzzy relation, called SimCat. Every attribute in the global schema is
equipped with an attribute named p. Since an instance of the global
schema is a fuzzy relation, such attribute will store the membership
degree of the corresponding global attribute value in the appropriate

domain.

e The definition of mappings between source schemas and the global
schema is greatly enhanced by exploiting the information contained in
the SimCat fuzzy relation. Such information drives the population pro-
cess of global attributes with fuzzy sets of values coming from source

attributes’ domains.

As well, the process of populating queries definition will help during
the answering phase of a query posed against the global schema, where the
information about source schemas’ similarities can be relevant in the decom-

position of the query over the most appropriate sources. In the remaining of

10

this section we show how we modify the global schema construction phase
in ARTEMIS/MOMIS to make explicit the information about similarities
among global and source attributes gathered in the analysis phase. We
assume that the analyis phase has identified different attributes in source
schemas according to their similarities and then, in the clustering and con-
struction phase, such source attributes are grouped and then a global at-
tribute unifying them is created.

Let us consider the following example arising from the scenario described
in Section 2: the different attributes FullName, PatName and Name, Surname
all denote the patients’ name. In this case, the similarity among attributes is
very high. In the global schema such attributes can be represented by a sin-
gle global attribute named, for example, PatientName. As another example,
consider the attributes DateResp and Response. They are very different:
in the former case the answer’ release time is specified as an offset from the
exam’s date and, while in the latter case the information is represented at
a finer level, being the day and week of the answer’s release explicitly spec-
ified. In this case also, the global schema groups attributes DateResp and
Response in a single global attribute named, for example, ExamResponse.

The global schema is the following;:

PatientExams
integer | char(50) | hh/dd/mm/yy | dd/mm/yy integer char (100)
Code Name ExamTime ExamResponse | AdminCode | Reference

The information about similarities among global and local attributes is
stored in a fuzzy relation named SimCat. The name comes from the fact
that such fuzzy relation acts as a catalog containing metadata (attribute
similarity, in this case) on the database. A portion of an instance of SimCat

is the following:

SimCat
GlobalAttr | SourceAttr ‘ w ‘

Name FullName 0.8
Name PatName 0.8
ExamTime DateAdm 0.64
ExamTime DateExam 0.9

11

Where score is a real number between 0 and 1 denotes the similarity
between SourceAttr and GlobalAttr. Such values correspond to the name
affinity values computed by ARTEMIS based on the terminological relation-
ships holding between attribute names in the sources. For example, since
an ypernimy relationship (NameBT FullName) holds, we have a similarity
value equal to 0.8 for these two attribute names.

Thus the output of the extended construction phase is the fuzzy global
schema and the fuzzy relation SimCat. The information stored in such
relation will be used to express queries over the sources in order to ad-
equately populate the global schema attributes. The different similarity
scores of various source attributes play a relevant role in the definition of
the queries over the source schemas. Consider the global schema attribute
ExamResponse. Assume for clarity that it is defined starting from only two
source schemas’ attributes, namely DateResp of PetLabRec and Response of
RadLab. Without any knowledge of the similarity scores of the correspond-
ing source schema attribute types, a typical query over the source schemas

populating the global attribute is:

Query 1:

SELECT PetLabRec.DateResp
FROM PetLabRec

UNION

SELECT RadLab.Response
FROM RadLab

Clearly, this query makes no distinction whether items satisfying it are
coming from Dateresp domain or Response domain. However, as we already
know, such domains are very different: the former specifies exam’s release
dates as the number of the days passed from the exam’s day, while the latter
is more precise and stores the same information telling explicitly the day and
the week of the exam’s release. In te next section, we show how to exploit
the information about domains’ similarities such that the items contained in
the query answer (hence populating the global schema attribute) specify how

much they satisfy the query. Intuitively, satisfaction degrees measure how

12

much the corresponding items satisfy the query. Such degrees are usually
represented with real numbers between 0 and 1, and they depend on how

much the corresponding domain types are similar.

5 Schema Mapping Using Similarity

Aim of this section is to define the queries over the sources to populate the
global schema. Such queries will be defined using the information about
similarities among source and global schemas gathered during the analysis
phase and stored during the construction phase. In this way, a global schema
attribute will have as domain a fuzzy set whose corresponding membership
degrees’ elements reflect the similarity between the global schema attribute
and the source schemas attibutes unified in such global attribute.

