
Proceedings of the 2nd International Workshop on
Model-Driven Engineering on and for the Cloud

CloudMDE 2014
Richard Paige
Jordi Cabot
Marco Brambilla
Louis Rose
James H. Hill



Copyright © 2014 for the individual papers by the papers’ authors. Copying permitted only
for private and academic purposes. This volume is published and copyrighted by its editors.

i



Preface

The second workshop on Model-Driven Engineering (MDE) for and in the Cloud was held on
30 September 2014 at UP Valencia, Spain co-located with the ACM/IEEE 17th International
Conference on Model-Driven Engineering Languages and Systems. Model-Driven Engineering
(MDE) elevates models to first class artefacts of the software development process. MDE
principles, practices and tools are also becoming more widely used in industrial scenarios.
Many of these scenarios are traditional IT development and emphasis on novel or evolving
deployment platforms has yet to be seen. Cloud computing is a computational model in which
applications, data, and IT resources are provided as services to users over the Internet. Cloud
computing exploits distributed computers to provide on-demand resources and services over a
network (usually the Internet) with the scale and reliability of a data centre.

Cloud computing is enormously promising in terms of providing scalable and elastic in-
frastructure for applications; MDE is enormously promising in terms of automating tedious or
error prone parts of systems engineering. There is potential in identifying synergies between
MDE and cloud computing. The workshop aimed to bring together researchers and practi-
tioners working in MDE or cloud computing, who were interested in identifying, developing
or building on existing synergies. The workshop focused on identifying opportunities for using
MDE to support the development of cloud-based applications (MDE for the cloud), as well as
opportunities for using cloud infrastructure to enable MDE in new and novel ways (MDE in
the cloud).

Attendees were also interested in novel results of adoption of MDE in cloud-related domains
that provided insight into early adoption of MDE for building cloud-based applications, or in
terms of deploying MDE tools and infrastructure on ‘the cloud’.

The workshop received 12 paper submissions (technical papers, position papers and work-
in-progress papers), from which it accepted 8 for presentation at the workshop. Each paper was
reviewed by 2-3 members of the program committee, and was selected based on its suitability
for the workshop, novelty, likelihood of sparking discussion, and general quality. The workshop
also featured a keynote presentation by Daniel Varro of the Budapest University of Technology,
Hungary. The organisers thank all authors for submitting papers, our keynote speaker Daniel
Varro, the workshop participants, the MoDELS local organisation team, the workshop chairs
Alfonso Pierantonio and Gabi Taentzer, and the program committee for their support.

30th September, 2014
Valencia, Spain

Richard Paige
Jordi Cabot

Marco Brambilla
Louis Rose

James H. Hill

ii



Organisation

CloudeMDE 2014 was organised by the Department of Information Systems and Computation
(DSIC) at Universidad Politécnica de Valencia.

Program Committee

Muhammad Ali Babar IT University of Copenhagen, Denmark
Marco Brambilla Politecnico di Milano, Italy

Jordi Cabot École des Mines de Nantes, France
Radu Calinescu University of York, UK
Giuliano Casale Imperial College London, UK
Marcos Didonet Del Fabro Universidade Federal do Paraná, Brazil
Aniruddha Gokhale Vanderbilt University, USA
Esther Guerra Universidad Autónoma de Madrid, Spain
James H. Hill Indiana University-Purdue University Indianapolis, USA
Frank Leymann University of Stuttgart, Germany
Sebastien Mosser University Nice-Sophia Antipolis, France
Ileana Ober Université Paul Sabatier, Toulouse, France
Richard Paige University of York, UK
Dana Petcu West University of Timisoara, Romania
Istvan Rath Budapest University of Technology and Economics, Hungary
Louis Rose University of York, UK
Manuel Wimmer Vienna University of Technology, Austria

Additional Reviewers

Alexander Bergmayr Vienna University of Technology, Austria
Gabriel Costa Silva University of York, UK

Ákos Horváth Budapest University of Technology and Economics, Hungary

iii



Table of Contents

MDE Opportunities in Multi-Tenant Cloud Applications 1
Mohammad Abu-Matar and Jon Whittle . . . . . . . . . . . . . . . . . . . . . . . . .

Towards Cloud-Based Software Process Modelling and Enactment 6
Sami Alajrami, Alexander Romanovsky, Paul Watson and Andreas Roth . . . . . . . .

Towards Pattern-Based Optimization of Cloud Applications 16
Martin Fleck, Javier Troya, Philip Langer and Manuel Wimmer . . . . . . . . . . . . .

Modeling Cloud Messaging with a Domain-Specific Modeling Language 26
Gábor Kövesdán, Márk Asztalos and Laszlo Lengyel . . . . . . . . . . . . . . . . . . .

Cloud DSL: A Language for Supporting Cloud Portability by Describing Cloud
Entities 36
Gabriel Costa Silva, Louis M Rose and Radu Calinescu . . . . . . . . . . . . . . . . .

Automated Provisioning of Customized Cloud Service Stacks using Domain-
Specific Languages 46
Ta’Id Holmes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

UML-based Cloud Application Modeling with Libraries, Profiles, and Templates 56
Alexander Bergmayr, Javier Troya, Patrick Neubauer, Manuel Wimmer and Gerti

Kappel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MDEForge: an Extensible Web-based Modeling Platform 66
Francesco Basciani, Juri Di Rocco, Davide Di Ruscio, Amleto Di Salle, Ludovico

Iovino and Alfonso Pierantonio . . . . . . . . . . . . . . . . . . . . . . . . . . . .

iv



MDE Opportunities in Multi-Tenant Cloud Application s 

Mohammad Abu Matar1 and Jon Whittle2 

1 Etisalat British Telecom Innovation Center  
Khalifa University of Science, Technology and Research 

Abu Dhabi, United Arab Emirates 
mohammad.abu-matar@kustar.ac.ae 

 

2 School of Computing and Communications  
InfoLab21, Lancaster University 

Lancaster LA1 4WA United Kingdom 
j.n.whittle@lancaster.ac.uk 

Abstract. Cloud computing promotes economies of scale by sharing soft-
ware and hardware resources across multiple tenants. To date, there has been 
relatively little research on how MDE can best support multi-tenant cloud ap-
plications, where there is a need to separate the logic and data of multiple ten-
ants. In this position paper, we sketch out five key research opportunities for 
applying MDE to multi-tenant cloud applications.  

1 Introduction 

Cloud computing is a widespread model for sharing computing resources that pro-
motes economies of scale by hosting software applications on a network of remote 
servers shared across multiple customers [1]. Generally speaking, there are two mod-
els of cloud computing: single-tenant and multi-tenant. In the single-tenant model, 
each customer buys a separate instance of a software application which runs on a 
logically isolated hardware environment. In the multi-tenant model, all customers use 
the same instance of the software and hardware infrastructure. In this case, the cloud 
provider must take care only to reveal part of an application appropriate to each cus-
tomer. Whilst the single-tenant model is simpler both technically and conceptually, 
the multi-tenant model is preferred because it allows cloud providers to minimize 
resource requirements as the number of customers increases. By maintaining a single 
instance for multiple tenants, the provider can significantly reduce the costs of hard-
ware provision, software licenses and software maintenance. 

As has been noted elsewhere (e.g., [3]), cloud computing is an appealing applica-
tion area for model-driven engineering (MDE). Cloud computing and MDE can be 
related in two ways [3]: (1) MDE for the Cloud, where MDE technologies are used to 
develop cloud applications; and (2) MDE in the Cloud, where the cloud is used to 
offer modeling technologies as a service (also referred to as Modeling as a Service or 
MaaS [3]). Multi-tenant applications bring additional challenges when compared to 
single-tenant applications: although a multi-tenant approach is financially advanta-
geous for a cloud provider, maintaining separation of logic and data from different 

1



clients is complex. In this paper, we argue that this complexity of multi-tenant appli-
cations makes them a good target for MDE.  

This position paper presents five key research opportunities for applying ‘MDE for 
the Cloud’ specifically in the multi-tenant case: (1) MDE as a way to deal with “eve-
rywhere variability”; (2) Runtime modification of multi-tenant cloud applications; (3) 
A Domain-Specific Language (DSL) for the cloud; (4) MDE to support the econom-
ics of the cloud; and (5) MDE for enabling new business opportunities in the cloud.  

2 “Everywhere Variability” in Multi-tenant Cloud Appl ications 

Multi-tenant cloud applications exhibit a huge number of variation points at many 
different levels. As one example, data segmentation between tenants can be imple-
mented in different ways: a dedicated database for each tenant, a single database for 
all tenants but with a separate schema per tenant, or a single database and schema/ 
tables for all tenants [6]. As another example, each tenant may demand a customized 
business process workflow.  

Indeed, the need for multiple tenants to share resources introduces potential varia-
bilities at all levels of the cloud computing stack – that is, at the so-called Software, 
Platform, and Infrastructure-as-a-Service levels [1]. Different tenants may be offered 
a different hardware configuration, may have access to different APIs from the cloud 
provider, and will demand different configurations of an application. The “pay as you 
go” model of cloud computing actively encourages tenants to pay only for what they 
need; but this necessitates the maintenance of potentially many thousands of different 
configurations sharing the same underlying resources. 

We categorize the different levels of variability in cloud systems as follows: (1) 
Application Variability – Software as a Service (SaaS) tenants have varying function-
al requirements [2]; (2) Data Variability; (3) Business Process Variability where the 
business workflow may vary; (4) Platform Variability – Operating systems, Pro-
gramming languages, Frameworks, and solution stacks, i.e. Platform as a Service 
(PaaS); (5) Provisioning Variability – Hardware, Networking, Virtual Machines, and 
Elasticity, i.e. Infrastructure as a Service (IaaS); (6) Deployment Variability – Public, 
Private, Community, and Hybrid clouds [1]; (7) Provider Variability, e.g., Amazon 
Web Services (AWS), Google Application Engine (GAE), or SalesForce. 

One of the potential strengths of MDE is the ability to abstract and manage varia-
bility; this has been demonstrated in many papers that integrate MDE and software 
product lines (SPLs) [8,11]. Hence, a combination of MDE and SPLs is an obvious 
potential solution. Schmid and Rummler [10] discussed how to exploit software prod-
uct line (SPL) techniques for runtime customization of cloud-based systems. Similar-
ly, a case for applying SPLs to cloud-based development is made in [11] where fea-
ture models are adapted to cater for specific cloud computing concerns like provision-
ing, customization, and price calculation. Schroeter et al. [12] propose to extend the 
component model (CCM) with tenant configuration and constraints. However, many 
of these works are at an early stage and there remain many challenges in applying 
MDE/SPLs to variability in cloud-based systems. A key point to note is that variabil-

2



ity management in the cloud is fundamentally different even than dynamic SPL ap-
proaches [10]: dynamic SPLs adapt a configuration at runtime but there is only a sin-
gle instance of the product family running at any given time; in cloud-based systems, 
there will be multiple variations running, one for each tenant.  

3 Runtime Modification of Multi-tenant Cloud Applicat ions  

A cornerstone of cloud computing is dynamic provisioning and resource allocation 
to achieve the desired performance and reliability as systems scale. This is especially 
true of multi-tenant applications where, for example, data access has to be carefully 
managed so that one tenant’s requests do not dominate over others. In the worst case, 
a cloud application may have to be re-architected at runtime to, for example, move a 
greedy tenant to a separate server. In current practice, these runtime reconfigurations 
are handled by dashboards that allow performance monitoring and APIs that allow 
reconfigurations. However, MDE potentially supports more sophisticated dynamic 
reconfigurations resulting in radical architectural changes: these might be needed, for 
example, if an initial estimate on the number of tenants turns out to be wildly off, or if 
the security requirements of new tenants differ radically from the initial set of tenants. 

There have been some attempts to manage dynamic cloud reconfigurations using 
advanced software development techniques. Jegadeesan and Balasubramanian [4] 
employ aspect-oriented programming to design service variations for multi-tenant 
SaaS systems. Almorsy et al. [5] apply MDE to generate security aspects for different 
tenants and then inject them into tenants’ code. Abu-Matar et al. [8] show that MDE 
can play a central role in the runtime modification of multi-tenant systems by using a 
shared feature model to manage different tenant requirements at runtime. 

Clearly, however, more research is needed in this area. For example, a model based 
runtime environment could be developed to manipulate tenant configurations by hav-
ing a representation of the tenants’ models at runtime. Another opportunity could be 
the development of a model-driven platform-as-a-service (PaaS) where multitenant 
applications can be deployed automatically. 

4 Domain-Specific Languages (DSLs) for the Cloud 

Multi-tenant cloud applications are specialist applications with their own set of 
concerns, such as partitioning for different tenants, extensibility to support new ten-
ants, provisioning, testability of a single code base used by multiple tenants, and cus-
tomization of a single code base for multiple tenants with different requirements [7]. 
In essence, these concerns define a domain of interest, which could be encapsulated 
into a DSL for generating and/or maintaining cloud implementations. 

There has been some initial work in this direction. For example, CloudML [9] is a 
DSL to model the provisioning of multi-cloud applications, that is, applications that 
could run on multiple cloud providers. CloudML models the provisioning of these 
applications on IaaS clouds and it provides runtime support to deploy the modeled 
apps. Additionally, the DSL has an associated IDE, namely MODACloudML [9]. 

3



However, CloudML does not provide support for multi-tenant cloud software applica-
tions, nor it does provide support for tenants’ applications evolution at runtime. 

A DSL for multitenant cloud applications would include concepts like: Tenant, 
Tenant Configuration, Cloud Provider, Tenant Database, Tenant Schema, Tenant 
Table, and Deployment Type. Our previous work on SPL support for cloud architec-
tures included a service oriented cloud meta-model that incorporates some of these 
concepts [8]. Transformation rules could then be used to model the evolution of mul-
titenant applications like: Tenant Onboarding and Tenant Customization.   

5 MDE to Support the Economics of the Cloud 

Service providers using the cloud must think carefully about how they charge their 
customers. Since cloud applications typically run on a “pay as you go” model, service 
providers must decide if their customers will be charged on a subscription basis or per 
transaction. In both cases, the service provider must reconcile these charges with the 
amounts they pay to the cloud provider. Hence, the issue of pricing in multi-tenant 
cloud applications can be complex, especially when coupled with software mainte-
nance costs which vary widely depending on the architecture chosen. MDE could be 
used in a novel way to manage these economics. For example, there could be a tool 
that lets service providers model their applications where the financials are evaluated 
on the model; hence, service providers can continuously refine their applications 
based on the predicted financials of the model. 

Most current cloud pricing models are based on the usage and/or lease of virtual in-
frastructure resources where consumers pay for computing, storage, and network 
resources either on subscription or on-demand basis. For SaaS tenant-based consump-
tion, pricing has to be based on which software features a tenant uses. This would 
necessitate that SaaS applications are built in a modular manner where features are 
associated with pricing units. Thus, MDE could be used to generate different metered 
versions of the same cloud application to suit consumers’ needs. MDE could also be 
used as an enabler for self-service pricing decision support systems. 

6 Enabling New Business Opportunities in the Cloud 

Whittle et al. [14] argue that MDE is more likely to be a success if it enables new 
business opportunities rather than simply bringing productivity gains to existing busi-
ness opportunities. There is a strong case that MDE can bring such new business op-
portunities to the cloud. In multi-tenant applications, customizations for each tenant 
are required; however, current approaches typically only allow somewhat simple cus-
tomizations because of the software maintenance costs that would be incurred by 
allowing more complex customizations. For example SalesForce [13], the largest 
SaaS provider, handles tenants’ customizations through metadata that allows custom-
ers to modify mainly the database.  

However, cloud providers typically stop short of allowing radical customizations, 
such as wildly different business logic or architecture. This is because of the costly 

4



maintenance and evolution costs that would be associated with this. MDE, however, 
potentially allows these maintenance costs to be reduced, hence enabling service pro-
viders to open up completely new business avenues by allowing tenants to add new 
business functionality that distinguish them from other tenants in contrast to mere 
database or simple interface customization.   

7 Conclusion 

Cloud computing is rapidly becoming the favored computing paradigm for the IT 
industry. New technological innovations are needed to make multi-tenant cloud com-
puting a sustainable mainstream. To that end, we believe that MDE has the potential 
to create new disruptive opportunities for multi-tenant applications. In this paper, we 
have highlighted some of these opportunities and provided samples of ongoing re-
search in this field.  

8 References 

1. P. Mell and T. Grance, “The NIST Definition of Cloud Computing.” National Institute of 
Standards and Technology, Special Publication 800-145, Bethesda, Maryland, September 2011. 
2. K. Schmid and A. Rummler, “Cloud-based software product lines,” in Proceedings of the 
16th International Software Product Line Conference, 164–170. New York, NY, 2012,  
3. H. Brunelière, et al,“Combining Model-Driven Engineering and Cloud Computing,” in 4th 
Workshop on Modeling, Design, and Analysis for the Service Cloud, Paris, France, June 2010. 
4. H. Jegadeesan and S. Balasubramaniam, “A Method to Support Variability of Enterprise 
Services on the Cloud,” IEEE International Conference on Cloud Computing, 117-124,  2009. 
5. M. Almorsy, J. Grundy, and A. S. Ibrahim, “Adaptable, model-driven security engineering 
for SaaS cloud-based applications,” Automated Software Eng. Journal, vol. 29, 2013, 1–38. 
6. D. Betts et al., “Developing Multi-tenant Applications for the Cloud on Windows Azure,” 
Microsoft Patterns & Practices, March 2013 
7. S. Walraven, et al, “Efficient Customization of Multi-tenant Software-as-a-Service Applica-
tions with Service Lines”, The Journal of Systems & Software, vol. 91, 48-62, 2014. 
8. M. Abu-Matar, et al, “Towards Software Product Lines Based Cloud Architectures,” Pro-
ceedings of the IEEE International Conference on Cloud Engineering (IC2E), 2013. 
9. Nicolas Ferry, et al, “Towards Bridging the Gap Between Scalability and Elasticity,” 4th 
International Conference on Cloud Computing and Services Science, 746-751, 2014. 
10. K. Schmid and A. Rummler, “Cloud-based Software Product Lines,” Proceedings of 16th 
International Software Product Line Conference (SPLC), 164-170, 2012. 
11. E. Cavalcante, et al,  “Exploiting Software Product Lines to Develop Cloud Computing 
Applications,” the 16th International Software Product Line Conference, 179-187, 2012. 
12. J. Schroeter, et al., “Towards Modeling a Variable Architecture for Multi-Tenant SaaS-
Applications,” VaMoS 2012, 111-120, ACM, New York, NY. 
13. https://developer.salesforce.com/page/Multi_Tenant_Architecture, June 8, 2014. 
14. J. Whittle, et al, “The State of Practice in Model-Driven Engineering.” IEEE Software 
31(3), 79-85, 2014. 

5



Towards Cloud-Based Software Process
Modelling and Enactment

Sami Alajrami1, Alexander Romanovsky1, Paul Watson1, and Andreas Roth2

1 School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
{s.h.alajrami,alexander.romanovsky,paul.watson}@ncl.ac.uk

2 SAP SE, Karlsruhe, Germany andreas.roth@sap.com

Abstract. Model Driven Engineering (MDE) considers models as a key
artifact in software processes, and focus on the creation of models and
transformations between them in order to (semi) automatically generate
code. In this paper, we step back and consider the software process model
itself as a key artifact that can be enacted and semi automated. We sup-
port our vision by proposing an architecture for a cloud-based software
processes modelling and enactment environment which integrates soft-
ware development tools and maintains repositories of modelling artifacts
and the history of development.

Keywords: Software Process Modelling, Process Enactment, Software Engi-
neering, Software Workflows, Cloud computing.

1 Introduction

As software systems are becoming more pervasive, the complexity of these sys-
tems has been increasing and the notion of systems of systems has been adopted.
This complexity makes producing software systems a difficult task due to the in-
creasing gap between the problem and the software implementation domains [13].
Model-Driven Engineering (MDE) was introduced as an approach to bridge this
gap. MDE is driven by models which are used along with model transformation
techniques to (semi) automate the code generation.

Models are used in most engineering domains to provide abstraction from the
real world. In software systems, models are used for different purposes such as:
documentation, testing, static analysis, and code generation. The use of models
helps in representing the problem in a systematic way and displays the right
amount of details for different perspectives and at different stages of develop-
ment.

At the same time, the cloud computing paradigm has evolved to simplify
organizational IT management and maintenance and cut both operational and
expenditure costs. Cloud offers computing resources on demand using different
service models (infrastructures, platforms, and software) and different deploy-
ment models (public, private, community, and hybrid) [19].

6



As the cloud is being widely adopted by both research and industry, re-
searchers have started investigating the potential of using it for some soft-
ware development phases (especially the computing intensive ones e.g. test-
ing) [21], [5], [22]. In general, there are two perspectives to realize the potential
collaboration between cloud and software engineering; (a) the use of cloud to
support the software development process, (b) advancing software development
methodologies to suite developing software for the cloud. The work presented in
this paper fits in the first perspective.

MDE is centred around the creation of models and their relevant transfor-
mation techniques in order to automatically generate parts of models or code
from other models. Typically, the focus is on modelling of individual phases of
the software development process. In [18], authors developed an enactment en-
vironment for MDA processes, while authors in [4] investigated the potential of
combining MDE and cloud, and proposed the notion of Modelling as a Service
(MaaS). In this paper, we focus on the software development process models
as a key software artifact, these models can be enacted and the non-interactive
or repetitive tasks can be automated. We propose an architecture for software
workflows enactment environment in the cloud.

The rest of the paper is structured as follows: a background discussing the use
of cloud for software development and software process modelling is established
in section 2. Section 3 describes the general architecture for our cloud-based
software development platform. The paper concludes with a brief summary of
future work.

2 Motivation and Background

2.1 Software Engineering in the Cloud

Today, Global Software Development (GSD) has become a popular development
model where teams are distributed (sometimes across continents) and use dif-
ferent sets of tools to support and manage the development process. Developers
have their own computers and need to have the tools that they need installed and
configured. In addition, each team needs access to shared repositories and col-
laboration tools. The distribution in GSD brings multiple challenges to software
development processes such as: restricted communication, less shared project
awareness, and inconsistent builds [7]. Provisioning of software development en-
vironments in the cloud should proof beneficial as moving the development pro-
cess to the cloud not only can reduce the amount of resources (time, money, and
manpower) spent on the set up and configuration for each software project, but
also can address some of the GSD challenges as shown in [14].

Cloud’s accessibility facilitates distributed development by providing a shared
development environment (artifacts and tools). Furthermore, cloud can bridge
the gap between development and deployment environments. Having a virtually
unlimited pool of resources in the cloud helps in allocating sufficient resources
to certain heavy computing software development tasks (e.g. model checking or

7



testing). Eventually, using the cloud to support software development processes
will help software teams to focus their efforts on the core problem rather than on
setting up and maintaining development environments. There are some commer-
cial cloud-based tools that support different phases of the software development
process such as: IDEs (e.g. codenvy 3), testing (e.g. BlazeMeter4), issue tracking
(e.g. JIRA 5). However, these tools are dedicated to support one or more phases
of the software development process but not the entire process.

