
IRIS: A Protégé Plug-in to Extract and Serialize
Product Attribute Name-Value Pairs

Tuğba Özacar

Department of Computer Engineering, Celal Bayar University
Muradiye, 45140, Manisa, Turkey

tugba.ozacar@cbu.edu.tr

Abstract. This article introduces IRIS wrapper, which is developed as
a Protégé plug-in, to solve an increasingly important problem: extracting
information from the product descriptions provided by online sources and
structuring this information so that is sharable among business entities,
software agents and search engines. Extracted product information is pre-
sented in a GoodRelations-compliant ontology. IRIS also automatically
marks up your products using RDFa or Microdata. Creating GoodRela-
tions snippets in RDFa or Microdata using the product information ex-
tracted from Web is a business value, especially when you consider most
of the popular search engines recommend the use of these standards to
provide rich site data for their index.

Keywords: product, GoodRelations, Protégé, RDFa, Microdata

1 Introduction

The Web contains a huge number of online sources which provides ex-
cellent resources for product information including specifications and de-
scriptions of products. If we present this product information in a struc-
tured way, it will significantly improve the effectiveness of many appli-
cations [1]. This paper introduces IRIS wrapper to solve an increasingly
important problem: extracting information from the product descrip-
tions provided by online sources and structuring this information so that
is sharable among business entities, software agents and search engines.
The information extraction systems can be divided into three categories
[2]: (a) Procedural Wrapper: The approach is based on writing customized
wrappers for accessing required data from a given set of information
sources. The extraction rules are coded into the program. Creating wrap-
pers are easier and it can directly output the domain data model of appli-
cation but each wrapper works only for an individual page. (b)Declarative
Wrapper: These systems consist of a general execution engine and declar-
ative extraction rules developed for specific data sources. The wrapper
takes an input specification that declaratively states where the data of
interest is located on the HTML document, and how the data should be
wrapped into a new data model. (c) Automatic Wrapper: The automatic
extraction approach uses machine learning techniques to learn extraction
rules by examples. In [3] information extraction systems are classified

into two: solutions treating Web pages as a tree, and solutions treat-
ing Web pages as data stream. Systems are also divided with respect to
the level of automation of wrapper creation into manual, semi-automatic
and automatic. IRIS is a declarative and manual tree wrapper 1, which
has a general rule engine that executes the rules specified in a template
file using XML Path Language (XPath). Manual approaches are known
to be tedious, time-consuming and require some level of expertise con-
cerning the wrapper language [4]. However, manual and semi-automatic
approaches are currently better suited for creating robust wrappers than
the automatic approach. Writing an IRIS template is considerably easier
than most of the existing manual wrappers. Besides, it can be predicted
that to improve the reusability and the efficiency, the users of the IRIS
engine will share templates on the Web.

There are works which directly focus on the problem of this paper. [5]
uses a template-independent approach to extract product attribute name
and value pair from Web. This approach makes hypothesis to identify
the specification block but since some detail product pages may violate
these hypothesis, the pairs in these pages cannot be extracted properly.
The second work [6] needs two predefined ontologies to extract product
attribute name and value pairs from a Web page. One of these ontologies
is built according to the contents of the page but it is not an easy task
to build that ontology from scratch for every change in the page content.
The system presented in this paper differs from the above works in many
ways.

First of all the system transforms the extracted information into an on-
tology to share and reuse common understanding of structure of infor-
mation among users or software agents. To my knowledge [7], IRIS is the
first Protégé plug-in that is used to extract product information from
Web pages. Designed as a plug-in for the open source ontology editor
Protégé, IRIS exploits the advantages of the ontology as a formal model
for the domain knowledge and profits from the benefits of a large user
community (currently 230,914 registered users).