For example, consider again the global schema attribute ExamResponse.
This time, we take into account the similarity scores of source and global
attributes, and we will define an SQL-like query able to exploit such similar-
ities. Furthermore, the user can specify how much the source data are rele-
vant. For example, it is possible to express that data coming from PetLabRec
are supposed to fit as twice as RadLab data. The relevances are expressed
as weights ranging from 0 to 1. We employ a fuzzy-based extension of the
classical relational model allowing the representation of similarity both at
attribute value level and at tuple level. Such data model, along with its cor-
responding query algebra is presented in [4]. The corresponding extension
to an SQL-like language introduced in [10] allows to model such similarities.

The following query populates the global attribute ExamResponse with a
fuzzy relation whose tuples have values coming from the domains of sources’
attributes DateResp and Response, and their membership degrees are com-
puted taking into account both similarities pi, pe with the global schema
and the associated weights 0.66, 0.33, denoting their relevances. Such fuzzy
tuples are formed joining the values coming from source domains and the
corresponding similarity scores, stored in the fuzzy relation SimCat. We

employ the WITH WEIGHT construct for expressing weights.

Query 2:

13

SELECT PetLabRec.DateResp, SimCat.pu

FROM PetLabRec, SimCat

WHERE GlobalAttr=‘‘ExamResponse’’ AND SourceAttr=‘‘DateResp’’
WITH WEIGHT 0.66

UNION

SELECT RadLab.Response, SimCat.pu

FROM RadLab, SimCat

WHERE GlobalAttr=‘‘ExamResponse’’ AND SourceAttr=‘‘Response’’
WITH WEIGHT 0.33

The answer to such query is a set of pairs (value, score) forming a fuzzy

relation according to the definition given in Section 3.

Answer to Query 2

’ ExamResponse ‘ I ‘

10/03 0.7
12/04 0.7
3 0.5
1 0.5
2 0.5

It may happen that the answer of Query 5 is very large and most of
the items contained in it have very low membership degrees. In order to
retain in the answer only items having high membership score, we introduce
the HAVING RELEVANCE construct that specifies a threshold on membership

degrees’ items in the answer.

Query 3:

SELECT PetLabRec.DateResp, SimCat.pu

FROM PetLabRec, SimCat

WHERE GlobalAttr=‘‘ExamResponse’’ AND SourceAttr=‘‘DateResp’’
WITH WEIGHT 0.66

UNION

SELECT RadLab.Response, SimCat.pu

FROM RadLab, SimCat

14

WHERE GlobalAttr=‘‘ExamResponse’’ AND SourceAttr=‘‘Response’’
WITH WEIGHT 0.33
HAVING RELEVANCE > 0.8

The algorithm — whose pseudo-code is shown in Figure 1 — takes as in-
put source and global schemas attributes, as well as their similarities, (along
with a list of weights 61, ...,6, and a threshold «, representing respectively
the relevance of each source schema having attributes unified in the global
schema and the minimum similarity such source schema attributes must
have with respect to the global schema attribute they unify in. The al-
gorithm outputs,for every global schema attribute, a query populating it
with a fuzzy set of tuples whose values belongs to source attribute domains.
The fuzzy membership degrees of the tuples are determined by the similar-
ities between source and global schema attributes, already computed in the
ARTEMIS/MOMIS analysis phase.

The algorithm operates in detail as follows: for every global schema
attribute A; and for every source schema attribute A;, it is checked whether
A; is unified in A;.

Being this the case, a query asking for the values source attribute A; and
the associate similarity score p (with respect to global attribute A;) from
the SimCat fuzzy relation is issued. The values having similarity scores less
than the threshold « are discarded.

Such a query is issued over every source attribute unified in the global
attribute A;. Then, the answers of such queries posed are put toghether
by means of a weighted union. The weights 64, ..., 0, denote the different

relevances the user associates to the sources.

6 Processing Global Queries

In the case that the global schema is populated with the queries specified
in the previous sections, then a query over the global schema (global query,
from now on) can be answered without further involvement of the sources.