2.2 Software Process Modelling

Despite the current trend of embedding high level abstractions in programming
languages to avoid code generation bottlenecks, Several approaches to MDE have
been introduced: Model-Driven Architecture (MDA) 6, Model-Driven Software
Development (MDSD) [25], and Domain Specific Modelling (DSM) [17]. How-
ever, the focus has always been on modelling individual phases of the software
development process rather than the process itself. Modelling software processes
has been investigated since late 80s. There are many motivations which led these
investigations including: a) improving the understanding for different perspec-
tives, by visualizing the relevant components for each perspective. b) facilitating
communication among team members, and c) supporting project management
through reasoning in order to improve the process. Furthermore, the models can
be partially automated (e.g. repetitive and non-interactive tasks). Several ap-
proaches for software process modelling have been introduced over time, they
are categorized into four categories [3]:

1. Rules based (e.g. MARVEL [16])
2. Petri net based (e.g. SPADE [1])
3. Programming languages based (e.g. SPELL [9])
4. UML based (e.g. SPEM 7)

The first three did not receive industrial take up due to their complexity and
inflexibility [15]. The UML approach was based on utilizing the wide adoption
and acceptance of Unified Modelling Language (UML) for modelling software
processes. Several implementations of this approach have been proposed each
with different strengths and weaknesses. Authors in [3], compared six UML-based
modelling approaches based on a set of software process modelling requirements.
The authors also admit that executability and formality are major weaknesses
of UML in the context of software process modelling.

Among the previous approaches, SPEM (Software Process Engineering Meta-
model) has became an OMG standard for software process modelling. SPEM is
based on the concept of interaction between Roles that perform Activities which

3 https://www.codenvy.com/
4 http://www.blazemeter.com/
5 https://www.atlassian.com/software/jira
6 http://www.omg.org/mda/
7 http://www.omg.org/spec/SPEM/2.0/

8



consume (and produce) Work Products [8]. However, a major criticism of SPEM
in literature is its lack of support for process enactment. As a result, several
researchers have proposed different approaches and extensions to support pro-
cess enactment in SPEM. In [12], authors propose mapping rules to map SPEM
models into XML Process Description Language (XPDL) which then can be
enacted. In [23], authors propose xSPIDER ML (a software process enactment
language based on SPEM 2.0 concepts). Although xSPIDER ML is supported
with modelling tool and enactment environment, the notion of enactment is lim-
ited to process monitoring since developers are supposed to perform their tasks
off-line and report their progress to the enactment environment. Authors in [10]
introduce eSPEM which is a SPEM extension to allow describing fine-grained be-
haviour models that facilitate process enactment. They implement a distributed
process execution environment [11] based on the FUML standard with emphasis
on supporting the ability to share process state on different nodes, suspend and
resume process execution, interact with humans, and adapt to different organi-
zations. However, the notion of process enactment in that execution environment
also assumes that developers carry out their tasks outside the execution envi-
ronment and return control back to it once they finish.

Following an enforced formal process modelling can be useful in some cases
(e.g. for certifying safety-critical systems). However, in practice, it can be re-
strictive for the creativity of team members. Organizations have been moving to
agile methods to gain more dynamicity and to increase productivity. Therefore,
we propose in the next section a less formal, more flexible and adhoc modelling
notation than the previously mentioned approaches, with emphasis on the en-
actment of process models with support of an integrated tool set in the cloud.

3 Proposed Architecture for Cloud-Based Software
Process Enactment

As mentioned in the previous section, SPEM lacks support for process enact-
ment. In addition, neither the extensions that are offered by researchers for en-
actment support are standardized nor widely adopted outside academia. These
approaches do not have a proper tool support and do not consider integrating
software development tools within the enactment environment. The understand-
ing of software process enactment in most of these approaches seemed to be lim-
ited to the concept of process simulation/monitoring. Although this notion of
enactment can be useful for project management and monitoring, we think of en-
actment in a much broader way. Hence, we describe software process enactment
as the process of performing software development activities by different actors
within an environment that provides enactment support through the integration
of development tools and automatic passing of control and data between activi-
ties. This means that unlike the approaches mentioned in the previous section,
the entire development process execution takes place within one environment
where tools and artifacts are available.

9



3.1 Software Engineering Workflows

Software engineering process can be described as a sequence of operations (ac-
tivities) performed by development team members including customers and
managers (actors) where activities produce artifacts which are used as inputs
for other activities. This complies with The Workflow Management Coalition
(WfMC) definition of workflow [24] as ”the automation of a business process, in
whole or part, during which documents, information or tasks are passed from
one participant to another for action, according to a set of procedural rules”.
Therefore software process can naturally be seen as a workflow. The idea of using
workflow technology for software processes is not new, several researchers have
investigated it [2], [20], [6].

Based on our description of enactment and software workflows, we propose
an architecture to support software process enactment in the cloud. The benefits
that software development can gain from the cloud has been discussed in section
2.1. In addition, provisioning of software development environments in the cloud
with elastic resources will direct organization’s resources towards solving the
actual problem. Allowing third parties to integrate their tools makes it possible to
try different tool vendors and different versions interchangeably without a huge
adjustment effort. The workflow enactment environment passes the execution
control between activities as prescribed in the process model. Non-interactive
and repetitive tasks can be automated and benefit from the elasticity of the
cloud (e.g. run a distributed model checker on two nodes initially and add more
nodes if necessary). The artifacts generated from each activity can be accessed
by team members (as it is stored on a repository in the cloud) and will be passed
to the next relevant activity as an input. Often, software processes can be reused
which adds another advantage for software development firms.

The three logical layers of the proposed architecture are illustrated in Fig-
ure 1. The top layer is for process modelling where a project manager or a
software developer can create/edit models for either higher level abstract pro-
cesses (e.g project plan) or for daily tasks processes (e.g. implementation). The
workflow management layer is where the enactment of the processes takes place
while the cloud management layer handles the underlying cloud infrastructure
issues (e.g. QoS and multiple cloud providers/models).

The process model contains a description of the activities involved in the
process and the data and control flow information which guides the process
enactment. Activities are performed by human actors and they are categorized
in two types: concrete and abstract. Concrete activities can be either local or
external. The local activities can be either a self-contained executable code or
interactive (to input decisions or data), while the external activities are web
services maintained by third parties. High level abstraction can be provided by
abstract activities which are non executable activities and by default will be
representing a sub-process. Activities are available in activities pool and can
be either created by third party or by the development team. In general, each
activity has zero or more input ports and zero or more output ports. The type
of input and output artifacts that a port can accept/generate is defined at the

10



Fig. 1. Proposed architecture to support SW process enactment in the cloud

time of creation of the activity. This guarantees that activities can only be linked
to each other when their input/output artifacts are compliant. Activities are
executed independently provided that the input needed for them to execute is
available. This decoupling allows distributing the execution of the process across
several workflow engines (deployed potentially on different virtual machines on
the cloud). Activities have configurable parameters to control how the activity
will be deployed and executed on the cloud.

3.2 Process Modelling and Definition

Software processes are dynamic and unpredictable. In addition, organizations
tailor process models such as waterfall or spiral differently to meet their needs.
Hence, a flexible modelling notation is required. This notation needs to be (a)
expressive (to express the process and its cloud execution settings), (b) exe-
cutable, and (c) understandable and easy to use. The notation needs to support
a combination of on the fly creation/modification of activities for the purposes
of capturing the short term/everyday development and of the longer term activi-
ties at the organizational level. Based on that we defined the basic constructs for
the software development process model. The process will be represented using a
simple graphical notation that can be translated to XML which will then be used
to enact the process. The graphical notation can be useful for understanding the
process and training new team members. An XML schema has been defined to
map the semantics of the graphical notation. These constructs are described in
table 1.

Each of the activities can be configured to specify how it will be executed;
parameters include (but not limited to): the specified tool support, the cloud

11



Element Name Description Graphical Notation

Abstract Activity
An abstract activity does not execute anything itself,
but represents a high level abstraction of one or more activities.
Often, it will represent a sub-process.

Local Activity
A local activity can be an executable code block
or a tool that is deployed within the enactment service.

External Activity (web service)
A tool or service that is deployed and maintained
outside the enactment service.

Interactive Activity
An activity that involves an interaction point where the
human actor is asked to
provide some input data (e.g. configuration parameters).

Decision Point
An interaction point where the human actor is
asked to decide what to do next.

Data flow Dependency
A link between two activities A and B, where
B cannot start before A provides an
input to it.

Control flow Dependency
A link between two activities A and B, where
none of the two is depending on the
other. The link here just represents the order of occurrence.

Table 1. Basic Software Process Modelling Elements

execution requirement (e.g. on public/private cloud), and accepted and gener-
ated artifacts. For the sake of simplicity, the notation does not explicitly support
modelling of actors at this stage.

Process Examples: Agile methods are widely adopted in industry as they
increase the throughput. SCRUM is one of the agile methods which defines a
project management framework. This framework defines a set of roles and a set of
meetings with different purposes, attendees, and frequencies. Figure 2 illustrates
the high level representation of a scrum sprint. This abstraction can be useful
from a management perspective. However, it does not specify any details of how
developers are going to implement the process. In reality, most software devel-
opers use an IDE, an issue tracking tool (e.g. JIRA), a continuous integration
framework (e.g. JENKINS), and a version control system (e.g. GIT). These tools
are used on daily basis to write, test, store, and integrate code. A model of the
daily development process (representing the implementation sub-process) using
the notation defined in this subsection is illustrated in Figure 3. The control flow
dependency between the ”edit issue tracking” and ”edit code” activities sets the
order of execution, however, since no data dependency is included here, it allows
us to perform any of the activities independently. The decision point allows to
create a loop based on the decision of the software developer whether to commit
his code or to change it or even to edit the issue tracking. Another example is
the parallel model checking process (Figure 4) where the model checking activ-
ity can be deployed on multiple nodes to utilize the cloud elasticity in order to
improve the model checking performance.

3.3 Workflow (Process) Enactment Service

Once the process is defined using the graphical notation described in the pre-
vious subsection (which is translated to XML), it will be validated against the
process definition schema to make sure the XML file is valid. Next the enactment
service should interpret the XML representation of the process and schedule the

12



Fig. 2. Scrum high level abstraction

Fig. 3. Daily technical task by a scrum developer

Fig. 4. Parallel model checking process

execution on as many distributed workflow engines as required. The enactment
service consists of an enactment server and multiple workflow engines. The ser-
vice itself is provided as a web service which accepts requests from any type of
clients (desktop, web, mobile/tablet).The enactment service consists of:

– Enactment Server: responsible for managing workflow engines and provide
smart scheduling algorithms to optimize cost and performance when the
workflow execution is distributed across multiple clouds (if necessary). It is
also responsible for monitoring the workflow execution and handling excep-
tions.

– Workflow Engines: responsible for loading the needed tools and artifacts
for executing an activity. It also reports back the execution progress to the
enactment server.

– Enactment Service API: provides a standard access to the enactment service.

Using the cloud for executing workflows requires addressing certain issues, such
as: portability and QoS of the cloud resources. Authors in [7] identified seven
needed quality attributes for a cloud infrastructure to provide tools as a service.
These attributes will be used as a guidance for the enactment service implemen-
tation.

13



4 Conclusion and Future Work

In this paper, we proposed a cloud-based software process modelling and en-
actment environment which harnesses both of cloud and workflows benefits. We
considered software process model as a main artifact in the software develop-
ment process. The process model can be (partially) automated and supported by
development tools which are integrated within the enactment environment. We
proposed the core of a simple modelling notation for modelling different parts
of the software process. Currently, a prototype of the enactment service is being
implemented to run on a single cloud initially which will be extended to run on
different clouds later. The future work includes: assessing the modelling notation
after applying it to more case studies, applying provenance to provide reasoning
about the software process, and investigating possible support for interoperabil-
ity between different tools.

References

1. Bandinelli, S., Fuggetta, A., Ghezzi, C.: Software process model evolution in the
spade environment. Software Engineering, IEEE Transactions on 19(12), 1128–1144
(1993)

2. Barnes, A., Gray, J.: Cots, workflow, and software process management: an explo-
ration of software engineering tool development. In: Software Engineering Confer-
ence, 2000. Proceedings. 2000 Australian. pp. 221–232 (2000)

3. Bendraou, R., Jezequel, J., Gervais, M.P., Blanc, X.: A comparison of six uml-based
languages for software process modeling. Software Engineering, IEEE Transactions
on 36(5), 662–675 (Sept 2010)

4. Brunelière, H., Cabot, J., Jouault, F.: Combining Model-Driven Engineering and
Cloud Computing. In: Modeling, Design, and Analysis for the Service Cloud -
MDA4ServiceCloud’10: Workshop’s 4th edition (co-located with the 6th European
Conference on Modelling Foundations and Applications - ECMFA 2010) (2010)

5. Bucur, S., Ureche, V., Zamfir, C., Candea, G.: Parallel symbolic execution for
automated real-world software testing. In: Proceedings of the Sixth Conference on
Computer Systems. pp. 183–198. EuroSys ’11, ACM (2011)

6. Chan, D., Leung, K.: Software development as a workflow process. In: Software
Engineering Conference, 1997. Asia Pacific ... and International Computer Science
Conference 1997. APSEC ’97 and ICSC ’97. Proceedings. pp. 282–291 (1997)

7. Chauhan, M.A., Babar, M.A.: Cloud infrastructure for providing tools as a service:
Quality attributes and potential solutions. In: Proceedings of the WICSA/ECSA
2012 Companion Volume. pp. 5–13. WICSA/ECSA ’12 (2012)

8. Combemale, B., Crgut, X., Caplain, A., Coulette, B.: Towards a rigorous process
modeling with spem. In: ICEIS (3). pp. 530–533 (2006)

9. Conradi, R., Jaccheri, M.L., Mazzi, C., Nguyen, M.N., Aarsten, A.: Design, use and
implementation of spell, a language for software process modelling and evolution.
In: Proceedings of the Second European Workshop on Software Process Technology.
pp. 167–177. EWSPT ’92 (1992)

10. Ellner, R., Al-Hilank, S., Drexler, J., Jung, M., Kips, D., Philippsen, M.: espem a
spem extension for enactable behavior modeling. In: Modelling Foundations and
Applications, Lecture Notes in Computer Science, vol. 6138, pp. 116–131 (2010)

14



11. Ellner, R., Al-Hilank, S., Drexler, J., Jung, M., Kips, D., Philippsen, M.: A fuml-
based distributed execution machine for enacting software process models. In: Mod-
elling Foundations and Applications, Lecture Notes in Computer Science, vol. 6698,
pp. 19–34. Springer Berlin Heidelberg (2011)

12. Feng, Y., Mingshu, L., Zhigang, W.: Spem2xpdl: Towards spem model enactment
13. France, R., Rumpe, B.: Model-driven development of complex software: A research

roadmap. In: 2007 Future of Software Engineering. pp. 37–54. FOSE ’07, IEEE
Computer Society, Washington, DC, USA (2007)

14. Hashmi, S., Clerc, V., Razavian, M., Manteli, C., Tamburri, D., Lago, P., Di Nitto,
E., Richardson, I.: Using the cloud to facilitate global software development chal-
lenges. In: Global Software Engineering Workshop (ICGSEW), 2011 Sixth IEEE
International Conference on. pp. 70–77 (2011)

15. Henderson-Sellers, B., Gonzalez-Perez, C.: A comparison of four process meta-
models and the creation of a new generic standard. Information and Software
Technology 47(1), 49 – 65 (2005)

16. Kaiser, G., Barghouti, N., Sokolsky, M.: Preliminary experience with process mod-
eling in the marvel software development environment kernel. In: System Sciences,
1990., Proceedings of the Twenty-Third Annual Hawaii International Conference
on. vol. ii, pp. 131–140 vol.2 (1990)

17. Kelly, S., Tolvanen, J.P.: Domain-specific modeling: enabling full code generation.
John Wiley & Sons (2008)

18. Maciel, R., da Silva, B., Magalhaes, P., Rosa, N.: An integrated approach for model
driven process modeling and enactment. In: Software Engineering, 2009. SBES ’09.
XXIII Brazilian Symposium on. pp. 104–114 (Oct 2009)

19. Mell, P., Grance, T.: The nist definition of cloud computing. National Institute of
Standards and Technology 53(6), 50 (2009)

20. Oberweis, A.: Workflow management in software engineering projects. In: Proceed-
ings of the 2nd International Conference on Concurrent Engineering and Electronic
Design Automation. pp. 55–60 (1994)

21. Oriol, M., Ullah, F.: Yeti on the cloud. In: Software Testing, Verification, and
Validation Workshops (ICSTW), 2010 Third International Conference on. pp. 434–
437

22. Pakhira, A., Andras, P.: Leveraging the Cloud for Large-Scale Software Testing A
Case Study: Google Chrome on Amazon, chap. Hershey, PA, USA, pp. 252–279.
IGI Global (2013)

23. Portela, C., Vasconcelos, A., Silva, A., Silva, E., Gomes, M., Ronny, M., Lira,
W., Oliveira, S.: xspider ml: Proposal of a software processes enactment language
compliant with spem 2.0. Journal of Software Engineering and Applications 5(6),
375 – 384 (2012)

24. Specification, W.M.C.: Workflow Management Coalition, Terminology & Glos-
sary (Document No. WFMC-TC-1011). Workflow Management Coalition Specifi-
cation (1999), http://www.wfmc.org/Download-document/WFMC-TC-1011-Ver-
3-Terminology-and-Glossary-English.html

25. Voelter, M., Groher, I.: Product line implementation using aspect-oriented and
model-driven software development. In: Software Product Line Conference, 2007.
SPLC 2007. 11th International. pp. 233–242. IEEE (2007)

15



Towards Pattern-Based Optimization of
Cloud Applications?

Martin Fleck, Javier Troya, Philip Langer, and Manuel Wimmer

Vienna University of Technology, Business Informatics Group, Austria
{lastname}@big.tuwien.ac.at

Abstract. With the promise of seemingly unlimited resources and the flexible
pay-as-you-go business model, more and more applications are moving to the
cloud. However, to fully utilize the features offered by cloud providers, the exist-
ing applications need to be adapted accordingly. To support the developer in this
task, different cloud computing patterns have been proposed. Nevertheless, se-
lecting the most appropriate patterns and their configuration is still a major chal-
lenge. This is further complicated by the costs usually associated with deploying
and testing an application in the cloud.
In this paper, we encode the pattern selection problem as a model-based opti-
mization problem to automatically compute good solutions of configured pattern
applications. Particularly, we propose a two-phased approach, which is guided
by user-defined constraints on the non-functional properties of the application.
In the first phase, a preliminary set of promising solutions is computed using a
genetic algorithm. In the second phase, this set of solutions is evaluated in more
detail using model simulation. We demonstrate the proposed approach and show
its feasibility by an initial case study.

Keywords: Cloud Computing, Goal Modeling, Model Simulation, Genetic Al-
gorithm, Cloud Computing Patterns

1 Introduction

The seemingly unlimited resource offerings and the flexible pay-as-you-go business
model are, amongst others, the main driver of the adoption of the cloud computing
paradigm. As a result, many different cloud providers have emerged. This has also
sparked a major interest in the migration of existing applications to the cloud [17]. Be-
sides the cloud provider selection, adapting the application to make the best out of the
cloud provider offerings is often very challenging. Cloud computing patterns [6,13,18]
have been introduced as cloud provider-independent solutions to reoccurring problems
in cloud computing. Developers can use these patterns in their design decisions and op-
erationalize them in the context of a specific cloud provider. This step, however, requires
detailed insight of the software architecture, the cloud computing paradigm, the offer-
ings of specific cloud providers, and the usage of the given application. Furthermore,
the developers have to deal with a possibly infinite search space of pattern applications
and a solution has to satisfy multiple, probably conflicting, objectives [11].
? This work is co-funded by the European Commission under the ICT Policy Support Pro-

gramme, grant no. 317859.

16



In this paper, we present a model-based approach aimed to support developers in
selecting the most appropriate cloud patterns and their configurations. Particularly, the
approach consists of two phases and is guided by user-defined constraints on the non-
functional properties of the application. In the first phase, a preliminary set of promising
solutions is computed using a multi-objective genetic algorithm which uses estimates
to determine the fitness of a solution due to the huge search space. In the second phase,
this set of solutions is evaluated in more detail using model simulation to better support
the final decision by the user, i.e., selecting the most appropriate solution.

The rest of the paper is organized as follows. In Section 2, we describe our proposed
approach as well as the necessary input from the stakeholders. Section 3 showcases the
applicability of our approach in a case study, while Section 4 discusses related work.
The paper concludes in Section 5 with an outlook on future work.

2 Approach

The central aim of our approach is to find a configuration of patterns that best satisfies
the needs of the application stakeholder, i.e., the reason why the application is moved to
the cloud in the first place. We therefore provide the stakeholder with a goal modeling
language that is capable to express these needs in terms of non-functional properties
(NFPs). Based on these goals, we approach the pattern selection problem with two
subsequent steps, as shown in Figure 1. In the first step, a multi-objective evolutionary
algorithm is used to calculate a preliminary set of good solutions. A solution is a set of
configured cloud optimization patterns and evaluated based on estimates on how certain
patterns impact properties of the applications. In the second step, each solution returned
by the evolutionary algorithm is additionally ranked based on the more detailed analysis
performed by model simulation. The resulting ranked set of solutions together with their
approximated success to fulfill the goals is then presented to the stakeholders.

Cloudified
Application
Cloudified
Application

Cloudified
Application

9

Evolutionary 
Exploration

Cloud   
Patterns

NFP-Influence
Estimates

Goals

Original 
Application

Fine-grained
Evaluation

Evolutionary 
Exploration

Cloud Pattern  
Templates

NFP-Influence
EstimatesGoals

Original 
Application

Fine-grained
Evaluation

Cloudified
Application

Cloudified
Application

[ranked]

Fig. 1. Approach Overview

2.1 Goal Modeling

Goal modeling originally stems from early phases of requirements engineering, where
a goal is an objective for the system from the perspective of a stakeholder. In the goal
modeling language we provide, the goals are based on a set of (non-functional) proper-
ties. More concretely, a goal defines a target value or target range for a specific property
in the context of the software application, e.g., the response time of a request or the
utilization of a specific component. These target values must be set in the range of the
property under consideration, e.g., utilization can only take floating point values be-
tween zero and one. Each goal must be set into the context of a specific workload or
usage scenario, as it is not feasible to show that a goal holds in all possible cases. Fur-
thermore, the importance of a goal is given by a numeric priority, whereby a smaller

17



Pattern Problem Effect Impact
Caching The same entities are retrieved 

multiple times from the database.
The frequently-accessed entities are 
stored in a Cache, improving the 
retrieval of data (reads).

Horizontal 
Scaling

Not all day-to-day user requests 
can be handled due to a lack of 
resources.

Deploy multiple instances of one 
node to provide more resources.

Auto-
Scaling

Not all user requests can be 
handled due to a lack of 
resources. However, the resource 
demand changes often resulting in 
low times and high peaks.

Start with a certain number of nodes 
and dynamically adjust the number 
depending on certain monitored 
properties, thus providing more 
resources only if necessary.

8

Cache

Application: EntityClass

Auto‐Scaling

Application: Service
MinInstances: Int[1, ∞]
MaxInstances: Int[1, ∞]
ScalingVariable: Variable[*]
ScaleInThreshold: Real[‐∞, ∞]
ScaleOutThreshold: Real[‐∞, ∞]

Horizontal Scaling

Application: Service
NrInstances: Int[2, ∞]

Pattern Caching Horizontal Scaling Auto-Scaling
Problem The same entities are 

retrieved multiple 
times from the 
database.

Not all day-to-day user 
requests can be handled 
due to a lack of resources.

Not all user requests can be handled due to a lack of resources. 
However, the resource demand changes often resulting in low times 
and high peaks.

Effect The frequently-
accessed entities are 
stored in a Cache, 
improving the 
retrieval of data 
(reads).

Deploy multiple instances 
of one node to provide 
more resources.

Start with a certain number of nodes and dynamically adjust the 
number depending on certain monitored properties, thus providing 
more resources only if necessary.

Template

Horizontal Scaling

Application: Service
NrInstances: Int[2, ∞]

Caching
Problem: The same entities 
are retrieved multiple times 
from the database.