Another feature is support for building an ontology that is compatible
with GoodRelations Vocabulary [8], which is the most powerful vocab-
ulary for publishing all of the details of your products and services in
a way friendly to search engines, mobile applications, and browser ex-
tensions. The goal is to have extremely deep information on millions of
products, providing a resource that can be plugged into any e-commerce
system without limitation. If you have GoodRelations in your markup,
Google, Bing, Yahoo, and Yandex will or plan to improve the rendering
of your page directly in the search results. Besides, you provide informa-
tion to the search engines so that they can rank up your page for queries
to which your offer is a particularly relevant match. Finally, as an open
source Java Application, IRIS can be further extended, fixed or modified
according to the needs of the individual users.

The following section (with three subsections) includes the system’s fea-
tures and a scenario based quick-start guide. Section 3 concludes the
paper with a brief talk about possible future work.

1 Download link: https://github.com/tugbaozacar/iris

2 Scenario-based System Specification

IRIS system gathers semi-structured product information from an HTML
page, applies extraction rules specified in the template file, and presents
the extracted product data in an ontology that is compatible with GoodRela-
tions Vocabulary. The HTML page is first parsed into a DOM tree using
HtmlUnit, which is a Web Driver that supports walking the DOM model
of the HTML document using XPath queries. In order to get product in-
formation from Web page, the template file includes a tree that specifies
the paths of HTML tags around the product attribute names and prod-
uct attribute values. Figure 1 shows the architecture of the system briefly.
User builds a template for the pages containing the product information.

Fig. 1. Architecture of the system.

Then HtmlUnit library parses the Web pages. The system evaluates the
nodes in the template and queries the HtmlUnit for the required product
properties. At the end of this process, the system returns a list of product
objects. To define a GoodRelations-compliant ontology the user maps the
product properties to the properties of the “gr:Individual” class, saves
the ontology and serializes the ontology into a series of structured data
markup standards. The system makes serialization via RDF Translator
API [9]). Each step is described in the following subsections.

2.1 Create a Template File

The information collected is mapped to the attributes of the Product
object including title, description, brand, id, image, features, property
names, property values and components. A template has two parts; the
first part contains the tree that specifies the paths of HTML tags around
the product attribute names and values. The second part specifies how

the HTML documents should be acquired. The product information is
extracted using the tree. The tree is created manually and its nodes
are converted to XPath expressions. HtmlUnit evaluates the specified
XPath expressions and returns the matching elements.Figure 2 shows
the example HTML code which contains the information about the first
product in “amazon.com” pages that contain information about laptops.
Figure 3 shows the tree which is built for extracting product information
from the page in Figure 2.

Fig. 2. The HTML code which contains the first product on the page.

Fig. 3. The tree nodes in the template for “amazon.com” pages about laptops.

The leaf nodes of the tree (Figure 3) contains the HTML tag around a
product attribute name or a product attribute value, and the internal
nodes of the tree contains the HTML tags in which the HTML tag in the
leaf node is nested. Therefore the hierarchy of the tree also represents the
hierarchy of the HTML tags. c1 contains the value of the title attribute,
c2 contains the image link of the product, and c3 is one of the internal
nodes that specify the path to its leaf nodes. c3 specifies that all of its
children contain HTML tags which are nested within the h3 heading
tag having class name “newaps”. Its child node (c4) specifies the HTML
link element which goes to another Web page that contains detailed
information about the product. The starting Web page is referred as
root page and the pages navigated from root page are child pages. After
jumping the page address specified by c4, product properties and their
values are chosen from this Web page which is shown in Figure 4.

Fig. 4. Product properties and their values.