In this section, we address the problem of answering a simple conjunctive

15

threshold query Q¢ posed over the global schema in the case it is not pop-
ulated by tuples coming from data sources. In this case, the global schema
does not contain any data and the global query has to be rewritten in sepa-
rate queries onto the data sources, where data actually reside. The queries
over the data sources are defined using information about the similarities
occurring among global and source attributes (already used for the defini-
tion of the global schema) and the similarities among the value occurring in
the global query and those in the corresponding source attribute domains.
We present the global query rewriting algorithm through an example

(The algorithm is shown in Figure 6). Consider the following global query:

GQ:
SELECT Name
FROM PatientExams
WHERE ExamTime=‘15/21/04/02’
HAVING RELEVANCE > 0.9

asking for the patients’ names having exams of some kind on April 21, at
3.00 pm, with relevance greater than 0.9. The answer of such query is a
fuzzy relation, whose elements have membership degrees determined by the
similarities between the global attributes involved in the global query and
source attributes and between the values contained in the global query and
data sources’ values. In order to rewrite the global Query GQ in a query over
the data sources, we assume that the ARTEMIS/MOMIS system compares
the data value 15/21/04/02 (present in the global query) with the data
values of the local attributes unified in the global attribute ExamTime and
computes how much they are similar.

We introduce a fuzzy relation that stores the similarity degrees among
the attribute values occurring in the global query and the values of the
corresponding source attribute domains. We call such fuzzy relation SimVal.
In the case of the global Query GQ, a portion of the SimVal fuzzy relation

1S:

16

SimVal

GlobalQueryVal | SourceVal ‘ w
15/21/04/02 13/20/03/02 | 0.
15/21/04/02 10/21/03/02 | 0.
15/21/04/02 15/21/04/02 | 1
15/21/04/02 20/04/02 0.5
15/21/04/02 18/04/02 .
15/21/04/02 21/04/02 0.8

Where GlobalQueryVal attribute holds the values appearing in the global
Query GQ, SourceVal attribute holds the values of source attributes unified
in the global attribute ExamTime, and p attribute holds their similarities
(expressed as a real number between 0 and 1).

Having at disposition in the SimCat fuzzy relation the information about
global and source attributes, we rewrite the global Query GQ as a union of

queries over the sources:

SELECT FullName, MIN(SimVal.p, SCi.u, SCo.u)

FROM AdmissionPatientRecord, SimVal, SimCat SC;, SimCat SCo
WHERE DateAdm=21/04/02’
UNION

SELECT PatName, MIN(SimVal.p, SCp.u, SCo.p)

FROM PetLabRec, SimVal, SimCat SC;, SimCat SCs
WHERE DateExam=21/04/02’

UNION

SELECT Surname, MIN(SimVal.u, SCi.u, SCo.u)

FROM RadLab, SimVal, SimCat SC;, SimCat SCo
WHERE TimeEx=15/21/04/02’

As already said, the rewritten query 6 consists of a union of SELECT-FROM-WHERE
queries. The global query rewriting algorithm defines a SWF query for every
source attribute unified in the global attribute. The choice of the local at-

tributes (and data sources’ values) to be included in such queries is driven

17

by the similarities of their similarities with attributes and values appearing
in the global query.

With regard to global Query GQ— in which the SELECT clause contains the
global attribute Name — the corresponding rewritten query over the sources
AdmissionPatientRecord, PetLabRec and RadLab has, in the SELECT clauses
of the SFW queries, the source attributes FullName, PatName and Surname.
In an analogous way, the local attributes DateAdm, DateExam and TimeEx
appearing in WHERE clauses of the rewritten query over the source are those
unified in the global attribute ExamTime, appearing in the WHERE clause of
the global Query GQ. The local values 21/04/02 and 15/21/04/02 appearing
in the WHERE clauses are chosen in such a way to maximize their similarity
with the value 15/21/04/02 contained in the WHERE clause of Query GQ. This
is done simply by choosing the maximum value of y attribute in the ValSim
relation having as GlobalQueryVal and SourceVal attributes respectively
the values 15/21/04/02 (the value in the global query) and 15/21/04/02,
21/04/02 (the values in the sources).

In the SELECT clause, the similarity score of the items to be included in
the answer is computed as the minimum of the similarity scores of the local
attributes and data source values with the attributes and value contained
in the global query.