Effect: The frequently-
accessed entities are stored 
in a Cache, improving the 
retrieval of data (reads).
Template:

Horizontal Scaling
Problem: Not all day-to-day 
user requests can be handled 
due to a lack of resources.

Effect: Deploy multiple 
instances of one node/service 
to provide more resources.

Template:

Cache

Application: Entity

Auto-Scaling
Problem: Not all user requests 
can be handled due to a lack of 
resources. However, the 
resource demand changes often 
resulting in low times and high 
peaks.

Template:

Effect: Start with a certain 
number of nodes and 
dynamically adjust the number 
depending on certain monitored 
properties, thus providing more 
resources only if necessary.

Fig. 2. Example Patterns and their Pattern Templates in a UML class-like notation

number indicates a higher priority. Summarizing, we consider goals to be Boolean con-
ditions concerning NFPs in the context of a software system under a specific workload
with a user-defined priority.

Example: The most important objective (priority 1) is that the average response time
of a log in-request is less than 2 seconds when ten users log in at the same time.

2.2 Cloud Computing Patterns
Cloud computing patterns provide a generic solution to a reoccuring problem in a spe-
cific context in the cloud computing domain and need to be concretized by the developer
when used. In the ARTIST project [1] we have collected over 30 of these cloud com-
puting patterns from different sources [6,13,18]. In this work we focus on patterns that
are applied in order to optimize the properties of an application that is to be deployed
on the cloud. We therefore assume that the base architecture of the application is al-
ready suitable for the cloud and no major architectural refactorings need to be done. To
use the informally described patterns in our approach, we translate them into so-called
pattern templates, which specify where the pattern can be applied and how it can be
configured. Figure 2 shows a small excerpt of the collected patterns and the resulting
pattern templates.

Caching can be applied on any entity class that is persisted in a datastore, while scal-
ing can be applied on any service class. In horizontal scaling, the number of instances of
a service is fixed from the beginning and can range from two instances to a theoretically
unlimited number of instances – in practice this number is limited by the specific cloud
provider. By contrast, auto-scaling provides a lower and upper bound on the number
of instances, and the actual number is adapted during the application runtime based on
the value of the ScalingVariable and the two variable-specific scaling thresholds. If the
value of the variable is less or equal than the specified ScaleInThreshold, one service
instance is removed; if the variable value is greater or equal than the ScaleOutThresh-
old, an additional instance is created. Any numerical variable which can be evaluated
during runtime can serve as auto-scaling variable, e.g., utilization.

When applying a cloud computing pattern in a concrete use case, we create an in-
stance of the respective pattern template, i.e., we provide concrete values for all the
parameters defined in the template. The set of the concrete values for a pattern is called
a pattern configuration. Each applied pattern configuration has an impact on the (non-
functional) properties of the system. This impact is usually specific to the software
system. Estimations about the gained impact on the properties may be gained from
more detailed pattern descriptions, experience, and cloud benchmarking services. An
example can be found in Table 1.

18



2.3 Evolutionary Algorithms

The aim of our approach is to select a sequence of pattern applications that satisfies the
goals modeled by the stakeholder. The pattern selection problem consists of a possibly
infinite search space of configurations and a solution has to satisfy multiple, probably
conflicting, objectives [11]. We therefore categorize our problem as a multi-objective
combinatorial optimization (MOCO) problem, for which several methods have been
discussed in the literature (cf. [5]). For our approach, we choose an evolutionary al-
gorithm for the pattern selection problem, namely the nondominated sorting genetic
algorithm II (NGSA-II) [4], guided by the estimated impact of a pattern on the NFPs.

Search Space. The search space consists of all possible patterns configurations as de-
fined by the pattern templates and may be infinite, e.g., when considering floating point
values. Therefore it is not possible to produce the complete search space in advance,
but rather generate new random configurations based on the templates, if necessary.

Solution Space. A genetic algorithm maintains a set of solutions, called a population,
and deploys selection, re-combination, and mutation operators to improve the quality of
the solutions in the population in each iteration. In our approach, a (candidate) solution
is a selected sequence of pattern configurations. To ensure the validity of candidate
solutions, solution constraints requiring domain knowledge about the different patterns
can be used to specify how configurations can be combined. As an example, it makes
no sense to apply both, horizontal scaling and auto-scaling, on the same service, thus a
constraint classifying such a solution as invalid may be specified. One drawback when
using NSGA-II is that the length of the solution (n) must be fixed in advance, i.e.,
the number of pattern configurations appearing in a solution. To allow the calculation
of solutions with less or equal than n pattern configurations, we introduce a pattern
configuration placeholder, which may take one or more places in the solution, but has
no influence on any of the NFPs.

Objective Space. To evaluate the quality (fitness) of a solution, the solution needs to
be mapped to the objective space. In multi-objective optimization, this objective space
consists of multiple dimensions, each dimension referring to one objective. Usually
these objectives are competing, so that no single point in the objective space exists
that dominates all other points, resulting in a set of optimal solutions. In our approach,
the objective space is not pre-defined, but specified by the stakeholder implicitly by
defining the goals. Each property that has a goal specified upon is one dimension in the
objective space that needs to be evaluated. The evaluation of a solution candidate for
each of these dimensions in the objective space is done by a so-called fitness function.
This fitness function guides the algorithm into good areas of the solution space.

Fitness. We define the fitness of a solution in a specific dimension to be the sum of
the weighted, relative distance between the property value resulting from applying the
solution and the target value or target range set by the user for each goal of this property.
The relative distance of a goal is the difference between the resulting property value and
the user-defined target value or target range in relation to the target value or range. For
target ranges, the mean of the range is taken as target value, however a fulfilled goal
always results in a relative distance of zero. An additional penalty (weight) for each
goal that has not been achieved is calculated by multiplying the relative distance with
the proportional goal priority, resulting in a higher penalty for higher priority goals. The
goal of the algorithm is to find a solution that minimizes the fitness values.

19



2.4 Model Simulation
Running NSGA-II gives us a set of solutions which form the Pareto front from the pre-
viously infinite solution space. These solutions can be evaluated in more detail using the
more execution expensive, but also more precise, model simulation. For this, we build
on our previous work [16] that is based on graph transformations supported by the e-
Motions framework [15]. By using e-Motions, we run the modeled system and perform
a more detailed evaluation also considering additional properties such as the contention
of resources. The results from the model simulation are used to rank the solution set
calculated by NSGA-II. The ranked solution set together with the approximate success
of each solution to fulfill the goals is then presented to the stakeholders for the final
decision about which configurations of the cloud computing patterns should be applied.

3 The Petstore Case Study
In this paper, we show the applicability and feasibility of our approach based on the Pet-
store case study. The case study is executed with the Java prototype we have developed
using the NSGA-II implementation provided by the MOEA Framework1. The Petstore
is a small web application allowing potential customers to create an account, log into
this account, and order pets from a pre-defined pet catalogue. Previously the Petstore
has been running on the local web server of the company, however now the company
wants to move the Petstore application to the cloud to improve scalability and reduce
cost. The Petstore architecture is realized with three entity classes and five services.

Entity Classes. The Petstore application maintains three entity classes, namely Item,
Customer, and Order. All products in the Petstore are stored in the form of an item
entity. Customers can create an account at the Petstore, log in, search for items, and
place orders. An order consists of the registered contact information of a customer as
well as the items and the quantity the customer has put into the shopping cart. Available
service functionality is depicted in Figure 3, as explained later.

Services. Internally the Petstore uses different services to provide the necessary func-
tionality to customers. The Application Service is the only service that a customer di-
rectly interacts with. It uses the Customer Service, Catalog Service and Order Service
to handle the customer data, item data, and order data, respectively. All of these three
services use the Entity Service to handle the persistence and the retrieval of data from a
permanent data store.

3.1 Setup
Patterns. For this case study, we select the three patterns already introduced in Sec-

tion 2.2: Caching, Horizontal Scaling, and Auto-Scaling. Considering the application
conditions, caching can be applied on any of the three entity classes, while scaling can
be applied on any of the five service classes. We assume that both scaling patterns im-
prove performance (the more instances, the faster they process data) and worsen cost
(each instance is billed by the cloud provider). Estimations about the gained speedup or
utilization can be partially retrieved from a more detailed pattern description, but can
also be gained from experience or dedicated cloud benchmarking services. Pricing in-
formation can be gathered from the website of the specific cloud provider. The resulting
estimated impact for each pattern is summarized in Table 1.

1 MOEA Framework, Version 2.1: http://moeaframework.org/

20



6

sd BuyItemWorkload(open(5000ms))

«Service»
: ApplicationService

«Service»
: CustomerService

«Service»
: CatalogService

«Service»
: OrderService

«Service»
: EntityService: Client

login(login, pw) login(login, pw) findAllCustomers()

customer = findAllCustomers()customer = 
login(login, pw)id = 

login(login, pw)

findItem(name) findItem(name) findAllItems()

allItems = findAllItems()item = findItem(name)item = 
findItem(name)

addItemToCart
(id, item) addItemToCart(customer, item) persist(cart)

confirmOrder(id) confirmOrder(customer) persist(order)

«HorizontalScaling»
{ NrInstances = 3 }

«Service»
MyService

«Cache»
«Service»

MyEntity

«Service»
«AutoScaling»

{ MinInstances      = 3,
MaxInstances      = 7,
ScalingVariable   = Utilization,
ScaleInThreshold  = 3,
ScaleOutThreshold = 7 }

MyOtherService

Cache

Application: EntityClass

Auto‐Scaling

Application: Service
MinInstances: Int[1, ∞]
MaxInstances: Int[1, ∞]
ScalingVariable: Variable[*]
ScaleInThreshold: Real[‐∞, ∞]
ScaleOutThreshold: Real[‐∞, ∞]

Horizontal Scaling

Application: Service
NrInstances: Int[2, ∞]

Fig. 3. The Petstore Scenario Workload

Furthermore, we define application constraints to guarantee that a pattern is not ap-
plied on the same entity or service multiple times and that the two scaling patterns are
not applied on the same service at the same time.

Table 1. Estimated impact of considered patterns

Pattern Problem Effect Impact
Caching The same entities are retrieved 

multiple times from the database.
The frequently-accessed entities are stored 
in a Cache, improving the retrieval of data 
(reads).

Horizontal 
Scaling

Not all day-to-day user requests can 
be handled due to a lack of resources.

Deploy multiple instances of one node to 
provide more resources.

Auto-
Scaling

Not all user requests can be handled 
due to a lack of resources. However, 
the resource demand changes often 
resulting in low times and high peaks.

Start with a certain number of nodes and 
dynamically adjust the number depending 
on certain monitored properties, thus 
providing more resources only if necessary.

7

Cache

Application: EntityClass

Auto‐Scaling

Application: Service
MinInstances: Int[1, ∞]
MaxInstances: Int[1, ∞]
ScalingVariable: Variable[*]
ScaleInThreshold: Real[‐∞, ∞]
ScaleOutThreshold: Real[‐∞, ∞]

Horizontal Scaling

Application: Service
NrInstances: Int[2, ∞]

c1 = Cache(Item)
c2 = Cache(Order)
h1 = HorizontalScaling(Orderservice, 2)
h2 = HorizontalScaling(EntityService, 4)
a1 = AutoScaling(CustomerService, 3, 6, 

Utilization, 0.6, 0.9)
...

Price per TimeUnit 
and service 
instances

0.0010

Price per TimeUnit 0.0015
SpeedUp Item 5.0000
SpeedUp Customer 3.0000
SpeedUp Order 1.0000

Caching Price per TimeUnit 0.0015
SpeedUp Item 5.0000
SpeedUp Customer 3.0000
SpeedUp Order 1.0000

Scaling Price per TimeUnit and service instances 0.0010

Caching Impact Scaling Impact
Price per TimeUnit SpeedUp 

Item
SpeedUp 
Customer

SpeedUp 
Order

Price per TimeUnit 
and service instances

SpeedUp 
n Instances

0.0015 5 3 1 0.0010 n

Goals. As mentioned in the previous section, all goals must be set in the context of a
specific workload, as it is not feasible to show that certain goals hold in all possible use
cases. For this case study, we consider a scenario where a single user connects to the
Petstore application, logs into his or her account, searches for a specific item by name
and then places an order on this item. Ten requests arrive in the application (modeling
the connection of ten users) with an exponential distribution of five seconds (5000 time
units). The scenario is summarized in Figure 3 with a sequence diagram. The main
reason for moving the Petstore application to the cloud is to reduce cost and improve
scalability, or more precisely, to reduce the overall cost and improve the response time
of customer requests and the utilization of different services. Cost and response time are
both properties which can have values in the range of [0.0,∞], with a lower value being
considered better than a higher value. Utilization has a value range of [0.0, 1.0] with
neither lower values nor higher values being clearly better, making utilization suitable
for a target range instead of a single target value. Too low utilization can suggest an idle
resource, which produces cost and brings no benefit. Too high utilization can indicate an
overloaded resource, resulting in a slower performance or a situation where consumers
of the application are not served.

In this case study we assume that the following goals should be fulfilled within
the context of the Petstore scenario. The application of a property is indicated by the
property name and the applied element in parenthesis, an asterisk (*) marks the whole
application. The priority of a goal is given in square brackets after the condition.
Goal 1: Cost(*) <= 900 [3]
Goal 2: ResponseTimePerRequest(*) <= 30000 [2]
Goal 3: 0.15 <= Utilization(EntityService) <= 0.25 [1]
Goal 4: 0.15 <= Utilization(CustomerService) <= 0.25 [3]

21



NSGA-II Configuration. As mentioned in the previous section, genetic algorithms
use selection, re-combination, and mutation operators to evolve the population into a
good area of the solution and thus objective space. For selecting candidate solutions,
we use a so-called tournament selection strategy, which takes n random candidate so-
lutions from the population and allows the best one to be considered for re-combination
(in our case, n = 4). Two candidate solutions are re-combined into two new candi-
date solutions by means of a single point crossover operator. This operator splits each
solution at a random point into two parts and merges the first part of the first solution
with the second part of the second solution and vice versa. After re-combination the
validity of the resulting solutions is checked and mutation can take place. Invalid so-
lutions are given the worst possible fitness and should eventually be removed from the
population. Mutation occurs at a low rate (1.5%) in a solution and changes one of the
pattern configurations concrete values slightly. In our case, this means that each param-
eter of a pattern configuration has a slight chance of being modified, e.g., the number
of instances for horizontal scaling. Furthermore, we define a solution length of eight, as
there are only eight classes on which at most one pattern can be applied. The algorithm
should maintain 200 solutions per population and continue for at most 1000 iterations.

Fitness Function. To evaluate the quality of the solutions produced by the NSGA-II,
we need to provide values for response time, cost and utilization by incorporating the
impact estimations. As the fitness function is executed many times, we use a very simple
model analysis technique, which may not be very precise, but is very fast to execute.
First, we retrieve the configured number of instances for each of the services. Then
we execute the scenario for all requests and services and calculate the runtime of each
service by summing up the reduced execution times (original execution time divided by
number of instances) of each operation call that has been made to this service during the
execution. The sum of all operation executions is the total runtime of the application.
Each request is seen as independent and no contention of resources is considered. Based
on the runtime, we calculate both the utilization and the cost for each service using the
provided pricing and speedup information. The resulting response time for each request
is the total runtime divided by the number of requests.

3.2 Results
After running the NSGA-II algorithm, we are faced with 3 solutions, one of which is
depicted in Figure 4. On this set of solutions, we run the model simulation as described
in Section 2.4 to gain more detailed information about how close the solutions are to
fulfilling the goals set by the user. For this, we need to define a metamodel and be-
havioral in-place rules that model the system at runtime. For each solution, an instance
of this metamodel containing the applied patterns must be created and executed. The
result of the model simulation is shown in Table 2. The first line presents the original
configuration (no patterns applied), while the other three have some patterns applied.
The left-hand side of the table shows the values for the NFPs of interest, while the mid-
dle part shows the distance to each goal, and the right-hand side displays the overall
distance to the goals and the rank of the solutions.

Regarding the solutions, (1) and (2) use four patterns, while (3) uses three. Solution
(1) auto-scales the Entity Service and the Application Service depending on the queue
length. The first service ranges between 3 and 7 instances, while the second one does

22



6

sd BuyItemWorkload(open(5000ms))

«Service»
: ApplicationService

«Service»
: CustomerService

«Service»
: CatalogService

«Service»
: OrderService

«Service»
: EntityService: Client

login(login, pw) login(login, pw) findAllCustomers()

customer = findAllCustomers()customer = 
login(login, pw)id = 

login(login, pw)

findItem(name) findItem(name) findAllItems()

allItems = findAllItems()item = findItem(name)item = 
findItem(name)

addItemToCart
(id, item) addItemToCart(customer, item) persist(cart)

confirmOrder(id) confirmOrder(customer) persist(order)

«Service»
«HorizontalScaling»
{ NrInstances = 4 }

EntityService

«Entity»
«Cache»

Item

«Service»
«AutoScaling»

{ MinInstances = 2, MaxInstances = 4, 
ScalingVariable = QueueLength, 
ScaleInThreshold = 3, ScaleOutThreshold = 7 }

CustomerService

«PlaceHolder» ...

«Service»
«HorizontalScaling»
{ NrInstances = 4 }

EntityService

«Entity»
«Cache»

Item

«Service»
«AutoScaling»

{ MinInstances = 2, MaxInstances = 4, 
ScalingVariable = QueueLength, 
ScaleInThreshold = 3, ScaleOutThreshold = 7 }

CustomerService

«PlaceHolder» ...

Fig. 4. Solution (3) with pattern configurations and placeholders

between 1 and 4. Solution (1) also has horizontal scaling for Customer Service and Or-
der Service, with two instances for each one. Solution (2) auto-scales the Order Service
depending on the queue length between 1 and 4 instances, and it also applies horizontal
scaling in the Entity Service and Customer Service, with 4 and 3 instances, respectively.
Caching on Item is applied as well. Finally, Solution (3), also depicted in Figure 4,
applies caching on Item and horizontal scaling for Entity Service with 4 instances. It
auto-scales the Customer Service between 2 and 4 instances depending on the queue
length.

Table 2. The Petstore Scenario Workload Results

# Cost RespT Util ES Util CS G1 G2 G3 G4 Sum Rank

B 921 134500 0.95 0.217 0.024 5.225 7.5 0 12.749 ‐

(1) 935 29018 0.176 0.257 0.039 0 0 0.284 0.322 3

(2) 992 31698 0.215 0.168 0.102 0.085 0 0 0.187 1

(3) 948 32845 0.243 0.187 0.053 0.142 0 0 0.196 2

While we have a clear ranking according to the model simulation and the calculated
distances, we still provide the user with all possible solutions and their detailed eval-
uation values to allow additional human reasoning. A user could still decide to apply
solution (1) instead of the other solutions if she wanted the utilization of the Entity Ser-
vice to be closer to the smallest target value or she could also decide to apply solution
(3) instead of solution (2), because cost may still be the driving factor of the migration.
Despite the ranking, we can note that none of the solutions is surprising and they prob-
ably could have been found by an expert using the estimated impact on the patterns and
the knowledge about the system execution. However, we assume that with a more com-
plex application and a higher number of goals and/or patterns, the manual derivation of
solutions becomes harder.

4 Related Work
In software engineering, patterns are important ingredients to document knowledge on
how to solve reocurring problems since the well-known book by the Gang of Four [9]
describing patterns in the context of object-oriented design. With the appearance of the
cloud computing paradigm, the community has already started working on cloud com-
puting patterns [6, 13, 18]. For our approach, we studied different pattern descriptions,
created pattern templates, and estimated the effect of each pattern on the different NFPs.

Optimization techniques are used to solve a variety of different problems [3]. Re-
search in metaheuristics for combinatorial optimization problems aims to optimize
the techniques applied in evolutionary algorithms [19]. At the same time, the focus
of research has shifted from being rather algorithm-oriented to being more problem-
oriented [2]. This is also reflected in the emerging search-based software engineering

23



paradigm [10, 12], which considers cloud computing as one of its application fields to
tackle several multi-objective optimization problems [11]. Furthermore, the combina-
tion of model-driven engineering with search-based techniques is also investigated in
several studies [14]. Following this path, we have applied a specific genetic algorithm
to our optimization problem. To the best of our knowledge, there is only one prior
work that applies optimization techniques to come up with an optimal configuration of
a cloud application. In [8], the authors also use a combination of multi-objective search
and simulation for finding an optimal deployment strategy for a given set of compo-
nents of an application. In our approach, we go one step further and aim to optimize not
only the deployment of the components, but also the usage of cloud computing patterns
that are applicable on class-level granularity, what is of major interest when moving to
PaaS providers.

An orthogonal optimization of cloud applications is targeted in the MODAClouds2

and Passage3 projects, where the multi-cloud deployment of applications is studied by
the application of the models@runtime notion [7]. Our approach currently does not
foresee any support for the multi-cloud deployments, but may be extended by additional
patterns supporting such scenarios as well in the future.

5 Conclusions and Future Work
In this paper we have introduced a pattern-based optimization approach for cloud appli-
cations. We follow a model-based approach to select configurations of cloud optimiza-
tion patterns that satisfy some restrictions in terms of non-functional properties, and we
determine the best configuration using model simulation.

Currently, our approach faces some limitations, some of which we want to address
in the future. First of all, we have assumed that the base architecture is suitable for
the cloud. This might not be the case for all applications and additional architectural
refactoring patterns may be applied before our approach. Also, the simulation of the
results through e-Motions is not straightforward as we need to create a new meta-model
for each system the approach is applied upon. Furthermore, e-Motions presents some
scalability issues when the models to be simulated grow in size. Other simulation tools
might not have these drawbacks and might be more easy to use. For now, we have not
evaluated the scalability of our approach in detail. More use cases, also industrial-sized
use cases, need to be evaluated to experiment with more complex patterns as well as a
larger number of patterns, goals, and trade-offs involved. Regarding the input, we need
initial estimates on the impact a pattern has on an application. It may prove difficult to
get these estimates manually from experts. Automation support based on benchmarks,
partial application execution or log analysis could be integrated to support the user in
collecting the estimates.

In the paper we have presented a proof-of-concept of our approach, from which we
will address several future lines of work next. Firstly, we will apply benchmarks to mea-
sure the improvement associated with optimization patterns in large-scale applications
provided as use cases in the ARTIST project. Secondly, we also plan to consider more
optimization patterns from our catalogue, as well as study their influence after the ap-

2 MODAClouds: http://www.modaclouds.eu/
3 Passage: http://www.paasage.eu

24



plication is deployed on the cloud. This would allow us to evaluate the feasibility and
scalability of our approach in a more realistic setting. Thirdly, we plan to extend our
goal modeling language to represent NFPs that are not taken into account in the current
version, such as security properties. Finally, we plan to further study the application
of different evolutionary algorithms for selecting the best configuration of optimization
patterns.