The properties and their corresponding values are stored in an HTML
table, which is nested in an HTML division identified by “prodDetails”
id. Therefore c5 specifies this HTML division and its child nodes c6 and
c7 specifies the HTML cells containing product properties and their val-
ues. After determining the HTML elements which contain the product
information, the user defines these elements in the template properly.
Each node in the tree is a combination of the following fields:
SELECT-ATTR-VALUE These three fields are used to build the
XPath query that specifies the HTML element in the page.
ORDER is used when there is more than one HTML element matching
with the expression. The numeric value of the ORDER element specifies
which element will be selected.
GETMETHOD is used to collect the proper values in the selected
HTML element e. If you want to get the textual representation of the el-
ement (e), in other words what would be visible if this page was shown in
a Web browser, you define the value of GETMETHOD field as “asText”.
Otherwise you get the value of an element (e) attribute by specifying the
name of the attribute as the value of GETMETHOD field.
AS is only used with leaf nodes. The value collected from a leaf node
using GETMETHOD field is mapped to the Product attribute specified
in the AS field.

Appendix A gives the template (amazon.txt) which contains the code
of the tree in Figure 3. The second part of a template file contains the
information on how the HTML documents should be acquired. This part
has the following fields:
NEXT PAGE The information about laptops in “amazon.com” is spread
across 400 pages. The link of the next page is stored in this field.
PAGE RANGE specifies the number of the page or the range of pages
which you want to collect information from. In my example, I want to
collect the products in pages from 1 to 3.
BASE URI represents the base URI of the site. In my example, the
value of this field is http://www.amazon.com.
PAGE URI is the URI of the first page which you want to collect
information from. In my example, this is the URI of the page 1.
CLASS contains the name of the class that represents the products to
be collected. In my example, “Laptop” class is used.

2.2 Create an Ontology that is Compatible with
GoodRelations Vocabulary

First of all, user opens an empty ontology (“myOwl.owl”) in the Protégé
Ontology Editor and displays the IRIS tab which is listed on the TabWid-
gets panel. Then the user selects the template file using “Open template”
button in Figure 5 (for this example: amazon.txt). Then the tool imports
all laptops from the “amazon.com” pages specified in the PAGE RANGE
field. The imported individuals are listed in the “Individuals Window”
(Figure 5). The “Properties Window” lists all properties of the individ-
uals in “Individuals Window”.
In this section, I follow up the descriptions and examples introduced in
GoodRelations Primer [10]. First of all, the system defines the class in
your template (“Laptop” class in example) as a subclass of “gr:Individual”
class of the GoodRelations vocabulary. Then the properties of the “Lap-
top” class, which are collected from the Web page should be mapped to
the properties of “gr:Individual”, which can be classified as follows:
First category: “gr:category”, “gr:color”, “gr:condition”, etc. (see [10]
for full list). If the property px is semantically equivalent of a property
from the first category py , then user simply maps px to py.
Second category: Properties that specify quantitative characteristics,
for which an interval is at least theoretically an appropriate value should
be defined as subproperties of “gr:quantitativeProductOrServiceProperty”.
A quantitative value is to be interpreted in combination with the respec-
tive unit of measurement and mostly quantitative values are intervals.
Third category: All properties for which value instances are specified
are subproperties of “gr:qualitativeProductOrServiceProperty”.
Fourth category: Only such properties that are no quantitative prop-
erties and that have no predefined value instances are defined as sub-
properties of “gr:datatypeProductOrServiceProperty”.
To create a GoodRelations-compliant ontology, user selects the individ-
uals and properties that will reside in the ontology. Then she clicks the
“Use GoodRelations Vocabulary” button (Figure 5) and “Use GoodRela-
tions Vocabulary” wizard appears. She selects the corresponding GoodRela-
tions property type and respective unit of measurement.

Fig. 5. The tool imports all laptops from the specified “amazon.com” pages.

2.3 Save and Serialize the Ontology

User saves the ontology in an owl file and clicks the “Export to a seri-
alization format” button (Figure 5) to view the ontology in one of the
structured data markup standards.