The answer to Query 6, according to similarity scores contained in

SimCat and SimVal relations, is

Global Query Answer

’ Name ‘ w
Smith 1
Jones 0.9

7 Conclusions

In this paper we have proposed a data integration extension that permits to
define similarity-based mappings between source and global schemas and we
have discussed such techniques in the framework of the ARTEMIS/MOMIS

system. As further work, we plan to refine the computation of similarity

18

between sources and the global schema (e.g. taking into account also the

source domains) and to employ similarity-based query processing when an-

swering queries posed over the global schema.

References

1]

D. Calvanese, D. Lembo, M. Lenzerini. Survey on methods for query
rewriting and query answering using views. Technical Report D1.R5,
D21 MURST Project, 2001.

S. Castano, V. De Antonellis, S. De Capitani di Vimercati. Global
Viewing of Heterogeneous Data Sources. IEEE Trans. on Knowledge
an Data Engineering, 13(2), 2001.

S. Bergamaschi, S. Castano, M. Vincini, D. Beneventano. Semantic

integration of heterogeneous information sources. DKE, 36(3), 2001.

P. Ciaccia, D. Montesi, W. Penzo, and A. Trombetta. Imprecision and
user preferences in multimedia queries: a generic algebraic approach. In
Proc. of Conf. on Foundations on Information and Knowledge Systems,
2000.

R. Fagin, E.Wimmers. Incorporating user preferences in multimedia

queries. in Proc Seventh Int’l Conf on Database Theory, 1997.

R. Hull. Managing Semantic Heterogeneity in Databases: a Theoretical
Perspective. In Proc. PODS Conf., 1997.

G. Mihaila, T. Milo, A. Mendelzon. Querying the World Wide Web.
Journal of Digital Libraries, 1(1): 54-67, 1997.

R. J. Miller, L. Haas, M. A. Hernadéz. Schema Mapping as Query
Discovery. In Proc. VLDB Conf., 2000.

G. Modica, A. Gal, H. M. Jamil. The use of machine-generated ontolo-

gies in dynamic information seeking. In Proc. Coopis Conf., 2001.

19

[10] D. Montesi, A. Trombetta. An imprecision-based query language for
the Web. Journal of Visual Languages and Computing 12, 3-35, 2001.

[11] S. Ram, V. Ramesh. Schema integration: past, current and future.

In Management of Heterogeneous and Autonomous Database Systems,
1999.

[12] A. Trombetta. Representing and querying imprecise data. Ph.D. Thesis.
Dept. of Computer Science, University of Torino, 2001.

20

Similarity Schema Mapping Algorithm

Input: source attributes, global attributes, their similarities and relevances, a list
of weights 61,...,0, and a threshold «.

Output: a a weighted union of SQL-like queries whose answers are fuzzy sets

populating global attributes.

begin
for every global attribute A;
begin
for every source attribute A;
begin
if A; is unified in A; then
begin
@Q); = EXEC SQL
SELECT S.A;, SimCat.u
FROM S, SimCat
WHERE GlobalAttr=’’A;’’ AND SourceAttr=’’A;’’
HAVING RELEVANCE o
end
end
()1 WITH WEIGHT #; UNION Q2 WITH WEIGHT #» UNION --- UNION (), WITH WEIGHT 6,
end
end

Figure 1: The similarity-based schema mapping algorithm

21

Global Query Rewriting Algorithm

Input: a simple conjunctive threshold query Q¢ =SELECT AFROM SWHERE B=v

HAVING RELEVANCE > u over the global, integrated virtual schema S and SimCat and
SimVal relations

Output: a union of SFW queries over the data sources asking for values maximally similar

to those present in Q¢

begin
Find local attributes Aq,...,A, unified in A
for every data source S; whose values vi,. .., v% are listed in SimVal
begin
compute ji* = max{p,...,ul}
denote the corresponding value in SimVal as ¥°
find the corresponding local attribute B’ in data source S;
denote the similarity scores of A and B with A* and B’ (found in SimCat)
respectively with pg: and pgi
compute p; = min{fz’, g, 1z }
if y; > p then
Q; = EXEC SQL
SELECT A%, MIN(SimVal./i’, SCi.pugi, SCa.ptfi)
FROM S;, SimVal, SimCat SC;, SimCat SC,
WHERE B’ = ¢
end

(1 UNION @, UNION --- UNION Q, end

Figure 2: The similarity-based global query rewriting algorithm

22