References

1. Bergmayr, A., Brunelière, H., Canovas Izquierdo, J.L., Gorronogoitia, J., Kousiouris, G.,
Kyriazis, D., Langer, P., Menychtas, A., Orue-Echevarria, L., Pezuela, C., Wimmer, M.: Mi-
grating Legacy Software to the Cloud with ARTIST. In: Proc. of CSMR. pp. 465–468 (2013)

2. Blum, C., Puchinger, J., Raidl, G.R., Roli, A.: Hybrid metaheuristics in combinatorial opti-
mization: A survey. Applied Soft Computing 11(6), 4135–4151 (2011)

3. Coello, C.A.C.: A Comprehensive Survey of Evolutionary-Based Multiobjective Optimiza-
tion Techniques. Knowl. Inf. Syst. 1(3), 129–156 (1999)

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic
Algorithm: NSGA-II. Trans. Evol. Comp 6(2), 182–197 (2002)

5. Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combi-
natorial optimization. OR-Spektrum 22(4), 425–460 (2000)

6. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Computing Patterns:
Fundamentals to Design, Build, and Manage Cloud Applications. Springer (2014)

7. Ferry, N., Rossini, A., Chauvel, F., Morin, B., Solberg, A.: Towards Model-Driven Provision-
ing, Deployment, Monitoring, and Adaptation of Multi-cloud Systems. In: Proc. of CLOUD.
pp. 887–894 (2013)

8. Frey, S., Fittkau, F., Hasselbring, W.: Search-based genetic optimization for deployment and
reconfiguration of software in the cloud. In: Proc. of ICSE. pp. 512–521 (2013)

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional, 1 edn. (1994)

10. Harman, M.: The current state and future of search based software engineering. In: Proc. of
ICSE. pp. 342–357 (2007)

11. Harman, M., Lakhotia, K., Singer, J., White, D.R., Yoo, S.: Cloud engineering is search
based software engineering too. Journal of Systems and Software 86(9), 2225–2241 (2013)

12. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering: Trends, tech-
niques and applications. ACM Comput. Surv. 45(1), 11:1–11:61 (2012)

13. Homer, A., Sharp, J., Brader, L., Narumoto, M., T., S.: Cloud Design Patterns: Prescriptive
Architecture Guidance for Cloud Applications. Microsoft Patterns & Practices (2014)

14. Kessentini, M., Langer, P., Wimmer, M.: Searching models, modeling search: On the syner-
gies of SBSE and MDE. In: Proc. of CMSBSE@ICSE. pp. 51–54 (2013)

15. Rivera, J., Duran, F., Vallecillo, A.: A graphical approach for modeling time-dependent be-
havior of DSLs. In: Proc. of VL/HCC. pp. 51–55 (2009)

16. Troya, J., Vallecillo, A., Duran, F., Zschaler, S.: Model-driven performance analysis of rule-
based domain specific visual models. Inf. and Soft. Technology 55(1), 88–110 (2013)

17. West, D.M.: Saving Money Through Cloud Computing. Brookings Institution (2010)
18. Wilder, B.: Cloud Architecture Patterns. O’Reilly (2012)
19. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Em-

pirical Results. Evolutionary Computation 8, 173–195 (2000)

25



Modeling Cloud Messaging with a Domain-Specific 

Modeling Language 

Gábor Kövesdán, Márk Asztalos and László Lengyel 

 Budapest University of Technology and Economics, Budapest, 

Hungary 

{gabor.kovesdan, asztalos, lengyel}@aut.bme.hu 

Abstract. This paper introduces a domain-specific modeling language (DSL) for 

modeling application-level network protocols. Application-level messages may 

be expressed in object-oriented general-purpose programming languages as clas-

ses. Instances of these classes can be sent through the network with the help of a 

customized serialization process. However, protocols have several special char-

acteristics that do not fit easily into this abstraction, for example, bitfields or spe-

cially encoded lists. Furthermore, the limitations of generic serialization frame-

works inhibit using them for this purpose. These factors suggest creating a DSL 

that more easily expresses these protocols and allows for code generation to sup-

port application-level messaging. Application-level messaging is a crucial part of 

cloud services that follow the Software as a Service (SaaS) paradigm and it must 

be implemented at both clients and servers. A DSL that allows for efficient mod-

eling of the messages and generating implementation code significantly simpli-

fies the development of cloud applications. 

Keywords: Modeling · Domain-Specific Languages · Code Generation · Proto-

cols · Cloud 

1 Introduction 

Nowadays, there are several high-level communication standards that allow for net-

work communication between two pieces of software. One group of these technologies 

consists of object-oriented remoting standards, like Common Object Request Broker 

Architecture (CORBA) [1] or Java’s Remote Method Invocation (RMI) [2]. The other 

kind of commonly used technologies includes variants of Web Services, namely, the 

Simple Object Access Protocol (SOAP) [3] and RESTful Web Services [4]. Despite the 

availability of these mechanisms, still numerous software vendors decide to develop a 

lightweight binary application-level protocol that has a lower network footprint and 

does not require depending on resource-intensive libraries and application servers. 

However, when it comes to developing such a protocol, developers do not get too much 

help. The Specification and Description Language (SDL) defined by ITU-T Z.100 [5] 

allows for describing system behavior in a stimulus/response fashion and thus, it can 

also be used to specify network protocols. However, SDL has a wide scope and focuses 

on the stimulus/response relations and does not capture message structure. In theory, 

26



code generators can be developed for SDL to generate implementation but the gener-

ated code will cover only the stimulus/response relations. The Protocol Implementation 

Generator (PiG) [6] is a domain-specific modeling language [7] [8] that is designed for 

code generation but this solution also focuses on interactions. We have not found a 

domain-specific language with code generator that allowed for the modeling of mes-

sage structure. In cloud services, especially in those that follow the Software as a Ser-

vice (SaaS) paradigm, the message structure has more importance than communication 

states and interactions. First, these systems do not maintain a permanent connection and 

their messaging is often limited to notifications and request-response messages. Sec-

ondly, lower level protocols hide the establishment and the closing of connections, 

which in turn, involves communication states and interactions. Because of these factors, 

the development of SaaS messaging primarily consists of determining the message 

structure and developing the supporting code. Using binary messaging is more chal-

lenging to implement than relying on commonly supported formats, such as XML or 

JSON, that have extensive support in third-party libraries. However, this is the most 

concise form and thus it generates less network footprint and it is faster to parse. This 

suggests investing in a DSL and code generator to facilitate this development task. The 

messaging logic needs to be developed for both the client application and the cloud 

server. If they do not run on the same platform, the supporting code cannot be shared 

and has to be developed twice. A DSL and code generation techniques can remedy 

these difficulties. A code generator can be constructed that uses the model of the mes-

sage structure and generates the supporting classes and the boilerplate code, even for 

multiple platforms, if necessary. Such a tool facilitates development and can ensure that 

the implementations in different languages are consistent. 

In this paper such a DSL is presented. Our solution, ProtoKit1, is a lightweight 

framework that focuses on modeling message structure and generating code to manip-

ulate messages. It encompasses a metamodel that can be used to describe a wide variety 

of features that can be encountered in application-level messaging. The DSL syntax is 

similar to Java class definitions because the message structure shares some commonal-

ities with them. The tool targets the use of binary messages. This format is the most 

concise and helps to save bandwidth, although it does not support well versioning and 

maintaining backward compatibility. As mentioned before, ProtoKit focuses on mes-

sage structure since it is the most important factor in cloud messaging. It does not deal 

with modeling interaction: that is simply left for the application developers. We believe 

that if individual messages can be handled easily, dealing with simple interaction sce-

narios from handwritten code is easy. However, we may decide to implement modeling 

interactions in later versions of ProtoKit. The tool primarily targets cloud service pro-

viders because they always have to implement messaging at the server side and they 

often also provide the client software or the client library. In this way, they facilitate 

the use of their service to the consumers and they do not have to publish the protocol 

specifications. In this scenario, cloud service consumer indirectly benefit from ProtoKit 

as well. Additionally, if there is no appropriate client software or library but the protocol 

                                                           
1  See http://gaborbsd.github.io/ProtoKit/. 

27



specification is available, the service consumers may also use the tool to develop their 

own solution. 

The rest of this paper is organized as follows. In Section 2 the motivation for creating 

a protocol modeling language is explained. Section 3 introduces the metamodel that 

was used to describe the problem domain. Section 4 explains the concrete syntax and 

show its grammar. Section 5 gives a detailed explanation of how the ProtoKit language 

was implemented. Section 6 presents a case study in which the solution is evaluated 

and Section 7 concludes. Despite not being a cloud protocol, the Domain Name System 

(DNS) protocol will be used as an example throughout the paper. The DNS protocol is 

well-known, has a wide variety of features that has to be handled in the metamodel and 

has similar characteristics as cloud messages: it lacks complex interactions and uses a 

simple request-response communication model. We are working on other applications 

that use ProtoKit and offer cloud services but they are still in an early phase of the 

development. Therefore, we have chosen to use the caching DNS server as an example. 

2 Motivation 

Protocol message types are very similar to classes in object-oriented programming lan-

guages: both notions define a complex data type with some properties that hold values. 

For example, a protocol message type may hold a transaction number of integer type, 

the identifier of the sender as an integer, an integer count that specifies the length of the 

payload and last but not least a variable-length payload either as a text or as binary data. 

Modeling such protocol message types is definitely possible with object-oriented lan-

guages but protocol message types have several specific properties that needs further 

boilerplate code in object-oriented languages. The following list summarizes these: 

1. Defining the length of the field is paramount since the fields in a single message will 

be parsed by calculating the boundaries. In general-purpose programming languages 

(GPLs), this aspect is handled in a lazier manner. We usually choose from byte, short 

integer, normal integer and long integer variable types based on our needs of preci-

sion. Some languages, like C, do not strictly define the byte sizes of these type, 

whereas others, like Java, do. Still in the latter case, the byte length of a specific field 

is not explicitly reflected in the code, that is, the programmer must be conscious that, 

for example, a long variable takes 64 bits. Protocol message type definitions warrant 

for a more precise notation that explicitly expresses field lengths. 

2. GPLs do not allow easily accessing fields on a per bit basis. Protocols do need such 

feature so that they can keep the network footprint low and avoid wasting bandwidth. 

One-bit boolean fields grouped to one or more bytes as flags are frequent. In GPLs, 

there is no native type that maps to such fields. Although it is possible to manipulate 

particular bits of a larger integer by using bitwise operators or by helper accessor 

methods, it requires more coding and makes the code less readable. A protocol mes-

sage type definition language certainly needs to be able to handle data bit by bit. 

3. Protocol messages often use counter fields that describe how many of a particular 

entry is found in the variable-length payload part of the message. These counters 

make it possible to properly parse the variable-length part of the message. In protocol 

28



definitions, it would be practical to directly associate counters to the corresponding 

list of entries. 

4. After the protocol message type is modeled, the serialization and deserialization of 

messages must be implemented so that messages can be transmitted and received 

over the network. Some GPLs, like Java, offer a standardized way for serialization 

but it does not fit well serialization of protocol messages. Serialization of protocol 

messages has several specific characteristics: 

(a) Usually, it has to be strictly ordered based on the specification order of the fields.  

(b) Length of fields is strictly specified, possibly on a per-bit basis.  

(c) Counts of entries must be handled as well.  

(d) Some fields may be encoded in a specific manner, for example, the Domain 

Name System (DNS) [9] protocol specifies its own encoding for the requested 

domain names.  

When implementing the serialization of protocol messages, these requirements must be 

properly addressed. The above reasons suggest introducing a DSL for protocol message 

types that takes into account the above criteria and allow for easy and fast modeling of 

protocol message types. 

Kövesdán et. al published an intent catalog [10] that lists and describes the possible 

motivating factors behind creating DSLs and their main characteristics. ProtoKit uses 

the following intents: 

1. Specialized Tool: GPLs are not able to properly express all of the features of network 

protocols. 

2. Modeling Tool: from the textual description, a model is constructed. This is used 

later for code generation. 

3. Domain-Specific Formalism: since human language is ambiguous, developers may 

decide to also include the ProtoKit description in specifications. 

4. Human-Friendly Notation: the ProtoKit language is much more concise than, for 

example, a Java class definition, therefore it is easier to read and write for non- 

programmers. 

3 The Metamodel 

The metamodel that we used for modeling network protocols is depicted in Figure 1. 

The elements of the metamodel are the following: 

 DataType: message type or complex data structure. The class that is used to encap-

sulate the whole message is not treated in any special way so there is no need for 

introducing other metamodel element. A complex data structure may as well be em-

bedded into another one. 

 BinaryField, IntegerField, StringField, ListField, CountField, LengthField, Bit-

Field: specific types of fields that are embedded into messages or complex data 

structures. 

29



 BitFieldComponent: BitField is further divided into components, which occupy only 

specific bits of the member. We generate specific getters and setters for these to 

handle the appropriate bits transparently. 

 Formatter: some fields are encoded in a specific way. This kind of encoding can be 

implemented with the support of formatters. For formatters, only a template is gen-

erated that has to be filled in by the developer of the application. 

 ProtocolModel: aggregates the DataType and Formatter elements into a model. It 

can be used to traverse the model for code generation. 

 Field: abstract type of fields used as messages or complex data structure members. 

 

Fig. 1. The metamodel used for the ProtoKit language 

30



4 The Concrete Syntax of the Language 

In this section, we briefly describe the concrete syntax of ProtoKit. The syntax is some-

what similar to class diagrams. This is helpful for the developers since the nature of the 

models is also similar to class diagrams. A model starts with the package keyword and 

an identifier. These will define the package of the generated Java classes. After this, we 

can define protocol messages and embedded data types. The former starts with the pro-

tocol keyword and the latter uses the datatype keyword. The definition of messages and 

data types is given in curly braces. We specify fields by their name and type, separated 

by a colon. The type may have arguments that refer to the length of the field or to a 

referred field in case the field is a counter or a length field. After a field of the string 

type, we can also specify a formatter with its name. Components of bitfields are also 

defined in curly braces and these are always treated as integer types so only their length 

is specified in bits. The names of normal fields (that are not components of bitfields) 

can be preceded by the transient keyword and an asterisk. The former means that the 

field will not be serialized2 and the latter marks the fields that should determine the 

identity of instances. This is used for generating equals() and hashCode() methods. The 

ANTLR grammar of the language is cited in the following code listing. 

grammar NetworkProtocol; 

start: packageDefinition? protocolDefinition+; 

packageDefinition: 'package' name = ID; 

protocolDefinition: ('protocol'|'datatype') name = ID '{' 

variableDefinition+ '}'; 

variableDefinition: trans='transient'? identityVar='*'? name = 

ID ':' ( intType| stringType|binaryType|embeddedType|bitfieldType 

|listType|countType|lenType); 

intType:  type = 'int' ('(' len = NUMBER ')')?; 

stringType: type = 'string' ('(' len = (NUMBER|'*') ')') for-

matterDefinition?; 

binaryType: type = 'binary' ('(' len = (NUMBER|'*') ')'); 

embeddedType: type = ID; 

bitfieldType: type = 'bitfield' '{' bitfieldDefinition+ '}'; 

listType: type = 'list' '(' (listElement = ID) ')'; 

                                                           
2  It can be disputed whether this feature should be part of the modeling language since it is not 

related to the actual model but to the implementation. However, it allows for adding imple-

mentation-specific members to the generated classes without having to modify them. This 

does not make it necessary to deal with manual changes when regenerating classes. 

31



countType: type = 'count' '(' len = NUMBER ',' countedList = ID 

')'; 

lenType: type = 'length' '(' len = NUMBER ',' countedField = ID 

')'; 

bitfieldDefinition: name = ID ':' bitLength = NUMBER; 

formatterDefinition: 'formatter' name = ID; 

ID: [a-zA-Z]+; 

NUMBER: [1-9] [0-9]*; 

WS: [ \t\r\n]+ -> skip 

5 Implementation Decisions 

In this section, we describe step by step what implementation decisions we considered 

during the developing of ProtoKit. This gives a deeper insight into the development 

process and allows for understanding how our motivations and the requirements af-

fected the architecture and the development process. By examining these points regard-

ing a new DSL that is being developed, we can also reuse these experiences as a recipe. 

1. Implementing generic functionality in the runtime framework. It is not a trivial deci-

sion at what extent the code should be factored out into a generic runtime framework 

and what should be generated. Developing generic code is generally more challeng-

ing and sometimes may have worse performance than a customized solution. For 

example, in Java environment, it is often done by using reflection, which has a per-

formance hit. On the other hand, generic code is more reusable and helps to reduce 

the generated code. It is easier to generate custom code than having a generic frame-

work but the latter is easier to test since it does not depend on the input model. The 

reusable framework can be covered by extensive unit tests, whereas the generated 

code is not trivial to test. It may be tested for the complete functionality but it is 

difficult to think of all of the possible corner cases. Because of these considerations, 

in ProtoKit we have implemented most of the functionality in a reusable runtime 

framework. The most important example of this is the generic serialization logic. 

The generated classes only encompass the serialization parameters. It would have 

been possible to generate the serialization logic and to make it part of the generated 

class but this would have resulted in a significantly more complex generator. 

2. Separating tree parser logic from code generator. In theory, it is possible to process 

the input file in an event-driven approach with a single read since we can store arbi-

trary amount of details in the state of the parser that will be required in further phases 

of the processing. However, this technique has several drawbacks. Because of the 

event-driven nature, the code fragments that are generated are triggered by visiting 

a certain grammar rule. This does not facilitate generating non-consecutive code 

fragments from the same node. For example, if the generated code is a Java class, 

certain nodes can be mapped to Java variables. Java variables are usually declared 

32



with private visibility and accompanying getter and setter methods are provided with 

public scope. Although it is not mandatory, the variable declarations are convention-

ally placed together at the beginning of the class definition and the getter and setter 

pairs come after all variable definitions. A single variable and its getter and setter 

methods are generated from the same node so they cannot be generated in the con-

ventional order by a purely event-driven manner. This requires the parser to use its 

internal state to store some details. This makes the parser more complex and partly 

leads to building a semantic model in the memory. Secondly, the use of a pure event-

driven approach does not allow for validating cross-references in the input file. To 

address these issues, we have separated the tree parser logic and the actual code 

generation. The only responsibility of the tree parser is building a semantic model. 

By using a semantic model, validation and code generation become much easier. 

Furthermore, the use of a semantic model better facilitates changes in the syntax or 

building another, possibly visual modeling language on top of the code generator. 

3. Decoupling code generation and formatting. Although generated code does not nec-

essarily need to be read by humans, readability is definitely a great advantage. For 

example, it may help debugging or facilitate the comprehension of how the ProtoKit 

tooling works. However, hardcoding formatting, like indentation level, line breaks 

etc. in the generator significantly deteriorates the readability of the generator itself. 

The readability of the generator is definitely more important than the readability of 

the generated code so this is not a viable trade-off. However, collecting the output 

in a buffer and using a code beautifier before flushing the code to the disk has proven 

to be a favorable solution. This solution makes the code formatter reusable. In 

ProtoKit, the code formatter provided by Eclipse JDT [11] has been used. 

4. Using template language for code generation. When traditional programming lan-

guages are used for code generation, fragments of the generated text must be quoted 

and concatenated to the variables that are substituted. All of this is written to a buffer 

with method calls. These method calls, the quotation marks and the concatenations 

deteriorate the readability and make it hard to see what output will be actually gen-

erated. Template languages reverse the logic: everything that is written will be part 

of the output by default and only variable substitutions and branching need special 

markup. In Java environment, Xtend [12] is a good choice of a template language. It 

does not compile directly to bytecode but to Java source code so it can be easily used 

anywhere where Java is used. ProtoKit is written mostly in Java but the code gener-

ator classes are implemented in Xtend. There are some branching statements and 

substitutions but the readability of the generator is much better than it could be in 

pure Java. The separation of the code formatter logic and the use of Xtend have sig-

nificantly improved the productivity during the development of ProtoKit. 

5. Using a metamodeling framework and decoupling the validator logic. The validation 

logic was first coded into the tree parser but as we added more features to the lan-

guage, it started to deteriorate the readability so we decided to factor it out. At the 

same time, we introduced an explicit metamodel, described with the Eclipse Model-

ing Framework (EMF). [13] Using a modeling framework allows for reusing its val-

idation solutions and we wanted to benefit from this. However, associating line and 

33



column numbers from the input text with validation errors is more challenging. Its 

implementation requires attaching extra information to the model. 

6 Evaluating ProtoKit 

To demonstrate that ProtoKit is in fact useful and really helps the development of ap-

plications that use network communication, it must be put into practice. For this pur-

pose, we have implemented a caching DNS server that either answers queries from its 

local cache or forwards queries to the configured resolver. ProtoKit was in fact easy to 

use. We could model DNS messages easily. The generated classes and the generic se-

rialization logic highly simplified the process. Describing the caching DNS server is 

beyond the scope of this paper but we have summarized some statistics about the gen-

erated and handwritten code in Table 1. 

Table 1. Statistics in code lines 

 Language Generated Reused Hand-written TOTAL 

 ProtoKit 0 0 39 39 

 Java 463 328 289 1080 

 TOTAL 463 328 328 1119 

In this case, only about 27% of the Java code had to be manually implemented. If we 

also take into account the textual model of the protocol, we get about 29% hand-written 

code, which seems to be a really good proportion. 

The caching DNS server is a simple but realistic application so we believe it is a 

good case study to evaluate ProtoKit. More complex applications also contain more 

application logic that is independent of the networking code. The proportion will be 

worse in such cases but ProtoKit is only meant to facilitate network messaging.  

Using SaaS cloud services is always more common in computing, especially in mo-

bile applications. As described above, cloud messaging protocols are similar to the DNS 

protocol in complexity: they use a request-response communication model and do not 

encompass complex interactions. Since ProtoKit performed well in modeling DNS 

messages, it will also be very useful for implementing the messaging between clients 

and the cloud services. The Android platform uses Java as its main programming lan-

guage – however the class library is slightly different – which means that the generator 

can also be used for Android applications with no or few modifications. Furthermore, 

Java is also a popular platform in backend development, so the messaging code can be 

shared between the client and the cloud server backend. Besides, ProtoKit is easy to 

extend to support other target languages. 

7 Conclusion 

In this paper we have reported about our progress in developing the ProtoKit language 

and tooling. We have explained our motivations and how we created a DSL to solve 

34



these issues. We have also summarized the decisions that we met during the implemen-

tation and why we took these decisions. Finally, we have also reported on a simple but 

realistic application that we developed with the help of ProtoKit. In this case study 

ProtoKit in fact simplified the development.  However, the main focus of this solution 

is developing cloud messaging. Cloud messages use simple interactions but require a 

message structure that is easy to work with and can be serialized efficiently. This is 

exactly what ProtoKit is meant to be used for. We hope that it will prove to be useful 

in practice on the long term and that our experiences will help other developers that 

implement cloud-enabled applications. 

 

Acknowledgments. This work was partially supported by the European Union and the 

European Social Fund through project FuturICT.hu (grant no.: TAMOP-4.2.2.C-

11/1/KONV-2012-0013) organized by VIKING Zrt. Balatonfüred. This work was par-

tially supported by the Hungarian Government, managed by the National Development 

Agency, and financed by the Research and Technology Innovation Fund (grant no.: 

KMR_12-1-2012-0441). 