3 Conclusion and Future Work

This work introduces a Protégé plug-in called IRIS that collects product
information from Web and transforms this information into GoodRela-
tions snippets in RDFa or Microformats. The system attempts to solve
an increasingly important problem: extracting useful information from
the product descriptions provided by the sellers and structuring this in-
formation into a common and sharable format among business entities,
software agents and search engines. I plan to improve the IRIS plug-in
with an extension that gets user queries and sends them to Semantics3
API [11], which is a direct replacement for Google’s Shopping API and
gives developers comprehensive access to data across millions of products
and prices. Another potential future work is generating an environment
for semi-automatic template construction. An environment that auto-
matically constructs the tree nodes from the selected HTML parts will
significantly reduce the time to build a template file. And yet another
future work is diversify the supported input formats (pdf, excel, csv etc.).

Appendix A

SELECT=(div) , ATTR=(id) , VALUE= (r e s u l t) [
SELECT=(span) , ATTR=(c l a s s) , VALUE=(l r g bold) ,
GETMETHOD=(asText , AS=(product . t i t l e) ;
SELECT=(img) , ATTR=(s r c) , GETMETHOD=(Src) ,
AS=(product . imgLink) ;
SELECT=(h3) , ATTR=(c l a s s) , VALUE= (newaps) [

SELECT=(a) , ATTR=(hr e f) , GETMETHOD=(hr e f) [
SELECT=(div) , ATTR=(id) , VALUE=(prodDeta i l s) [

SELECT=(td) , ATTR=(c l a s s) , VALUE=(l a b e l) ,
GETMETHOD=(asText , AS=(product . propertyName) ;
SELECT=(td) , ATTR=(c l a s s) , VALUE=(value) ,
GETMETHOD=(asText , AS=(product . propertyValue)]]]]

NEXT PAGE:{SELECT=(a) , ATTR=(id) , VALUE=(pagnNextLink) ,
GETMETHOD=(hr e f)}

PAGERANGE:{1−3}
BASE URI :{ http ://www. amazon . com}
PAGE URI:{ http ://www. amazon . com/ s / r e f=s r \ nr \ n\ 1 ? rh=

n\%3A565108\%2Ck\%3Alaptop\&keywords=laptop\&
i e=UTF8\&qid=1374832151\& rnid =2941120011}

CLASS:{ Laptop}

References

1. Tang, W., Hong, Y., Feng, Y.H., Yao, J.M., Zhu, Q.M.: Simultaneous
product attribute name and value extraction with adaptively learnt
templates. In: Proceedings of CSSS ’12. (2012) 2021–2025

2. Han, J.: Design of Web Semantic Integration System. PhD thesis,
Tennessee State University. (2008)

3. Firat, A.: Information Integration Using Contextual Knowledge and
Ontology Merging. PhD thesis, MIT, Sloan School of Management
(2003)

4. Muslea, I., Minton, S., Knoblock, C.: A hierarchical approach to
wrapper induction, ACM Press (1999) 190–197

5. Wu, B., Cheng, X., Wang, Y., Guo, Y., Song, L.: Simultaneous
product attribute name and value extraction from web pages. In:
Proceedings of the 2009 IEEE/WIC/ACM International Joint Con-
ference, IEEE Computer Society (2009) 295–298

6. Holzinger, W., Kruepl, B., Herzog, M.: Using ontologies for ex-
tracting product features from web pages. In: Proceedings of the
ISWC’06, Springer-Verlag 2006 (2006) 286–299

7. : Protege plug-in library Last accessed: 2013-09-24.
8. Hepp, M.: Goodrelations: An ontology for describing products and

services offers on the web. EKAW ’08 (2008) 329–346
9. Stolz, A., Castro, B., Hepp, M.: Rdf translator: A restful multiformat

data converter for the semantic web. Technical report, E-Business
and Web Science Research Group (2013)

10. Hepp, M.: Goodrelations: An ontology for describing web offers
—primer and user’s guide. Technical report, E-Business + Web
Science Research Group 2008.

11. Semantics3 Inc.: Semantics3 - apis for products and prices (2013)