References 

1. The Object Management Group: CORBA 3.3 Specification, 

http://www.omg.org/spec/CORBA/3.3/ 

2. Grosso, W.: Java RMI, O’Reilly Media (2001) 

3. World Wide Web Consortium: Simple Object Access Protocol (SOAP) Specification, 

http://www.w3.org/TR/soap/ 

4. Richardson, L., Ruby, S.: RESTful Web Services, O’Reilly Media (2007) 

5. International Telecommunication Union: ITU-T Z.100 Standard. Specification and Descrip-

tion Language (SDL), 

  http://www.itu.int/ITU-T/studygroups/com10/languages/Z.100_1199.pdf 

6. Quaresma, J.: A Protocol Implementation Generator, Master Thesis, 

http://nordsecmob.aalto.fi/en/publications/theses_2010/jose_quaresma.pdf 

7. Fowler, M.: Domain-Specific Languages, Addison-Wesley (2010) 

8. Kelly, S., Tolvanen, J.: Domain-Specific Modeling: Enabling Full Code Generation, Wiley-

IEEE Computer Society Press (2008) 

9. The Internet Engineering Task Force: Domain Names – Implementation and Specification, 

Request for Comments 1035, http://www.ietf.org/rfc/rfc1035.txt 

10. Kövesdán, G., Asztalos, M., Lengyel, L.: A classification of domain-specific language intents, 

International Journal of Modeling and Optimization, vol. 1, no. 4, pp. 67–73 (2014) 

11. The Eclipse Project: Eclipse Java Development Tools, http://www.eclipse.org/jdt/ 

12. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend, Packt Publish-

ing (2013) 

13. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework 

(2nd Edition), Addison-Wesley Professional (2008) 

35



Cloud DSL: A Language for Supporting Cloud
Portability by Describing Cloud Entities

Gabriel Costa Silva, Louis M. Rose, and Radu Calinescu

Department of Computer Science, University of York,
Deramore Lane, York YO10 5GH, UK

gabriel@cs.york.ac.uk,

{louis.rose,radu.calinescu}@york.ac.uk

Abstract. Different cloud platforms offer similar services with different
characteristics, names, and functionalities. Therefore, describing cloud
platform entities in such a way that they can be mapped to each other
is critical to enable a smooth migration across platforms. In this paper,
we present a DSL that uses a common cloud vocabulary for describing
cloud entities covering a wide variety of cloud IaaS services. Through
analysis of existing cloud DSLs, we advocate that our cloud DSL is more
expressive for the purpose of describing different cloud IaaS services. In
addition, when used along with TOSCA, our preliminary analysis sug-
gests that our Cloud DSL significantly reduces the workload of creating
cloud descriptions in a TOSCA specification.

Keywords: DSL; Cloud computing; Portability; TOSCA

1 Introduction

Costa Coffee, Starbucks, and Caffè Nero are the three largest coffee shop compa-
nies in the UK. Although they all sell their coffees in three common sizes – small,
medium, and large – they name these sizes differently. This can create a lot of
confusion. A Starbucks customer might get frustrated when ordering a Grande
in Caffè Nero since that, in the Starbucks vocabularyGrande means medium,
whereas for Caffè Nero it means large. Likewise, those unfamiliar with Star-
bucks might find contradictory that Tall is the smallest size. Furthermore, simi-
lar products also have different characteristics. For instance, a medium skimmed
latte in Starbucks1 contains 156% more calories than its Nero2 version. Thus,
although their products look similar, they are not all the same. Therefore, having
a detailed description of each product is critical to prevent misunderstandings.

Like in the coffee-shop market, cloud platforms offer similar services, but with
different names, characteristics, and functionalities. For example, consider the
Amazon S3 and Dropbox storage services. Overall, they provide the same func-
tionality: file storage, storage elasticity, and interfaces for management. However,

1 http://www.starbucks.co.uk/quick-links/nutrition-info
2 http://www.caffenero.co.uk/Nutrition/hotdrinks.aspx

36



Silva, Rose and Calinescu

a closer look reveals critical differences, including the use of different file systems.
Whereas Dropbox has one single file system root, Amazon S3 uses multiple root
containers called “buckets”. Furthermore, a bucket has a region, which specifies
a geographical location for the content stored within. Like for coffee shops, to
support a smooth migration of applications across different cloud platforms, it
is critical to describe the semantics of cloud entities.

Semantic differences are critical in cloud as they hinder the smooth migration
of assets (e.g., data and applications) across providers [21]. For example, the
differences between Amazon S3 and Dropbox hinder the migration (transfer) of
files from Dropbox to Amazon S3, as it is necessary to create a bucket and assign
it to a region. Cloud portability, i.e. the ability to migrate an asset deployed in
one cloud to another [18], is one of biggest challenges in cloud computing, and
it has been widely addressed by both academia and industry [17].

Providing homogeneous description of cloud platforms is a potential solution
to overcome semantic differences and achieve cloud portability in this highly
heterogeneous environment [3], [15], [19]. Recent research reveals three means to
describe cloud platforms [22]. Although we present them here, discussing their
benefits and drawbacks is beyond the scope of this paper.

(i) A platform abstraction solution consist of describing concepts of either the
entire platform or its elements, at different levels, e.g. as proposed by MODA-
Clouds [3]. This solution can adopt different technologies to achieve their
goals, such as ontologies [6] and Model-Driven Architecture [3]. This solu-
tion covers both design- and run-time, e.g. as proposed by meta cloud [20];

(ii) Standardized references focus on design-time only through at defining refer-
ences for cloud platforms [15], APIs [7], [1], [9], or applications [11]. In the
context of our paper, a reference is a set of rules, or constraints that a cloud
user or provider must follow. However, most of solutions in this type focus on
setting up references for cloud APIs. According to Escalera & Chavez, cloud
APIs consist of software libraries used by application developers to manage
cloud services [7]. Apart from [11], which targeted cloud applications, other
solutions in this type target only cloud providers; and

(iii) Domain Specific Languages (DSLs). A DSL is a language tailored for a partic-
ular domain or context [5]. Like standardized references, DSL-based solutions
are for use at design-time. However, some solutions might provide support
for run-time mechanisms, such as CloudMF [8]. As DSLs are defined for a
particular purpose [16], these solutions cover a wide range of goals, such as
automatic generation of mobile-cloud applications [19], and description and
comparison of Service Level Agreements (SLAs) [2]. Regardless of the pur-
pose, meta-models are the cornerstone of these solutions. Finally, DSL-based
solutions are mainly intended to support cloud users.

In this paper, we present a DSL that uses a common cloud vocabulary for
describing cloud platform entities, such as services and resources across a wide
variety of cloud platforms. Unlike existing Cloud DSL, this work covers a wide
variety of cloud IaaS services, contributes to different phases of cloud portabil-
ity, facilitates the communication of services and resources to different levels of

37



A Language for Supporting Cloud Portability by Describing Cloud Entities

stakeholders, and enables the description of different types of clouds, such as
federation and inter-clouds. In addition to positioning this work in the related
literature (Section 5), we contribute to the advance of the state-of-the-art in
both cloud portability and Model-Driven Engineering (MDE) by: (i) supporting
cloud portability via a common meta-model for cloud computing (Section 2); (ii)
facilitating the visualization and communication of cloud assets amongst differ-
ent stakeholders by providing a graphical editor (Section 3); and (iii) reducing
the effort of describing cloud entities in TOSCA cloud standard [4] (Section 4).

2 Cloud Meta-model

The meta-model, which describes the domain covered by the language, is the cor-
nerstone of a DSL. A DSL consists of abstract and concrete syntax — whereas
the abstract syntax defines the constructs of the language, the concrete syntax
defines the representation of these constructs [5], [16]. For example, the abstract
syntax of the Web Service Description Language (WSDL) defines a set of enti-
ties and their properties, such as ServiceType and InterfaceType, representing,
respectively, a service exposed to a client, and its interfaces. To specify Services
and Interfaces, one uses XML statements like <service /> and <interface />.
These XML statements are the concrete syntax of the WSDL.

Due to the heterogeneity of cloud platforms and services, creating a cloud
meta-model that covers a broad range of cloud services is not a straightfor-
ward task. To devise a cloud meta-model, we: (i) analysed four sources of in-
formation; (ii) identified correspondences amongst similar entities across these
different sources; and (iii) combined entities and their relationships into a new
meta-model. Our analysis started with an extensive literature review [22], in
which we identified some critical cloud entities. Next, we leveraged the contribu-
tion of two important standardization efforts, OGF OCCI [9] and DTMF CIMI
[1]. We also investigated relevant research projects focusing on cloud portability,
in particular MODAClouds3 and REMICS4. Finally, we examined a wide range
of cloud IaaS services, including Amazon SQS, Microsoft Azure Compute, and
Rackspace Cloud Files. Figure 1 shows our cloud meta-model.

A cloud Platform provides Service, such as computing and storage. A cloud
Platform has a name, such as Amazon Web Services, or OpenNebula. A Service
might be managed through multiple Management Interfaces, which are provided
by cloud Platform. A Management Interface has a type, such as RESTful, or
Query-based, and properties, such as authentication attributes. The Platform is
responsible for the Cloud User management. A Cloud User is identified by its
name, and can have several keys to access its Resources. A Service is identified by
its name, such as EC2, or Cloud Servers. A Service might be supported by other
service. For example, Amazon EBS and S3 supports Amazon EC2, providing
persistent storage. Each Service might operate in a different Region. A Region
represents a wide geographical location, such as Europe or Asia. In addition to

3 http://www.modaclouds.eu
4 http://www.remics.eu

38



Silva, Rose and Calinescu

Fig. 1. Abstract syntax of the Cloud DSL

its name, a Region might have a particular code assigned by the cloud Platform.
This code is represented in this meta-model by the url attribute. A Region might
have several Datacentres, which are identified by their names and urls.

A Service has ServiceOperations. A ServiceOperation represents those man-
agement operations that a Cloud User can perform on its Resource through
a Management Interface, such as sending a message to a queue in a message
queue service. A ServiceOperation is identified by its name, such as runInstance
or listImages, for example. Some operations rely on input parameters, such as
the name of image, and region. As these operations are implemented by APIs,
they have a single return value, which might be a list of results, for example. A
Service exists to provide Resources, such as VMs and storage containers. Each
Platform might define different properties and states for Resources provided by
its Service. However, two properties are present in most of Resources: id and
name. Once the Resource has been created, it is made accessible by one or more
Endpoints. The Resource is available in one of the Region supported by the Ser-
vice. One Resource might support another. This is the case of storage containers,
which are used to support a set of files (Resource).

Some Resources rely on OperationalResource. An OperationalResource repre-
sents internal resources provided by the Service, such as the hardware of a VM,
or the engine of a database service. In addition to the Cloud User credentials,
some services provide further Security Mechanism, such as firewall and permis-
sions. A Security Mechanism consists of a set of Security Entry. For example, a
file in a storage service might have different permissions (SecurityEntry). Each
SecurityEntry is assigned to the Resource it protects. More sophisticated mecha-
nisms require further elements, represented in the meta-model by Security Rule.
This is the case of security groups, provided by Amazon EC2.

39



A Language for Supporting Cloud Portability by Describing Cloud Entities

3 Proof of Concept

To implement our Cloud DSL, we adopted Epsilon5, a suite of languages and
tools for model management operations, such as model transformation and anal-
ysis. The implementation process consisted of four steps: (i) creating the cloud
meta-model using Emfatic, a textual notation for creating Ecore models; (ii)
annotating the meta-model with EuGENia annotations. EuGENia is a tool that
takes advantage of model transformation techniques to mitigate the complexity
of GMF and EMF [13]; (iii) generating the graphical editor using the EuGENia
tool; and (iv) adjusting graphical components, such as figures used to represent
cloud entities. The graphical editor consists of three parts (Figure 2): (i) a can-
vas, in which cloud entities and their relationships are represented by graphical
components; (ii) a palette, which presents the cloud meta-model entities; and
(iii) the properties tab, which shows the properties of each selected entity.

To evaluate the expressiveness of our Cloud DSL, we used our Cloud DSL
to describe the Amazon Web Application Hosting (AWAH) reference architec-
ture6. The reference architecture consists of seven different Amazon services,
which provides several resources for a Web application, such as storage and
DNS routing. In order to implement this reference architecture, we hosted the
Java PetStore7 application using the services defined in the reference. Figure
2 shows the description of two services: Amazon CloudFront and Amazon S3.
Amazon CloudFront is a content distribution service, which routes requests to
the nearest content storage location.

In this implementation of AWAH reference architecture, we have only one
distribution configured, which represents a Resource for this service (Distribu-
tion PetPictures). As Amazon CloudFront does not store the content, it relies on
a storage service, in this case, Amazon S3. The figure shows three resources pro-
vided by Amazon S3: PetPictures, petstorestaticpages, and index.html. Whereas
the first two resources are buckets, the third is a file. The two buckets are pro-
tected by a Security Entry, defined using the Security Mechanism (PERMIS-
SION). The location of PetPictures bucket is explicitly defined by a Region,
represented by US Standard in this example.

The concrete syntax of our Cloud DSL represents a ServiceOperation as a
container inside the Service. ServiceOperation might have several parameters. In
this example, the operations described represent those required to operationalise
the AWAH architecture, such as starting an instance. In Figure 2, Amazon S3
operations are hidden in the Service entity (note the “+” signal just below the
service name). Figure 3 (a), shows the Amazon RDS service and the operations
described: launchDBInstance, and terminateDBInstance. Whereas the first op-
eration has six parameters, the second has only one. Parameters are represented
by an “i” signal. This notation is used throughout our Cloud DSL to represent
parameters. For example, Figure 3 (b) shows two OperationalResources (HARD-

5 http://www.eclipse.org/epsilon/
6 http://aws.amazon.com/architecture/?nc1=f_cc
7 http://www.oracle.com/technetwork/articles/javaee/petstore-137013.html

40



Silva, Rose and Calinescu

Fig. 2. The concrete syntax of the Cloud DSL implemented by a graphical editor

WARE and VM IMAGE) which contain particular properties. Figure 3 (c) shows
the properties tab for one cloud Resource (VM INSTANCE).

Figure 3 (b) shows the Amazon EC2 service, and its related Resource, Dy-
namicWebSite. This resource is a VM which hosts the dynamic content of the
Java PetStore application. In the properties tab (Figure 3 (c)), it is possible
to see the properties of this resource, such as id (generated by the cloud plat-
form), and the Cloud User which owns the VM. DynamicWebSite is supported
by two OperationalResources: HARDWARE, and VM IMAGE. Whereas the for-
mer represents the type of instance used, the latter represents the Amazon Ma-
chine Image (AMI) used. The AMI contains the operational system as well as all
applications required to run the Website. Different from Amazon S3 (Figure 2),
Amazon EC2 enables specifying a particular datacentre. It is possible to note it
in the Figure 3 (b), just above the globe, which represents a Region. Finally, in
order to access the VM, an endpoint is made available. The concrete syntax for
it is small rings, located just in the right side of DynamicWebSite resource.

4 Towards Simplifying Cloud Services and Resources
Description in TOSCA

Topology and Orchestration Specification for Cloud Applications (TOSCA) is
a standard supported by OASIS, and intended to support application portabil-

41



A Language for Supporting Cloud Portability by Describing Cloud Entities

Fig. 3. Our Cloud DSL in action describing the AWAH reference architecture

ity across clouds. TOSCA defines types, that describe applications and cloud
services, and templates that represent instances of these types. The TOSCA
ecosystem comprises: specification and run-time environments. Whereas the for-
mer covers both application topology and activity orchestration, the latter is re-
sponsible for processing these specifications [4]. Several companies demonstrated
the benefits of using TOSCA migrating an application across cloud platforms8.

Despite from the benefits that TOSCA can provide, describing cloud re-
sources in a TOSCA specification is a cumbersome task. TOSCA does not use
the typical cloud vocabulary, such as services and resources. Instead, it defines a
set of abstract elements, such as nodes, capabilities, and policies. Although this
strategy enables the specification of both cloud and application components, it
complicates the specification of cloud platform entities using TOSCA elements,
specially because TOSCA official documentation does not define how to map
cloud entities to TOSCA elements. In addition, as TOSCA specification is de-
fined as a XML document, it is quite hard to have an overview of cloud entities.

Therefore, we proposed using our Cloud DSL to specify cloud services and
resources for TOSCA specification. To this end, we are taking advantage of
MDE techniques, in particular, model-to-model and model-to-text transforma-
tions (MT). As Hermans, Pinzger & van Deursen identified in their study [12], a
DSL along with MT techniques contribute to reduce effort and increase produc-
tivity by automating repetitive tasks, such as code generation. Indeed, Brambilla,

8 https://www.oasisKopen.org/events/cloud/2013/TOSCAdemo

42



Silva, Rose and Calinescu

Cabot & Wimmer analyse that code generation can save much effort for imple-
menting CRUD operations, which are responsible for 80% of software function-
ality in data-intensive applications [5]. To achieve these benefits, we have begun
work on mapping between our cloud meta-model and TOSCA elements.

However, this cloud-to-TOSCA mapping is an on-going work, which has re-
quired substantial intellectual and technical effort. Thus, describing these map-
pings is beyond the purposes of this paper. Here, we report on what we want to
achieve once the mapping is complete. Our preliminary analysis has shown that
it is possible to achieve similar results to those reported in [12], in particular,
effort reduction. Our hypothesis for such statement is underpinned by the fact
that a single cloud entity can be mapped to more than one TOSCA element.

For example, a cloud Service is represented in TOSCA as a TNodeType.
However, as exists dependences between services, they also become a TCapabil-
ityType and a TRequirementType. For instance, Amazon EC2 relies on Amazon
EBS to store persistent data. Therefore, Amazon EBS provides the storage ca-
pability whereas Amazon EC2 requires such a capability. In addition, a cloud
Service carries information used by TOSCA TNodeTemplate. Thus, writing a
TOSCA specification manually would require that those four entities and all
their related information were encoded by a human developer — which is both
a time consuming and an error-prone activity.

5 Related Work

In 2010, Gonçalves et al. presented the first DSL devised specifically to de-
scribe cloud entities, CloudML [10]. CloudML is underpinned in the D-Cloud
context aiming at allowing cloud computing providers to describe both cloud
resources and services, and cloud developers, to describe their computing re-
quirements. D-Clouds stands for Distributed Clouds, and authors define it as
“smaller datacentres sharing resources across geographic boundaries.” CloudML
is an XML-based language, and it is based on three requirements: (i) represen-
tation of physical and virtual resources as well as their state; (ii) representation
of services provided; and (iii) representation of developer’s requirements. In con-
trast to this DSL, our work is not limited to a particular context. As our Cloud
DSL captures essential characteristics of cloud platforms, it can be used to model
different types of clouds, such as federation and inter-cloud.

In 2011, Liu & Zic presented Cloud#, a textual DSL that enables cloud
providers to describe internal organization of cloud resources [14]. Focused on
computing services, their requirements are: (i) to express computation units and
different privilege levels of computation; (ii) to allow programmable bidirectional
control and data transfer between computation units; and (iii) to model physical
resources. The two cornerstone entities in their meta-model are CUnit, which
represents a cloud, a virtual machine, or an operating system; and Action, which
defines a computation task. Different from this DSL, which defines a textual
language to describe computing services, our Cloud DSL provides a graphical
representation of cloud entities, presented in a diagram. Thus, our Cloud DSL

43



A Language for Supporting Cloud Portability by Describing Cloud Entities

facilitate not only the visualisation of cloud entities, but also the communication
of the cloud strategy amongst different levels of stakeholders.

In 2012, Alkandari & Paige reported on-going work towards a DSL for de-
scribing and comparing SLAs offered by different cloud providers [2]. Authors
came up with two meta-models, one for describing SLAs offered by cloud provider,
and another to describe SLAs required by cloud users. In addition, an algorithm
was developed to compare models from cloud users to those from cloud providers.
However, this DSL is limited to the first phase of cloud portability - analysis.
Although our Cloud DSL cannot describe SLAs with the richness of detail as this
DSL does, our Cloud DSL contributes to different phases of cloud portability,
such as analysis and migration.

Finally, in 2013, Ferry et al. introduced the CloudMF [8]. CloudMF aims
at supporting provisioning and deployment of applications in multiple clouds
at run- and design-time. To accomplish this objective, CloudMF covers four re-
quirements: (i) separation of concerns; (ii) provider independence; (iii) reusabil-
ity; and (iv) abstraction. CloudMF consists of two components: (i) CloudML,
the modelling environment (DSL); and (ii) Models@run-time, which provides an
abstract representation of the running system. However, this DSL is limited to
computing and storage services. Our Cloud DSL enables the description of a
wide variety of cloud services, such as message queue, scaling, and DNS routing.

6 Conclusion

This paper introduced a Cloud DSL which supports cloud portability by describ-
ing cloud platform entities. The wide coverage of cloud IaaS services, and our
ongoing work towards the integration of our Cloud DSL and TOSCA, suggest
that our Cloud DSL can cover critical aspects of cloud service specification. As
next step, we will investigate literature to identify means of evaluating and com-
paring our Cloud DSL to other cloud-related languages. Finally, in our project,
we have been working towards mapping our Cloud DSL to platform-specific of-
ferings by mapping entities of cloud meta-model to platform-specific cloud APIs.
Exploiting these capabilities requires the maintenance of these mappings.

Acknowledgments. This work was funded in part by CNPq - Brazil and EU
FP7 project OSSMETER (Contract #318736).

References

1. DTMF CIMI, http://www.dmtf.org/standards/cloud
2. Alkandari, F., Paige, R.F.: Modelling and comparing cloud computing service level

agreements. In: 1st Intl Workshop on Model-Driven Engineering for High Perfor-
mance and CLoud computing. pp. 1–6. ACM Press, New York, USA (2012)

3. Ardagna, D., Di Nitto, E., Mohagheghi, P., Mosser, S., Ballagny, C., D’Andria,
F., Casale, G., Matthews, P., Nechifor, C.S., Petcu, D., Gericke, A., Sheridan,

44



Silva, Rose and Calinescu

C.: MODAClouds: A model-driven approach for the design and execution of ap-
plications on multiple Clouds. In: 4th Intl Workshop on Modeling in Software
Engineering. pp. 50–56. IEEE, Zurich (Jun 2012)

4. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: Portable Automated
Deployment and Management of Cloud Applications. In: Advanced Web Services,
pp. 527–549. Springer, New York (2014)

5. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in
Practice. Morgan & Claypool Publishers (2012)

6. Ejarque, J., Alvarez, J., Sirvent, R., Badia, R.M.: A Rule-based Approach for
Infrastructure Providers’ Interoperability. In: IEEE 3rd CloudCom. pp. 272–279.
IEEE, Athens (Nov 2011)

7. Escalera, M.F.P., Chavez, M.A.L.: UML model of a standard API for cloud com-
puting application development. In: 9th Intl Conf on Electrical Engineering, Com-
puting Science and Automatic Control. pp. 1–8. IEEE, Mexico City (Sep 2012)

8. Ferry, N., Chauvel, F., Rossini, A., Morin, B., Solberg, A.: Managing multi-cloud
systems with CloudMF. In: 2nd Nordic Symposium on Cloud Computing and
Internet Technologies. pp. 38–45. ACM, Oslo, Norway (2013)

9. Forum, O.G.: Open Cloud Computing Interface (OCCI), http://occi-wg.org/
10. Goncalves, G., Endo, P., Santos, M., Sadok, D., Kelner, J., Melander, B., Mangs,

J.E.: CloudML:An Integrated Language for Resource,Service and Request Descrip-
tion for D-Clouds. In: IEEE 3rd CloudCom. pp. 399–406. IEEE, Athens (Nov 2011)

11. Hamdaqa, M., Livogiannis, T., Tahvildari, L.: A reference model for developing
cloud applications. In: 1st International Conference on Cloud Computing and Ser-
vices Science. pp. 98–103. SciTePress, Noordwijkerhout (2011)

12. Hermans, F., Pinzger, M., van Deursen, A.: Domain-Specific Languages in Practice:
A User Study on the Success Factors. In: Model Driven Engineering Languages and
Systems, pp. 423–437. Springer Berlin Heidelberg, Berlin (2009)

13. Kolovos, D., Rose, L., Abid, S., Paige, R., Polack, F., Botterweck, G.: Taming emf
and gmf using model transformation. In: Model Driven Engineering Languages and
Systems, LNCS, vol. 6394, pp. 211–225. Springer Berlin Heidelberg (2010)

14. Liu, D., Zic, J.: Cloud#: A Specification Language for Modeling Cloud. In: IEEE
4th CLOUD. pp. 533–540. IEEE, Washington, DC (Jul 2011)

15. Loutas, N., Peristeras, V., Bouras, T., Kamateri, E., Zeginis, D., Tarabanis, K.:
Towards a Reference Architecture for Semantically Interoperable Clouds. In: IEEE
2nd CloudCom. pp. 143–150. IEEE, Indianapolis (Nov 2010)

16. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Computing Surveys 37(4), 316–344 (Dec 2005)

17. Petcu, D.: Multi-Cloud: expectations and current approaches. In: MultiCloud ’13.
pp. 1–6. ACM Press, Prague (2013)

18. Petcu, D., Macariu, G., Panica, S., Crăciun, C.: Portable Cloud applications—From
theory to practice. Future Generation Computer Systems (Jan 2012)

19. Ranabahu, A., Maximilien, E.M., Sheth, A.P., Thirunarayan, K.: A domain specific
language for enterprise grade cloud-mobile hybrid applications. In: SPLASH ’11
Workshops. pp. 77–84. ACM Press (Oct 2011)

20. Satzger, B., Hummer, W., Inzinger, C., Leitner, P., Dustdar, S.: Winds of Change:
From Vendor Lock-In to the Meta Cloud. IEEE Internet Computing 17(1), 69–73
(Jan 2013)

21. Sheth, A., Ranabahu, A.: Semantic Modeling for Cloud Computing, Part 1. IEEE
Internet Computing 14(3), 81–83 (May 2010)

22. Silva, G.C., Rose, L.M., Calinescu, R.: A Systematic Review of Cloud Lock-In
Solutions. In: IEEE 5th CloudCom. pp. 363–368. IEEE, Bristol, UK (Dec 2013)

45



Automated Provisioning of Customized Cloud Service
Stacks using Domain-Specific Languages

Ta‘id Holmes

Products & Innovation, Deutsche Telekom AG
Darmstadt, Germany

t.holmes@telekom.de

Abstract Cloud computing gave birth to a paradigm in which infrastructure can
be requested, provisioned, and used almost instantly in a service-oriented manner.
Infrastructure as a service, however, is only the first step in cloud adoption. In
fact, cloud computing introduces various distinct service models constituting a
cloud service stack. Each of the models abstracts from lower-level cloud services
and comprises only a limited set of new concepts. In situations where entire cloud
stacks are to be provisioned, the overall complexity needs to be managed. For
mastering complexity, model-based approaches have proved beneficial. Equally
important, they realize automation while capturing valuable expert knowledge.
For this reason, a model-driven approach comprising tailored domain-specific
languages for the provisioning of customized cloud stacks has been adopted.

Keywords: cloud, DSL, IaaS, MDE, model-based, provisioning, SaaS

The paradigm of cloud computing was born out of the spirit of service computing.
As a result, a stack comprising infrastructure as a service (IaaS), platform as a service
(PaaS), and software as a service (SaaS) offers different functionalities for the provi-
sioning and management of cloud services. Latter services abstract from underlying
services introducing the roles of respective service providers and service consumers. This
abstraction realizes transparency in terms of hardware, operating system, and possibly
also network, location, and employed technologies.

At the same time, the abstraction established by the service models naturally con-
strains service consumers to some degree as properties of lower cloud services are
aggregated. For example, the file system, its redundancy, and distribution usually cannot
be controlled by an SaaS provider as it falls into the responsibility of the IaaS provider.
For providers of higher-level cloud services, a certain configuration of distinctive under-
lying cloud service properties may be a key requirement, however.

Thus, in an industrial context, the lack of control over lower-level cloud service
properties may hinder the adoption of cloud-based development and operation. Moreover,
building SaaS solutions on top of a PaaS usually requires a homogeneous technology
stack. While a PaaS may offer additional value, simplifying development and deploy-
ment, it may also be perceived as inflexible. Someone having a background on system
administration might prefer to build on an IaaS for provisioning and exposing higher
cloud services. From a security perspective a setup in which distinct tenants separate
the data on a lower-level of the cloud stack may be preferred. That is, while it would be

46



possible to work with a PaaS using a (multi-tenant) database, a requirement (e.g., from
management) may demand that multi-tenancy takes place at an IaaS level so that data is
physically separated.

In such cases, where individual setups are to be provisioned on top of IaaS deploy-
ments and for keeping the spirit of service-orientation, automation is key. For mastering
the complexity it also becomes necessary to elevate concepts of cloud computing from
technical terms to higher levels of abstraction. Both challenges can be addressed fol-
lowing a model-based approach. This paper reports on the industrial adoption of such a
model-based approach. Domain-specific languages (DSLs) for describing customized
cloud stacks are presented together with respective model transformations and services.

The remainder of this paper is structured as follows: Section 1 presents a motivating
example. The approach and the DSLs for configuring customized cloud stacks is pre-
sented in Section 2. Next, Section 3 revisits the case study by illustrating the applicability
of the approach and Section 4 compares to related work. Finally, Section 5 presents
lessons learned and discusses on the benefits, risks, and limitations of the approach and
Section 6 concludes the paper.

1 Customized Cloud Stacks — A Motivating Example

In an enterprise, internal users can profit from IaaS services by requesting resources
using a self-service. This greatly reduces administrative overhead, waiting time, and
costs. This is especially true for innovation projects and prototyping as requirements
may change over time and iteration cycles need to be kept short. Besides project portals
supporting an agile methodology with capabilities such as version control, wiki, and
bug-tracking there is often a need to also simply provide innovation projects with a
“playground” of readily available server infrastructure. This way, someone familiar with
system administration can profit from the full flexibility of the systems. Yet, software
and services need to be installed, configured, and deployed. In order to reduce this work –
which is an overhead to the project, it would be interesting to automate the latter without
putting restrictions on the subsequent use and project-specific customization. Ideally, it
would be easy and prompt to demand a complicated server landscape.

For this, let us consider a machine-to-machine (M2M) scenario in which a proof of
concept (PoC) has been developed. A multitude of M2M devices gathers data through
sensors and emits events that are processed by a backend in a publish–subscribe manner.
Finally, a dashboard provides a monitoring view for web clients. The PoC correlates data
from the devices with user data within the backend in near real-time. For demonstrating
the PoC it suffices to integrate it within a simplified setup. For provisioning a demonstra-
tor for a PoC, an IaaS platform can provide the on-demand infrastructure. Yet, software
and services need to be installed, configured, and integrated. That is, higher-level cloud
services need to be provisioned as well. The resulting overall cloud service stack is rather
particular to the demonstrator (i.e., the PoC) or its context (M2M in this case). Thus, it
is referred to in this paper as a customized cloud stack.

In such situations, in which entire cloud service stacks are to be provisioned in a
service-oriented manner, automation is required. Beyond that and for supporting the
on-demand provisioning of customized cloud stacks, complexity needs to be mastered.

47



2 Demanding Cloud Stacks using Domain-Specific Languages

Software 
 PoC for the  

M2M Scenario 

Platform 
 Mosquitto 
 PostgreSQL 
 Apache HTTP 

Infrastructure 
 Members 
 Volumes 
 Security Groups 
 Server  

 

IaaS Provider 
 

IaaS Client 
(generated) 

 
Execution 

 

CM Server 
• install 

platform 
• deploy SW 

Cloud-Init 
Code 

CM Manifests 
(generated) 

CM Modules 

EC2 IaaS Model (Sect. 2.1) 

Abstract IaaS Model (Sect. 2.2) 

DSL Program (Sect. 2.3, Fig. 2) 
 

W7 urEnvironment project  M2M_PoC 
costCenter "123456789" 
 

profile  ThreeStage 
 

hostingUnit sensor stage DEV TEST 
         service PoC_part1 
 

hostingUnit broker  
         service Mosquitto 

Model Transformation 

Model Transformation 

Figure 1: Overview of the Model-based Approach for the Automated Provisioning

Using the motivating example, Figure 1 gives an overview of the approach. On the
right hand side the customized cloud stack is depicted and the left hand side illustrates
its model-based specification and transformation. Provisioning is realized by executing
a generated IaaS client and optionally and in addition by relying on configuration
management (CM) software as shown in the middle of the figure.

A bottom-up approach was chosen for the engineering of the DSLs (cf. [6]) and its
transformations. For this reason the first DSL, presented in Section 2.1, simply reflects
IaaS concepts and is closely related to the respective application programming interfaces
(APIs) through code generators. In terms of the original model-driven architecture
(MDA) proposal 1, an instance of the abstract DSL, i.e., an instance of the metamodel as
defined by the grammar, corresponds to a platform-specific model (PSM).

The second DSL still focuses on infrastructure but abstracts from some concepts
and is outlined in Section 2.2. It builds on conventions and leaves out some details. As
a result, it eases the specification of IaaS. Compared to the first DSL, when used, this
DSL produces more compact code (referred to as DSL programs). As a consequence, it
also reduces the chance for errors; i.e., some validators, that need to check PSMs, are
not required because of conventions the DSL is based on. A DSL program is parsed
and mapped through model-to-model transformation to a PSM. Finally, code genera-
tors produce the respective service consumers for the provisioning of the demanded
infrastructure as specified in the DSL programs.

1 http://omg.org/cgi-bin/doc?omg/03-06-01

48



Eventually, a third, high-level DSL permits the specification of customized cloud
stacks and is explained in Section 2.3. A model is first mapped to a general IaaS model
and then transformed via a PSM to the respective IaaS client that realizes the provisioning
of the customized cloud stack.

2.1 A Domain-Specific Language for IaaS APIs

An IaaS called Wolke 7 (W7) is deployed internally at Deutsche Telekom. Based on
OpenStack 2 it enables self-service through a dashboard and exposes Amazon Web
Services (AWS) and other APIs for management. When starting to adapt a model-based
approach for the overall goal, the initial step was to build a metamodel for Amazon
Elastic Compute Cloud (EC2) 3. This was realized by defining a grammar of a concrete
DSL using Eclipse Xtext (Xtext) 4.

Besides a project identifier and an optional description, an IaaS project states a cost
center for internal service charging and the creator of the project, and enumerates its
members. Finally, security groups, volumes, and servers are defined. The grammar rule
for a security group comprises firewall rules (FWRule) that state the protocol, the source
(src), and one or more destination (dst) ports or port ranges. For the source either
another security group needs to be referenced or a network address has to be specified.
Grammar rules for volumes and servers are defined similarly. They comprise further
rules and capture concepts such as images, flavors, cpu, ram, and disk.

The resulting DSL closely reflects EC2 concepts, is, consequently, rather platform-
specific, and does not realize much of an added value apart from the fact that these
concepts are now available to the modeling. In particular, the abstract DSL constitutes a
target metamodel for the higher-level DSLs. Clients using the IaaS APIs naturally form
the target of the execution engine 5. Because the DSL is tightly bound to these, an IaaS
client can easily be generated through a model-to-text transformation. Besides a shell
script using Euca2ools 6 also a shell script using OpenStack Compute (Nova) 7 client
has been developed.

2.2 A Simplifying, Abstracting Language for IaaS

Abstracting from the IaaS DSL, security groups comprise respective firewall rules and
aggregate servers. On the one hand, the aggregation of servers in security groups is a
constraint compared to the EC2 model where servers are associated with one or more
security groups. On the other hand, it simplifies configuration for DSL users, presumed
that a server only needs to “reside” within a security group. A project can specify
defaults that apply to the server definitions such as the default flavor or image.
These concepts are directly used from the lower-level DSL through language referencing

2 http://openstack.org
3 http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-api.pdf
4 http://eclipse.org/Xtext
5 The execution engine interprets the DSL programs or transforms the models (cf. [6]).
6 http://eucalyptus.com/docs/euca2ools/3.0/euca2ools-guide-3.0.2.pdf
7 http://nova.openstack.org

49



(cf. [6, p. 119]) using Xtext’s import statement. A server may overwrite these defaults
by locally specifying respective values. In contrast to the EC2 model, volumes do not
have to be defined explicitly and attached to a server. Here they are defined implicitly
using mount statements. An advantage is that the block device can be formatted and
mounted into the filesystem during provisioning. In addition, an offsite backup strategy
may be specified using duplicity 8 behind the scenes. Such features can be activated with
a few DSL keywords and parameters and made effective due to the realized automation
while following best practices. They already present added value to the plain EC2 IaaS.

2.3 Specifying Customized Cloud Stacks

Having abstracted from EC2 previously, the third DSL focuses on specifying customized
cloud stacks. The main idea is to not only state infrastructure but also software and
services. That is, an entire cloud service stack can be specified using a DSL. In order
to build on established CM solutions as well as not to pollute the DSL with technical
aspects of the deployment the latter are weaved into the model-driven approach. Yet, the
DSL is complete so that modeling is not blocked by the other activities lowering the
barrier to obtain at least some cloud services such as the infrastructure. Also, security
groups with all their technical details are abstracted from as much as possible. In addition,
the various stages of the engineering lifecycle such as development, test, and production
are considered. That is, infrastructure is provisioned similarly for each of the stages.
This way it can be ensured that a cloud stack for testing or preproduction is provisioned
equally as for production. Exceptions to such replications are possible; e.g., a repository
may only be required for development.

The overall toolchain comprises the following parts: besides the parsing of the DSL
programs and their subsequent transformation, cloud-init files may be weaved into a
userdata that is passed when launching servers. This takes place when a cloud-init file is
available for a service as specified in the project. For (further) service provisioning
Puppet 9 can be used. Indeed, Puppet is preferred over cloud-init for the CM and
provisioning making it only necessary to supply a single cloud-init file with a Puppet
directive for configuring the Puppet agent when launching a server instance. Similarly
to cloud-init files, Puppet modules are included into manifest files of respective servers
when the name of a service matches. While the DSL is complete (cf. [6, p. 109]), the
approach currently relies on Puppet experts for providing respective modules realizing
separation of concerns (SoC). That is, the conceptual part can be expressed using the
DSL and the technical details for the provisioning are supplied separately. In particular,
Puppet modules can be developed prior or subsequently to the DSL programs and made
available to other projects through a common repository.

The rule for the project resembles the definition from the lower-lever DSLs, i.e.,
(meta)data such as the cost center or members are listed. Differently, it comprises
a profile and hostingUnits with services. At some places it uses references
to separately defined entities, i.e., the profile and serviceTypes can be defined
globally or individually for the project. The profile defines stages where each

8 http://duplicity.nongnu.org
9 http://puppetlabs.com

50



stage can be bound to a dedicated cloud. This way, the production environment can be
located at a different cloud region than where development takes place. A hostingUnit

corresponds to a server if no particular scale parameters are passed. Otherwise multiple
server instances will be created for constituting a cluster. If not explicitly bound to one
or more stages, the servers of a hostingUnit will be instantiated in all the stages.
Similarly, a service of a hostingUnit can further refine its own instantiation, i.e., it
can specify stages out of the subset of its hostingUnit. If a service shall not be
exposed externally, it can be declared as internal. In this case no allowing security
rule will be generated for those ports, which the serviceType may be associated with.
Finally, a serviceType may imply other services. This permits to define transitive
dependencies amongst serviceTypes.

3 Revisiting and Resolving the Case Study

A motivating example has been described in Section 1 in which a demonstrator for a PoC
in the context of M2M is wanted and is to be developed within a customized cloud service
stack. Expressed in the DSL presented in Section 2.3, Figure 2 depicts the programs for
describing the respective cloud service stack. The project (see Figure 2a) comprises a
hostingUnit simulating a sensor during the stages of development (DEV) and test
(TEST) while in production real M2M devices generate the data. The sensor hosts the
first part of the cloud-based PoC (PoC part1). A broker is realized by the Mosquitto 10

software. As it is a MQ Telemetry Transport (MQTT) 11 broker, it implies the rather
abstract serviceType MQTT (cf. Figure 2b) with the default ports 1883 and 8883 for
Transport Layer Security 12. Other hostingUnits similarly host other services such
as PostgreSQL 13 or the other parts of the PoC. Note that dependencies are specified
for all parts of the PoC discretely. This simplifies the task of defining the cloud service
stack and moves responsibility to defining the respective serviceTypes which can
be realized by a different information worker or even role at a different place. Please
also note that definitions can often be reused and, as a best practice, can be moved to a
standard library. In this self-containing example it would have sufficed to only define
the project specific serviceTypes for the different parts of the PoC while the other
definitions (including the profile) would have been contributed to a standard library
from which they would be available.

The services listed in the hosting units are deployed together with their transitive
dependencies on the respective server instances using the underlying CM software. Also
their ports are considered for the IaaS security rules. From the DSL programs – their
generated CM files and IaaS clients – and the supplied Puppet modules, the entire cloud
service stack is built automatically and without further user interaction. An additional
management server must be present, however, that acts as the Puppet master for the
servers as defined in the DSL program. Its hostname and certificate are injected into the
Puppet agent configuration of cloud-init (see Section 2.3).
10 http://mosquitto.org
11 http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/MQTT V3.1 Protocol Specific.pdf
12 http://ietf.org/rfc/rfc4346.txt
13 http://postgresql.org

51



W7 urEnvironment project
M2M_PoC
costCenter "123456789"
members {
    "t.holmes@telekom.de"
    "r.schwegler@telekom.de"
}
createdBy "t.holmes@telekom.de"

profile ThreeStage

hostingUnit sensor flavor S
                   stage DEV TEST
    service PoC_part1

hostingUnit broker flavor S
    service Mosquitto

hostingUnit converter flavor S
    service PoC_part2

hostingUnit analytics flavor S
    service PoC_part3

hostingUnit db
    service PostgreSQL

hostingUnit www
    service ApacheWSGI
    service PoC_part4

(a) A Customized Cloud Stack

W7 urEnvironment globals
profile ThreeStage
    stages DEV ("development")
           TEST ("test")
           PROD ("production")
serviceType Apache implies
    service Web
serviceType ApacheWSGI implies
    service Apache
serviceType Mosquitto implies
    service MQTT
serviceType MosquittoClient implies
    service PyXB
serviceType MQTT
    ports TCP 1883,8883
serviceType PostgreSQL
    ports TCP 5432
serviceType PoC_part1 implies
    service MosquittoClient
serviceType PoC_part2 implies
    service MosquittoClient
serviceType PoC_part3 implies
    service MosquittoClient
    service SQLAlchemy
serviceType PoC_part4 implies
    service SQLAlchemy
serviceType PyXB
serviceType SQLAlchemy
serviceType Web
    ports TCP 80,443

(b) Profile and Service Type Definitions

Figure 2: DSL Programs for the Machine-to-Machine Scenario

The approach permitted to successfully setup a customized cloud stack for the
development of a PoC within the M2M context. Once the PoC was implemented, the
entire stack for demonstration purposes could be provisioned within the dimension of
minutes. Accessing the live demonstrator, finally, is as simple as opening the assigned
floating IP address of the web server with the dashboard in a web browser.

4 Related Work

The OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) 14

standard aims at portability of cloud services. It permits the self-contained description of
entire cloud services stacks. As such, it enables the control of lower-level cloud service
properties. Building on top of a heavyweight technology stack it requires – without
further tool support – experts to bundle cloud applications. Moreover, it relies on a
TOSCA container such as OpenTOSCA [2]. In contrast, the approach presented in
this paper is lightweight, directly operates on an IaaS provider, and aims at reaching
end-users facilitating self-service. For instance, DSL programs can be written also by
14 http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html

52



developers that are not familiar with, e.g., (process-driven) service-oriented architecture
(SOA) technologies. While both of the approaches have a common goal in describing
service stacks, they have different focuses: As TOSCA’s main objective is the technical
portability of cloud services (cf. [3]) it does not need to simplify the process of specify-
ing a customized cloud stack in the first place which is a focus of the work presented.
Nevertheless, there is work under way to address the usability of TOSCA: Winery 15 [5]
enables users to graphically model service topologies.

AWS CloudFormation 16 facilitates the instantiation of a collection of cloud services
through templates. The higher-level DSLs also aim at instantiating cloud services using
an IaaS provider, yet follow a different approach. Compared to the DSL programs
the templates are not intended for end-users, i.e., they must be written by experts.
Once available, however, they can be interpreted by a web-based management console
where a user can specify parameters. Beyond the instantiation of a collection of cloud
services, the presented work also considers the engineering lifecycle and supports the
instantiation in multiple cloud regions. Again, the work presented may be combined with
other technologies following a model-driven approach. That is, from the DSL programs
respective templates could be generated. Please note that while possible the intended
usage pattern is different in this case, however: a template – relatively expensive in
its creation – is expected to be instantiated often, whereas using the DSLs rather new,
different, or modified programs are transformed promptly as needed.

Configuration management software such as Puppet or Chef 17 (both internal DSLs)
generally are too low-level compared to what this approach aims for, i.e., enable non-
experts to specify customized cloud stacks. Yet, overall complexity cannot be reduced
and the functionality of CM software is welcomed, required, and thus incorporated
into the approach. While accessing CM software and offering experts the possibility to
integrate into and contribute to the overall toolchain, the DSLs presented reach for a wider
audience and leverage the added value of incorporated technologies and IaaS providers.
As external DSLs they are more tailored and leave out features of a general purpose host
language. An approach that started to follow the vision of incorporating end-users is
JuJu 18: a graphical user interface permits cloud users to graphically design deployments.
Besides the abstraction from community-contributed scripts called Charms, further
support for different roles as common in model-driven engineering (MDE) approaches,
such as for conducting multi-step configuration, may be desirable.

5 Discussion and Lessons Learned

While the previous section compared to the state of the art by discussing the various
approaches, this section reflects on the presented work describing applicability, benefits,
risks, and limitations. Finally, some lessons learned are presented.

The descriptive DSL programs are easy to write, compact, and intuitive. Differences
between versions of a program can easily be recognized by users when using a version
15 http://projects.eclipse.org/projects/soa.winery
16 http://aws.amazon.com/cloudformation
17 http://getchef.com
18 http://juju.ubuntu.com

53



control system. This is because, besides some references, the textual DSL does not
comprise concepts that are scattered across multiple places. The approach realizes SoC,
i.e., technical details are realized by CM experts, e.g., developers, while a high-level
description of a cloud stack is specified by, e.g., a cloud architect. Thus, common to MDE
approaches, different roles are incorporated – each working within a defined level of
abstraction. This lowers entry barriers for each of the roles and results in more efficiency.

The presented work can build on different IaaS providers and can be applied in
various contexts. The former applies as EC2 is a de facto standard supported by a variety
of IaaS providers, but in other cases an adapted code generator would make use of
the respective APIs or clients. While an M2M scenario was used as a case study, it is
not limited to this context. Other DSL programs for describing cloud stacks may differ
significantly and thus the DSL can be used for diverse scenarios having different contexts.
The work is not only interesting when developing a PoC as pictured in the motivating
example. Besides innovation projects, the work can be applied also in (evolutionary)
prototyping scenarios and when testing a minimum viable product.

Furthermore, it can help to analyze cloud stacks and support the substitution of
services with either mockups or implementations. For example, in the motivating exam-
ple, certain components such as the M2M devices may be simulated in the beginning.
While these simulators may continue to be deployed in development and testing, real
M2M devices would take over in production. Another example would be the substitution
of the MQTT broker: Mosquitto could be replaced by RabbitMQ 19. Supporting such
substitutions can accelerate evaluation of services; particularly when combined with
automatic performance tests.

The work has been conducted using GNU/Linux-based operating system images for
the server instances. Yet, as Puppet is a cross-platform CM, the approach does not come
with such a restriction per se. A current presumption is that any dependencies between
hostingUnits and/or within Puppet modules are taken care by Puppet experts. As
mentioned in the previous section there is a risk that TOSCA obsoletes parts of the work
presented in this paper. As TOSCA is a standard by now and further development and
tool support is to be expected from the community, it could be contemplated to support
TOSCA as a future work. This would be beneficial for rapid application development
and would provide a way to make TOSCA and related technologies accessible. That is,
TOSCA would form the target language for the DSLs as presented in this paper. It is
expected that the model-based approach proves flexible enough to undertake migration
of cloud stacks to TOSCA if desired.

Once the overall toolchain was automated and it was possible to provision entire
service stacks, soon a new use case emerged. Not only should it be possible to describe
and provision a customized cloud stack but it would be interesting to also support
changes. That is, while a (new or modified) stack can always be (re)provisioned, it
would be nice to only consider changes in case of an existing, previously built stack.
For supporting this use case, the change impact needs to be analyzed and dealt with.
In simple scenarios, the stack would merely be extended making it necessary to solely
deploy the new cloud services. In order to realize the use case, a differential approach was
adapted. That is, a service consuming and parsing the DSL programs forming a target

19 http://rabbitmq.com

54



model, invokes a service that reflects on the current state using the IaaS provider and that
generates a runtime model (cf. [4]). For this, the IaaS metamodel has been enriched with
runtime aspects. From the target and the current runtime model an Eclipse Modeling
Framework (EMF) DiffModel 20 is calculated which is interpreted for executing the
changes. Further work needs to be undertaken in this regard; e.g., to involve users for
approving particular changes.

6 Conclusion

When a customized stack of cloud services is preferable over a uniform stack, compre-
hensive provisions need to take place for realizing the entire service stack on top of
an IaaS. For mastering complexity and for realizing automation, it is feasible – both
from a technical and a practical point of view – to apply model-based technologies for
the provisioning of customized cloud stacks. For this, DSLs can be engineered – as
shown in this paper – that are well suited for the specification of such stacks. Abstracting
from technical details the approach simplifies specification while realizing platform
independence. Accessing well-established software for realizing the low-level config-
uration, the work presented combines the best of two worlds: i.e., CM – backed and
driven by a strong community – and modeling that advances engineering to higher levels
while reaching and incorporating end-users. Because of the modeling dimension of the
approach, it is believed that the presented work – focusing on a textual, descriptive DSL
interface for customized on-demand stacks – can easily be adopted, adjusted, and even
combined with other work that aims at easing the provisioning of service topologies.

Acknowledgments The author would like to thank Robert Schwegler and Bernard Tsai for
providing valuable feedback regarding the design of the DSLs, peer reviewers for their estimated
service, Tassilo Huch for his support in preparing Figure 1, and Mike Machado for proofreading.

References

1. Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.): Service-Oriented Computing - 11th International
Conference, ICSOC 2013, Berlin, Germany, December 2-5, 2013, Proceedings, Lecture Notes
in Computer Science, vol. 8274. Springer (2013)

2. Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A., Wagner, S.: Open-
TOSCA - A Runtime for TOSCA-Based Cloud Applications. In: Basu et al. [1], pp. 692–695

3. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: Portable Automated Deployment
and Management of Cloud Applications. In: Bouguettaya, A., Sheng, Q.Z., Daniel, F. (eds.)
Advanced Web Services, pp. 527–549. Springer (2014)

4. Blair, G.S., Bencomo, N., France, R.B.: Models@ run.time. IEEE Computer 42(10), 22–27
(2009)

5. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery - A Modeling Tool for TOSCA-
Based Cloud Applications. In: Basu et al. [1], pp. 700–704

6. Völter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L.C.L., Visser, E.,
Wachsmuth, G.: DSL Engineering - Designing, Implementing and Using Domain-Specific
Languages. dslbook.org (2013)

20 EMF Compare: http://wiki.eclipse.org/EMF Compare

55



UML-based Cloud Application Modeling with
Libraries, Profiles, and Templates?

Alexander Bergmayr, Javier Troya, Patrick Neubauer,
Manuel Wimmer, and Gerti Kappel

Business Informatics Group, Vienna University of Technology, Austria
{bergmayr,troya,neubauer,wimmer,kappel}@big.tuwien.ac.at

Abstract. Recently, several cloud modeling approaches have emerged. They ad-
dress the diversity of cloud environments by introducing a considerable set of
modeling concepts in terms of novel domain-specific languages. At the same
time, general-purpose languages, such as UML, provide modeling concepts to
represent software, platform and infrastructure artifacts from different viewpoints
where the deployment view is of particular relevance for specifying the distribu-
tion of application components on the targeted cloud environments. However, the
generic nature of UML’s deployment language calls for a cloud-specific exten-
sion to capture the plethora of cloud provider offerings at the modeling level. In
this paper, we propose the Cloud Application Modeling Language (CAML) to fa-
cilitate expressing cloud-based deployments directly in UML, which is especially
beneficial for migration scenarios where reverse-engineered UML models are tai-
lored towards a selected cloud environment. We discuss CAML’s realization as a
UML internal language that is based on a model library for expressing deploy-
ment topologies and a set of profiles for wiring them with cloud provider offer-
ings. Finally, we report on the use of UML templates to contribute application
deployments as reusable blueprints and identify conceptual mappings between
CAML and the recently standardized TOSCA.

Keywords: Cloud Computing, Model-Driven Engineering (MDE), Cloud Mod-
eling, UML, Language Engineering

1 Introduction

Cloud computing has recently emerged as a new possibility how software can be made
available to clients as a service. For software vendors, this is appealing as cloud envi-
ronments [3] have the benefit of low upfront costs compared to a traditional on-premise
solution and operational costs that scale with the provisioning and releasing of cloud
offerings. They may range from low-level infrastructure elements, such as raw com-
puting nodes, over higher level platforms, such as a Java execution environment on
top of a cloud infrastructure, to ready-to-use software deployed on a platform. As a
result, current cloud environments are diverse in nature and show various levels of vir-
tualization they operate on. Recent cloud modeling approaches already capture a con-
siderable set of domain-specific concepts to support different scenarios: description of
? This work is co-funded by the European Commission under the ICT Policy Support Pro-

gramme, grant no. 317859.

56



cloud-based applications [17] and their deployments [5, 13, 21], optimization of such
deployments [14, 18], provisioning of cloud resources [10], or automating the scalabil-
ity of cloud environments [9,11]. At the same time, general-purpose languages, such as
UML, provide modeling concepts to represent software, platform and infrastructure ar-
tifacts from different viewpoints. Hence, providing extensions to UML that satisfy cur-
rent cloud modeling requirements appears beneficial, especially when cloud-oriented
migration scenarios [4] need to be supported where reverse-engineered UML models
are tailored towards a selected cloud environment.

However, to date, effective UML-based support for modeling cloud application de-
ployments that are wired with cloud provider offerings is still missing. As a result,
on-premise deployments expressed in UML can hardly be turned into cloud-based de-
ployments without neglecting the intended usage of UML. In the ARTIST project [4],
we are particularly confronted with this problem as we work towards a model-driven
engineering approach for modernizing applications by novel cloud offerings, which in-
volves deploying them or at least some of their components on a cloud environment.
Ideally, the design choices of a cloud-based deployment are expressed at the modeling
level, which calls for an appropriate language support in the light of UML. While in
this way, not only the full expressive power of UML can be exploited, also a seamless
integration of cloud-specific models into existing UML models is ensured.

In this paper, we propose the Cloud Application Modeling Language (CAML) [7]
to enable representing cloud-based deployment topologies directly in UML and refin-
ing them with cloud offerings captured by dedicated UML profiles. Thereby, a clear
separation is achieved between cloud-provider independent and cloud-provider specific
deployment models [1], which is in accordance with the PIM/PSM concept. In our case,
the “platform” refers to the cloud provider. We developed profiles for two major cloud
providers1 and integrated them into a common cloud profile. Inspired from common
cloud computing literature [2, 3, 12], recent cloud modeling approaches [5, 9, 15, 17,
18, 21] and cloud programming approaches2, we developed CAML’s model library that
facilitates developing base deployment topologies to which cloud offering profiles are
applied. The benefits of realizing CAML as an internal language of UML are threefold:
(i) UML provides a rich base language for the deployment viewpoint, (ii) “cloudify-
ing” UML models is facilitated without the need to re-model existing applications, and
(iii) profiles in UML allow hiding details of cloud provider offerings from models and
dynamically switching between them by (un-/re-)applying respective cloud provider
profiles.

We motivate the practical value of CAML by means of a deployment scenario in
Section 2. In Section 3, we give the design rationale of CAML and provide insights into
its model library and the covered UML profiles whereas in Section 4, we discuss the
employment of UML templates as reusable deployment blueprints. The operational-
ization of CAML by means of a mapping to the recently accepted TOSCA standard is
dedicated to Section 5. Finally, in Section 6 we discuss work related to CAML before
we conclude in Section 7.

1 Amazon AWS: http://aws.amazon.com and Google Cloud Platform: http://cloud.google.com
2 Deltacloud: https://deltacloud.apache.org and jclouds: http://jclouds.apache.org

57



2 Motivating Deployment Scenario

To motivate the benefits of employing UML as the host language for realizing CAML,
we give an overview of UML’s structural viewpoints that support representing appli-
cation deployments by means of a reference application3 of the ARTIST project. We
take the viewpoint of the application components and their deployment. Figure 1a de-
picts some components of our application, an excerpt of their realizing classes and the
manifestation of these components by deployable artifacts. A possible on-premise de-
ployment for them is presented in Figure 1b. It covers instances of the two deployable
artifacts and connects them to a Java-based middleware and a relational DBMS, which
are in turn deployed onto a node with specified (virtual) machine characteristics. The
model elements of the deployment are instances of the custom types defined in the
component viewpoint (see Figure 1a) and the deployment viewpoint (see Figure 1c),
respectively. With the emergence of cloud offerings and the demand to exploit them,
deployment models need to be expressive enough to capture such offerings. This is ex-
actly the idea of CAML. Because it is realized in terms of lightweight extensions to
UML, CAML models are applicable to UML models and so to our modeled reference
application as depicted in Figure 1. In Sections 3 and 4, we present cloud-based deploy-
ments for our reference application.

PetstoreWeb

ShoppingCart
- order:Order
- orderService:OrderService 1..*

PetstoreService

OrderService
+ createOrder():Order
+ findOrder(in id long):Order

PetstoreDomain

Order
- orderId:long

OrderLine
- lineId:long

PetstoreData

«component» «component» «component»

«class» «class» «class» «class»

«artifact»
PetstoreBusiness

«artifact»
«manifestation»

«manifestation»«manifestation»

«use» «use»

«use»

(a) Component Viewpoint

(c) Deployment Viewpoint at Type Level

«deploy»

«deploy»

:OnPremiseNode

:ApplicationContainer

container=JEE

:PetstoreBusiness :PetstoreData

:Datastore
type=relational

«package
import»

«deploy»

«deploy»

(b) Deployment Viewpoint at Instance Level

OnPremiseNode
«Node»

ContainerKind
«Enumeration»

JEE
RubyOnRails

memory:Real [0..1]
CPU:Real [0..1]
localDisk:Real [0..1]
operatingSystem:OSKind [0..1]

Linux
Windows

OSKind
«Enumeration»

DatastoreKind
«Enumeration»

Relational
DocumentOriented

Datastore
«ExecutionEnvironment»

type:DatastoreKind [1]
ApplicationContainer

«ExecutionEnvironment»

type:ContainerKind [1]

«package import»

memory=2
CPU=1.7
localDisk=4
operatingSystem=Linux

Petstore Components

On-premise Petstore Deployment «ModelLibrary»Web Deployment Library

«deploy»

Fig. 1: CAML Use-Case

3 Cloud Application Modeling

With CAML, we propose lightweight extensions to UML for modeling cloud application
deployments that are seamlessly applicable to UML models, such as component mod-
els, typically created throughout software modeling activities. The intended purpose of

3 It is based on the Java Petstore: http://www.oracle.com/technetwork/java/index-136650.html

58



CAML is to express deployment topologies by common cloud modeling concepts and
to enable the wiring of such models with concrete cloud provider offerings. This wiring
is achieved by applying a dedicated CAML Profile to a deployment model expressed
in terms of the CAML Library. As a result, a clear separation between cloud-provider
independent and cloud-provider specific models is achieved. Selecting cloud provider
offerings at the modeling level for a concrete deployment becomes a matter of applying
the respective stereotypes. The overall set of stereotypes encompass the possible design
choices provided by CAML regarding cloud provider offerings.

3.1 Model Library for Cloud Deployment Topologies

As presented in Figure 2, the CAML Library is built around the concept of cloud offer-
ing. It is considered as a virtual resource that is expected to be supported by a cloud
environment once the wiring with a concrete cloud offering has been performed. More
specifically, three offering types capture common cloud environment capabilities. A
cloud node provides compute capacity and operates at a certain level of virtualiza-
tion [3]. From an infrastructure-level perspective, cloud nodes come with an operat-
ing system, while when turning this perspective to the platform level they also provide
middleware, such as a web server and an application container. In case of the latter, the
platform is fully managed by a cloud environment. With dedicated scalability strategies,
the elastic nature of a cloud environment is managed. For instance, cloud nodes can
automatically be acquired depending on the number of incoming requests. Clearly, ac-
quiring and releasing cloud nodes can also be manually controlled. The second offering
refers to the cloud storage capabilities of cloud environments which provide diverse so-
lutions for structuring application data [12] and increasing their availability by relaxing
consistency [22]. Finally, a cloud service is considered as a ready-to-use cloud offering
that is provisioned and managed by a cloud provider. For instance, a load balancer that
distributes requests to cloud nodes is an infrastructure-related cloud service, while a
task queue for long running processes is a platform-related cloud service. To represent
offering-to-offering connections, communication channels are employed while cloud
configurations enable modifying the assumed conventions of a cloud environment. For
instance, an automatic scaling strategy can be configured with boundaries of minimum
and maximum running cloud nodes. Generally, instantiated elements of the CAML Li-
brary are refined to concrete cloud provider offerings via dedicated stereotypes.

CloudLibrary

CloudOffering
«Class»

CloudNode
«Node»

dataStructure:StructureKind [1]
consistency:ConsistencyKind [1]

ScalingStrategy
«Enumeration»

automatic
manual[*]

[*]

«CommunicationPath»
CommunicationChannel

channelSource

channel
Target

CloudStorage
«ExecutionEnvironment»

CloudService
«Artifact»

CloudConfiguration
«DeploymentSpecification»

[*]

«Association»
OfferingConfiguration

offering [*]configuration

«ModelLibrary» Cloud Library

ConsistencyKind
«Enumeration»

strict
eventual

StructureKind
«Enumeration»

Block
Blob
Relational
KeyValue

virtualization:VirtualizationKind [1]
scaling:ScalingStrategy [1]

VirtualizationKind
«Enumeration»

infrastructure
platform

Fig. 2: Cloud Library of CAML

59



3.2 Profiles for Cloud-Provider Specific Deployments

With CAML Profiles, we provide a set of UML stereotypes that enable wiring cloud
deployment topologies with concrete offerings of cloud providers. Basically, a stereo-
type embodies a concrete offering at the modeling level and captures its features in
terms of properties. Figure 3 presents some stereotypes specific to the cloud offerings
of the Google App Engine (GAE) and Amazon AWS. Common cloud offerings that are
shared by both providers are lifted to the common cloud profile. Considering instance
types, they are supposed to be applied to cloud nodes to wire them to a concrete cloud
offering, such as a “Frontend Instance” (e.g., GAEF1) that hosts a Java-based middle-
ware managed by Google’s App Engine. In turn, cloud offerings are refined by what
we call meta-profiles. With the notion of meta-profiles, we facilitate refining them with
technical-related details, such as the performance of instance types, and business-related
information [8], like the costs of cloud offerings.

InstanceType

operatingSystem:OSKind [1]
region:RegionKind [1]
availabilityZone:String [0..1]

«Stereotype»

InstanceSpecification
«metaclass»

RequiresCloudNodeClassifier
{{OCL} self.base_InstanceSpecification
.classifier->any(e|e.oclisTypeOf(CloudNode))
->notEmpty()}

AWSInstanceType
«Stereotype»

middleware:MiddlewareKind [1]
GAEInstanceType

«Stereotype»

GAEF1
«Stereotype»

memory=0.128
CPU=0.6

«GeneralPurpose»
GAEF4

«Stereotype»

memory=0.512
CPU=2.4

«GeneralPurpose»

Java
Go
PHP
Python

MiddlewareKind
«Enumeration»

US_EAST
EU
ASIA_Singapore

RegionKind
«Enumeration»

RHEL
SLES
Windows

OSKind
«Enumeration»

«package import»

AWSM3Medium
«Stereotype»

memory=3.75
virtualCores=1
localDisk=4

«generalPurpose,runningCosts»

«GeneralPurpose»

AWSC3Large
«Stereotype»

memory=3.75
virtualCores=2
localDisk=32

«StorageOptimized»

«package import»

InstanceTypeCharacteristics
«Stereotype»

Stereotype
«metaclass»

memory:Real [0..1]
virtualCores:Integer [0..1]
CPU:Real [0..1]
localDisk:Real [0..1]

GeneralPurpose
«Stereotype»

StorageOptimized
«Stereotype»

«profile application»«profile application»

«RunningCosts»
value=0.05
currency=USD
metric=Hour

«RunningCosts»
value=0.20
currency=USD
metric=Hour

«RunningCosts»
value=0.70
currency=USD
metric=Hour

«RunningCosts»
value=0.105
currency=USD
metric=Hour

«storageOptimized,runningCosts»
«generalPurpose,runningCosts»

CostComponent
«Stereotype»

Stereotype
«metaclass»

value:Real [1]
currency:CurrencyKind [1]
metric:MetricKind [1]

RunningCosts
«Stereotype»

BaseCosts
«Stereotype»

EUR
USD

CurrencyKind
«Enumeration»

Hour
GB
Operation

MetricKind
«Enumeration»

«profile application»

«profile application»

CommonCloudProfile

GAECloudProfile AWSCloudProfile

PerformanceProfilePricingProfile

«generalPurpose,runningCosts»

M
et

a-
Pr

of
ile

s
C

lo
ud

 P
ro

vi
de

r 
Pr

of
ile

s

Fig. 3: CAML Profiles and Meta-Profiles

60



3.3 CAML By-Example

To demonstrate how CAML is applied, Figure 4 presents a possible deployment topol-
ogy and refinement towards a GAE-based cloud deployment of our introduced use case
(cf. Figure 1). In a first step, we modeled the deployment topology. It consists of two au-
tomatically scaled cloud nodes and a key-value cloud storage for managing the applica-
tion data in an eventually consistent way. As the cloud nodes are specified as platform-
level offering, we directly deployed the application components onto them. Then, in
a second step, we applied the GAE profile and the respective stereotypes to refine the
deployment model towards concrete cloud offerings provided by the GAE. As a result,
the modeled cloud nodes refer to the F1 and F4 instance types that host a Java-based
middleware. The configuration attached to these cloud nodes constrains the maximum
number of idle cloud nodes. Finally, GAE’s key-value datastore is employed for the
required cloud storage capabilities.

:PetstoreBusiness

:CloudNode
«gAEF1»

«GAEF1»

:CloudNode
«gAEF4»

«GAEF4»
middleware=Javamiddleware=Java

:PetstoreData

«package import»

«deploy» «deploy»

(b) GAE-based Deployment of CAML Use-Case

:CloudStorage
«appEngineDatastore»

:CloudConfiguration
«autoScaledConfiguration»

«AutoScaledConfiguration»
maximumIdleInstances=3

(a) Deployment Topology of CAML Use-Case

«profile application»

:PetstoreBusiness

:CloudNode :CloudNode
virtualization=platform
scaling=Auto

:PetstoreData

«package import»

«deploy» «deploy»

virtualization=platform
scaling=Auto

:CloudStorage
«appEngineDatastore»

GAE-based
Refinement

dataStructure=KeyValue
consistency=Eventual

dataStructure=KeyValue
consistency=Eventual

virtualization=platform
scaling=Auto

virtualization=platform
scaling=Auto

NodeTemplate

RelationshipTemplate

«ModelLibrary»CloudLibrary «ModelLibrary»CloudLibrary «Profile»GAECloudProfile

Petstore Deployment Topology GAE-based Petstore Deployment

virtualization=platform
scaling=Auto
Middleware=Java

myCloudNode
(GAEF4)

myPetstoreData
(DataTier)

(deploy) CloudNode
virtualization:VirtualizationKind [1]
scaling:ScalingStrategy [1]

middleware:MiddlewareKind [1]
GAEF4

NodeType

DataTier

RelationshipType

:PetstoreData

:CloudNode
«gAEF4»

«GAEF4»
middleware=Java

«deploy»

virtualization=platform
scaling=Auto

deploy

Legend

CAML TOSCA

CAML2
TOSCA

DerivedFrom
Templates Types

Fig. 4: Reference Application deployed onto Google App Engine

3.4 Prototypical Implementation

To show the feasibility of CAML, we have implemented an Eclipse-based prototype,
which exploits extension points. In this way, developers can directly use CAML in
Eclipse tools, such as Papyrus4, or access its library and profiles in terms of a resource,
which is helpful for the development of transformations. CAML together with all arti-
facts used in this paper are publicly available at our project web site [7]. In addition,
together with our industrial partner SparxSystems, we have also implemented a first
version of CAML for Enterprise Architect5. This provides first evidence that our pro-
posed approach for developing a UML internal cloud modeling language based on a
library and profiles is feasible and current modeling tools with UML support provide
the necessary features to support CAML models.

4 Papyrus: http://www.eclipse.org/papyrus
5 Enterprise Architect: http://www.sparxsystems.at

61



4 Reusable Deployment Blueprints as UML Templates

As CAML is based on UML, its reuse mechanisms can be applied for cloud applica-
tion deployments. This is particularly useful for providing frequently occurring deploy-
ment patterns as predefined UML templates. To show their usefulness and give first
evidence of CAML’s expressivity, we developed 10 templates as reusable deployment
blueprints, most of them are based on Amazon’s best practices6. We modeled their in-
herent topology with CAML’s cloud library and refined them with stereotypes from
the cloud profile dedicated to Amazon. The developed blueprints are available at our
project website [7]. To demonstrate the use of a blueprint, we show how our reference
application is bound to a template, which refers in our case to a 2-tier web architec-
ture [12]. To reuse the predefined template, the deployable artifacts need to be bound
to the template parameters. Figure 5 depicts the component viewpoint of our reference
application and the respective CAML template. It consists of two cloud nodes that refer
to the “M3Medium” offering of Amazon. Their location is required to be in Europe
while the operation system needs to be Linux. For reliability reasons, they are placed
in different availability zones. Requests that arrive at the cloud nodes are first handled
by a load balancing service, which enables a higher fault tolerance of the application.
The number of running cloud nodes is automatically managed by Amazon as expressed
by the scalability strategy. Only the minimum number of running cloud nodes and their
adjustment is configured. Both cloud nodes are connected to a cloud storage that in turn
is replicated to improve data availability. Finally, as Amazon cloud nodes operate at the
infrastructure level, the required middleware for our reference application is defined. In
fact, we directly reused it from the on-premise deployment given in Figure 1.

6 Amazon Architecture Center: https://aws.amazon.com/architecture

«bind»
<BusinessTierPetstoreBusiness, DataTierPetstoreModel>

«Profile»
AWSCloudProfile

«ModelLibrary»
WebDeploymentLibrary:CloudNode

«AWSM3Medium»
operatingSystem=Linux
region=EU
availabilityZone=“A”

:WebContainer
container=JEE6

:BusinessTier :DataTier

«deploy»

«aWSM3Medium»
:CloudNode

«AWSM3Medium»
operatingSystem=Linux
region=EU
availabilityZone=“B”

«aWSM3Medium»

:CloudService
«elasticLoadBalancing»

:CloudStorage
«rDSMaster»

:CloudStorage
«rDSSlave»

«deploy»

«deploy» «deploy»

:CloudConfiguration
«autoScalingGroup»

«AutoScalingGroup»
minimumInstances=3
adjustment=1

BusinessTier:Artifact, DataTier:Artifact

BusinessTier
«artifact»

DataTier
«artifact»

PetstoreWeb PetstoreService PetstoreDomain

PetstoreData

«component» «component» «component»

«artifact»
PetstoreBusiness

«artifact»
«manifestation»«manifestation»«manifestation»

«use» «use»

«use»

«package import»

«profile application»

virtualization=infrastructure
scaling=Auto

virtualization=infrastructure
scaling=Auto

dataStructure=Relational
consistency=strict

dataStructure=Relational
consistency=strict

AWS-based Web Deployment

Petstore Components

«ModelLibrary»
CloudLibrary

«package import»

Fig. 5: Reusable Deployment Template for AWS

62



5 Interoperability between CAML and TOSCA

One major aspect in model-based engineering is to place models as first-class entities in
the engineering process. Ideally, they should be turned into executable or interpretable
artifacts. Regarding the deployment viewpoint, it appears desirable to translate the re-
spective models into descriptors and scripts that are passed to provisioning engines for
cloud environments. For instance, a GAE-based deployment requires specific descrip-
tors for defining the assignment of application modules to a concrete instance type.
This assignment can certainly be derived from a CAML model. At the same time, there
are ongoing efforts in standardizing the representation of cloud-based application de-
ployments. The recently accepted TOSCA standard aims at supporting portable cloud
applications. With the notion of management plans, emerging TOSCA-compliant en-
gines are capable to interpret such deployment topologies and initiate the provision-
ing of defined service templates [5]. Clearly, this is also of practical value for CAML
models. For that reason, we present an initial mapping between CAML and a subset
of TOSCA. Generally, in TOSCA, two modeling concepts are prevalent: template and
type. Templates embody the elements of a deployment topology while types expose the
properties and relationships for which concrete values are provided by templates. In this
sense, types are considered as reusable entities that can inherit from each other. Figure 6
depicts a concrete TOSCA model expressed in Vino4TOSCA [6] for an excerpt of our
GAE-based application deployment (cf. Figure 4). To represent the TOSCA template
for the stereotyped CAML cloud node, the pertinent TOSCA types need to be created:
“CloudNode” and “GAEF1”. The latter is derived from the former as in TOSCA a
template can only have a single type. Similarly, the deployed application component is
represented by a TOSCA template. Finally, the deployment relationship type is required
for connecting the deployed application component to the cloud node at the template
level.

:PetstoreBusiness

:CloudNode
«gAEF1»

«GAEF1»

:CloudNode
«gAEF4»

«GAEF4»
middleware=Javamiddleware=Java

:PetstoreData

«package import»

«deploy» «deploy»

(b) GAE-based Deployment of CAML Use-Case

:CloudStorage
«appEngineDatastore»

:CloudConfiguration
«autoScaledConfiguration»

«AutoScaledConfiguration»
maximumIdleInstances=3

(a) Deployment Topology of CAML Use-Case

«profile application»

:PetstoreBusiness

:CloudNode :CloudNode
virtualization=platform
scaling=Auto

:PetstoreData

«package import»

«deploy» «deploy»

virtualization=platform
scaling=Auto

:CloudStorage
«appEngineDatastore»

GAE-based
Refinement

dataStructure=KeyValue
consistency=Eventual

dataStructure=KeyValue
consistency=Eventual

virtualization=platform
scaling=Auto

virtualization=platform
scaling=Auto

NodeTemplate

RelationshipTemplate

«ModelLibrary»CloudLibrary «ModelLibrary»CloudLibrary «Profile»GAECloudProfile

Petstore Deployment Topology GAE-based Petstore Deployment

virtualization=platform
scaling=Auto
Middleware=Java

myCloudNode
(GAEF4)

myPetstoreData
(DataTier)

(deploy) CloudNode
virtualization:VirtualizationKind [1]
scaling:ScalingStrategy [1]

middleware:MiddlewareKind [1]
GAEF4

NodeType

DataTier

RelationshipType

:PetstoreData

:CloudNode
«gAEF4»

«GAEF4»
middleware=Java

«deploy»

virtualization=platform
scaling=Auto

deploy

Legend

CAML TOSCA

CAML2
TOSCA

DerivedFrom
Templates Types

Fig. 6: Mapping between CAML and TOSCA

6 Related Work

Cloud modeling approaches with the purpose of achieving the wiring of applications
with concrete cloud offerings are most closely related to CAML. Modeling concepts of
these approaches [5, 9, 15, 18, 21] are reflected by CAML on a level of abstraction that
facilitates to represent design decisions for cloud-based application deployments. As a

63



result, modeling concepts of these approaches, e.g., required to achieve the optimization
of an application deployment (cf., [15]) or to express elasticity rules (cf., [9]), are not
completely captured by CAML. However, CAML enables expressing cloud application
deployments that are seamlessly applicable on UML models usually created throughout
software modeling activities as it is realized as a UML internal language. As a result,
well-connected modeling views on cloud applications from a cloud-provider indepen-
dent perspective as well as a cloud-provider specific perspective are supported. The re-
finement of modeling views is enabled by profiles for cloud providers. This additional
typing dimension provided by such profiles and the exploitation of a multi-viewpoint
language to realize CAML differentiates it from existing cloud modeling approaches
and the recently standardized TOSCA.

To the best of our knowledge, the only approach providing cloud modeling sup-
port within UML is MULTICLAPP [17]. It proposes a UML profile for the purpose of
representing components that are expected to be deployed onto a cloud environment
by applying cloud-provider independent stereotypes to them. Hence, these stereotypes
do not support wiring components with cloud provider offerings, which is different to
CAML as stereotypes are applied to achieve exactly that wiring.

CloudML-UFPE [16] provides modeling concepts to represent cloud offerings con-
nected with the internal resources of a cloud environment. Similarly to approaches [10,
11, 19], which propose modeling concepts to represent resources internally managed
by a cloud environment, the focus is set on the cloud provider perspective. As a result,
such modeling approaches support cloud providers to model their environments, which
is out of the scope of CAML.

Finally, it is worth mentioning that approaches, such as Deltacloud7 and jclouds8,
provide an abstraction layer on top of cloud-provider specific programming libraries.
They can be considered as transformation targets for cloud modeling approaches to
automate the provisioning of modeled application deployments.

7 Conclusion and Future Work

We have presented CAML as a UML internal language based on a library, profiles, and
templates. Currently, it is employed by the ARTIST project to model deployments of
large applications used in practice. In this respect, cloud providers that operate at both
infrastructure level and platform level are targeted. Although the realization and initial
evaluation of CAML seems promising, several lines of future work need to be investi-
gated. First, we aim for an automated maintenance of provider-specific profiles with,
for instance, performance or pricing information based on web information extraction
techniques. Second, we intend to provide a simulator for CAML to provide prediction
about non-functional properties such as costs and performance. In this respect, we plan
to explore how FUML can be employed to provide behavioral semantics for CAML in a
similar way as we use it to define behavioral semantics for metamodels [20]. Finally, we
aim for interoperability with current cloud modeling approaches by providing dedicated
transformations or a UML profile.

7 https://deltacloud.apache.org
8 https://jclouds.apache.org

64



References

1. Ardagna, D., Nitto, E.D., Mohagheghi, P., Mosser, S., Ballagny, C., D’Andria, F., Casale,
G., Matthews, P., Nechifor, C.S., Petcu, D., Gericke, A., Sheridan, C.: MODAClouds: A
Model-Driven Approach for the Design and Execution of Applications on Multiple Clouds.
In: MISE Workshop (2012)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Pat-
terson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: A View of Cloud Computing. CACM 53(4)
(2010)

3. Badger, M.L., Grance, T., Patt-Corner, R., Voas, J.M.: Cloud Computing Synopsis and Rec-
ommendations. Tech. rep., NIST Computer Security Division (2012)

4. Bergmayr, A., Bruneliere, H., Cánovas Izquierdo, J.L., Gorroñogoitia, J., Kousiouris, G.,
Kyriazis, D., Langer, P., Menychtas, A., Orue-Echevarria Arrieta, L., Pezuela, C., Wimmer,
M.: Migrating Legacy Software to the Cloud with ARTIST. In: CSMR (2013)

5. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: Portable Automated Deploy-
ment and Management of Cloud Applications. In: Advanced Web Services (2014)

6. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Schumm, D.: Vino4TOSCA: A Visual
Notation for Application Topologies based on TOSCA. In: OTM (2012)

7. CAML: Project Web Site (2014), http://code.google.com/a/eclipselabs.org/p/caml
8. Cardoso, J., Barros, A., May, N., Kylau, U.: Towards a Unified Service Description Language

for the Internet of Services: Requirements and First Developments. In: SCC (2010)
9. Chapman, C., Emmerich, W., Márquez, F.G., Clayman, S., Gallis, A.: Software Architecture

Definition for On-Demand Cloud Provisioning. Cluster Comput. 15 (2012)
10. Chatziprimou, K., Lano, K., Zschaler, S.: Towards a Meta-model of the Cloud Computing

Resource Landscape. In: MODELSWARD (2013)
11. Dougherty, B., White, J., Schmidt, D.C.: Model-Driven Auto-Scaling of Green Cloud Com-

puting Infrastructure. FGCS 28 (2011)
12. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Computing Patterns -

Fundamentals to Design, Build, and Manage Cloud Applications. Springer (2014)
13. Ferry, N., Rossini, A., Chauvel, F., Morin, B., Solberg, A.: Towards Model-Driven Provision-

ing, Deployment, Monitoring, and Adaptation of Multi-cloud Systems. In: CLOUD (2013)
14. Frey, S., Fittkau, F., Hasselbring, W.: Search-based Genetic Optimization for Deployment

and Reconfiguration of Software in the Cloud. In: ICSE (2013)
15. Frey, S., Hasselbring, W.: The CloudMIG Approach: Model-Based Migration of Software

Systems to Cloud-Optimized Applications. Advances in Software 4 (2011)
16. Gonçalves, G., Endo, P., Santos, M., Sadok, D., Kelner, J., Merlander, B., Mångs, J.E.:

CloudML: An Integrated Language for Resource, Service and Request Description for D-
Clouds. In: CloudCom (2011)

17. Guillén, J., Miranda, J., Murillo, J.M., Canal, C.: A UML Profile for Modeling Multicloud
Applications. In: ESOCC (2013)

18. Leymann, F., Fehling, C., Mietzner, R., Nowak, A., Dustdar, S.: Moving Applications to the
Cloud: An Approach Based on Application Model Enrichment. IJCIS 20(3) (2011)

19. Liu, D., Zic, J.: Cloud#: A Specification Language for Modeling Cloud. In: CLOUD (2011)
20. Mayerhofer, T., Langer, P., Wimmer, M., Kappel, G.: xMOF: Executable DSMLs based on

fUML. In: SLE (2013)
21. Nguyen, D.K., Lelli, F., Taher, Y., Parkin, M., Papazoglou, M.P., van den Heuvel, W.J.:

Blueprint Template Support for Engineering Cloud-Based Services. In: ServiceWave (2011)
22. Vogels, W.: Eventually consistent. CACM 52(1) (2009)

65



MDEForge: an extensible Web-based
modeling platform?

Francesco Basciani, Juri Di Rocco, Davide Di Ruscio, Amleto Di Salle, Ludovico
Iovino, and Alfonso Pierantonio

DISIM - University of L’Aquila, Italy
{name.lastname}@univaq.it

Abstract. Model-Driven Engineering (MDE) refers to the systematic use of mod-
els as first class entities throughout the software development life cycle. Over the
last few years, many MDE technologies have been conceived for developing do-
main specific modeling languages, and for supporting a wide range of model
management activities. However, existing modeling platforms neglect a number
of important features that if missed reduce the acceptance and the relevance of
MDE in industrial contexts, e.g., the possibility to search and reuse already de-
veloped modeling artifacts, and to adopt model management tools as a service.
In this paper we propose MDEForge a novel extensible Web-based modeling plat-
form specifically conceived to foster a community-based modeling repository,
which underpins the development, analysis and reuse of modeling artifacts. More-
over, it enables the adoption of model management tools as software-as-a-service
that can be remotely used without overwhelming the users with intricate and
error-prone installation and configuration procedures.

1 Introduction

Model-Driven Engineering (MDE) refers to the systematic use of models as first class
entities throughout the software development life cycle. Model-driven approaches shift
development focus from code expressed in third generation programming languages
to models expressed in domain-specific modeling languages [1]. MDE increases pro-
ductivity and reduces time to market by enabling the development of complex systems
using models defined with concepts that are much less bound to the underlying imple-
mentation technology and much closer to the problem domain.

Over the last few years, many MDE technologies have been conceived for devel-
oping domain specific modeling languages, and for supporting a wide range of model
management activities. The relevance of MDE is evidenced also by the increasing inter-
est in many scientific endeavours, active technology projects, and numerous industrial
projects ranging from direct applications of MDE concepts and tools, to those develop-
ing its foundations [2]. Even though existing MDE technologies provide practitioners
with facilities that can simplify and automate many steps of model-based development
processes, empirical studies show that some barriers still exist for the wider adoption of
MDE technologies [3]. Among the main issues that currently hamper a wide adoption
of MDE there are at least the following:
? This research was supported by the EU through the Model-Based Social Learning for Public

Administrations (Learn Pad) FP7 project (619583).

66



– the support for discovery and reuse of existing modeling artefacts is very lim-
ited. As a result, similar transformations and other model management tools often
need to be developed from scratch, thus raising the upfront investment and com-
promising the productivity benefits of model-based processes. For instance, when
modelers identify a need for a domain-specific modeling language, it is quite com-
mon to implement it from scratch instead of reusing already developed languages
that might satisfy their requirements;

– modelling and model management tools are commonly distributed as software
packages that need to be downloaded and installed on client machines, and often
on top of complex software development IDEs (e.g. Eclipse).

In this paper we propose MDEForge, an extensible modeling framework specifi-
cally conceived to address the issues previously mentioned. In particular, MDEForge
consists of a set of core services that permit to store and manage typical modeling arte-
facts and tools. Atop of such services it is possible to develop extensions adding new
functionalities to the platform. All the services can be used by means of a Web access
and by a REST API that permits to adopt the available model management tools as
software-as-a-service.

The paper is structured as follows: Section 2 discusses the motivations of the paper
by considering already existing works. Section 3 presents the architecture of MDEForge
and makes and overview of its main components. Two extensions of the platform are
presented in Section 4. Section 5 concludes the paper and discusses some research
perspectives.

2 Background and Motivation

The artefacts and tools that are typically involved when applying MDE approaches are
those shown in Fig. 1: editors are used to create models that in turn are manipulated
to generate other models or even code. Model repositories are employed to enable the
re-use of already specified models. The whole ecosystem is developed according to
different kinds of relations (e.g., conformance) with corresponding metamodels.

Fig. 1. Main MDE artefacts and tools

67



Managed
Artefact

Main purpose Typical deployment scenario

AMOR [5] Model Model versioning Desktop application
Bizycle [6] Model Integration of software

components
Desktop application

CDO Model Storage Client-Server application
EMFStore [7] Model Model versioning Client-Server application
GME [8] Model Storage Client-Server application
ModelBus [9] Model Model versioning Client-Server application
Morse [10] Model Model versioning Software-as-a-service
ReMoDD [11] Any Documentation Web-based interaction

Table 1. Overview of existing MDE tools providing storage features

Even though existing modeling platforms (e.g., EMF [4]) provide developers and
users with the tools shown in Fig. 1 they neglect a number of important features that
if missed the acceptance and the relevance of MDE in industrial contexts might be
reduced. In particular, in this paper we focus on the limited support for the re-use of
already developed modeling artefacts1 and for enabling the adoption of modeling tools
as-a-service. To this end in this section we overview existing works that are related to
MDEForge concerning the re-use of modeling artefacts (Sect. 2.1), and the possibility
to use model management tools as a service (Sect. 2.2).

2.1 Reuse of modeling artefacts

In this section we discuss state-of-the-art approaches (see Tab. 1) for providing reposi-
tories of modeling artefacts, and outline outstanding research challenges for achieving a
comprehensive solution to the problem of properly managing the persistence of models
and the deployment and discovery of any kind of model management tools to enable
their reuse and refinement.
AMOR - Adaptable Model Versioning [5]: it is an attempt to leverage version control
systems in the area of MDE. AMOR supports model conflict detection, and focuses on
intelligent conflict resolution by providing techniques for the representation of conflict-
ing modifications as well as suggesting appropriate resolution strategies.
Bizycle [6]: it is a project aiming at supporting the automated integration of software
components by means of model-driven techniques and tools. Among the different com-
ponents of the project, a metadata repository is also provided in order to manage and
store all the artefacts required for and generated during integration processes, i.e, exter-
nal and internal documentation, models and metamodels, transformation rules, gener-
ated code, users and roles.
CDO2: it is a pure Java model repository for EMF models and meta models. CDO
can also serve as a persistence and distribution framework for EMF-based application
systems. CDO supports different kinds of deployments such as embedded repositories,
offline clones and replicated clusters. However, the typical deployment scenario consists

1 Hereafter with the terms modeling artefacts we include also modeling tools.
2 http://www.eclipse.org/cdo/

68



of a server managing the persistence of the models by exploiting all kinds of database
backends (like major relational databases or NoSQL databases), and an EMF client
application.

EMFStore [7]: it is a software configuration management system tailored to the specific
requirements of versioning models. It is based on the Eclipse Modeling Framework and
it is an implementation of a generic operation-based version control system. EMFS-
tore implements, in the modeling domain, the typical operations implemented by SVN,
CVS, Git for text-based artefacts, i.e., change tracking, conflict detection, merging and
versioning. It consists of a server and a client component. The server runs standalone
and provides a repository for models including versioning, persistence and access con-
trol. The client component is usually integrated into an application and is responsible
for tracking changes on the model, and for committing, updating and merging.

GME - Generic Modeling Environment [8]: it is a set of tools supporting the creation of
domain specific modeling languages and code generation environments. A repository
layer is also provided to store the developed models. Currently, MS Repository (an
object oriented layer on top of MS SQL Server or MS Access) and a proprietary binary
file format are supported.

ModelBus [9]: it consists of a central bus-like communication infrastructure, a num-
ber of core services and a set of additional management tools. Depending on the us-
age scenario at hand, different development tools can be connected to the bus via tool
adapters. Once a tool has been successfully plugged in, its functionality immediately
becomes available to others as a service. Alternatively, it can make use of services al-
ready present on the ModelBus. Among the available services, ModelBus also includes
a built-in model repository, which is able to version models, supports the partial check-
out of models and coordinates the merging of model versions and model fragments;

Morse - Model-Aware Repository and Service Environment [10]: it is a service-based
environment for the storage and retrieval of models and model-instances at both design-
and run-time. Models, and model elements are identified by Universally Unique Iden-
tifiers (UUID) and stored and managed in the Morse repository. The Morse repository
provides versioning capabilities so that models can be manipulated at runtime and new
and old versions of the models can be maintained in parallel;

ReMoDD - Repository for Model-Driven Development [11]: it is a repository of arte-
facts aiming at improving MDE research and industrial productivity, and learning ex-
perience of MDE students. By means of a Drupal Web application, users can contribute
MDE case studies, examples of models, metamodels, model transformations, descrip-
tions of modeling practices and experience, and modeling exercises and problems that
can be used to develop classroom assignments and projects. Searching and browsing
facilities are enabled by a Web-based user interface that also provides community-
oriented features such as discussion groups and a forum.

According to Tab. 1 the majority of existing approaches focus on providing support
for the persistence of models. Only ReMoDD supports other kinds of modeling arte-
facts, like transformations, and metamodels. However, the main goal of ReMoDD is to
support learning activities by providing documentation for each stored artefact. Con-
sequently, ReMoDD cannot be used to programmatically retrieve artefacts from the

69



repository or more generally cannot be adopted as software-as-a-service to search and
reuse already existing modeling artefacts. Most of the discussed approaches require
local installation and configuration. Only ReMoDD and Morse do not require to be in-
stalled locally. In particular, the modeling artefacts stored in ReMoDD can be searched
and browsed through a Web-based application. Morse provides developers with the
possibility to use it as a service.

2.2 Model management tools as service
The motivation or our work is shared also in [12] where authors propose the Modeling
as a Service (MaaS) initiative as an approach to deploy and execute model-driven ser-
vices over the Internet. This initiative is aligned with SaaS principles, since consumers
do not manage the underlying cloud infrastructure and deal mostly with end-user sys-
tems. Interestingly, in [13] authors investigate the problem of transforming very large
models in the Cloud by addressing two phases: i) model storage, and ii) model trans-
formations execution in the Cloud. For both aspect authors identify a set of research
questions, and possible solutions.

Even though there are different attempts [14] and projects (e.g., the EU MONDO
project3) related to the adoption of Cloud infrastructures to apply MDE, the area is still
mostly unexplored. In line with the MaaS initiative we want to contribute to this re-
search area with an extensible modeling framework that enables the adoption of model
management and analysis tools as service. As discussed later in the paper the frame-
work is at its early stages and we have not addressed yet aspects like workload and
capacity management that are typical in Cloud computing, however the results we have
obtained so far are promising.

3 Overview of the MDEForge platform

In this section we present the MDEForge platform that has been conceived to overcome
the issues discussed in the previous section. In particular MDEForge aims at:

– providing a community-based modeling repository, which underpins the devolpe-
ment, analysis and reuse of any kinds of modeling artifacts not limited to only
models;

– supporting advanced mechanisms to query the repository and find the required
modeling artifacts;

– enabling the adoption of model management tools as software-as-a-service;
– being modular and extendible;

As shown in Fig. 2 the MDEForge platform consists of a number of services that
can be used by means of both a Web access and programmatic interfaces (API) that en-
able their adoption as software as a service. In particular, core services are provided to
enable the management of modeling artifacts, namely transformations, models, meta-
models, and editors. Atop of such core services, extensions can be developed to add new
functionalities. For instance, by exploiting the transformation and metamodel services

3 http://www.mondo-project.org/

70



Fig. 2. Architecture of MDEForge

it is possible to extend the platform by adding a new service to enable the automated
chaining of model transformations as discussed in Section 4.

We envision different kinds of users of the MDEForge platform and in our opinion
they can be at least the following:

– Developers of modeling artifacts: as previously said we envision a community of
users that might want to share their tools and enable their adoption and refinement
by other users. To this end the platform provides the means to add new modeling
artifacts to the MDEForge repository;

– Developers of MDEForge extensions: one of the requirements we identified when
we started the development of MDEForge is about the modularity and extensibility
of the platform. To this end we identified a set of core services that can be used
to add new functionalities by means of platform extensions. In this respect, expe-
rienced users might contribute by proposing new extensions to be included in the
platform;

– End-users: a Web application enables end-users to search and use (meta)models,
transformations, and editors available in the MDEForge repository. Experienced
users might use the REST API to exploit the functionalities provided by the plat-
form in a programmatic way. For instance, tool vendors might exploit the function-
alities provided by their tools by exploiting some of the transformations available
in the MDEForge repository.

In the remainder of this section we give some details about the MDEForge reposi-
tory (Section 3.1) and the available core services (Section 3.2).

3.1 The MDEForge Repository

The Repository component plays a key role in the MDEForge platform and it has been
developed in order to store artifacts according to the metamodel shown in Fig. 3. In
particular, the repository has been developed with the aim of managing any kinds of
modeling artifacts (see the metaclass Artifact in Fig. 3). Each artifact refers to the
corresponding type, e.g., model, transformation, metamodel, etc. The specification of
the relation between a given artifact and the corresponding type is done by means of
the Relation elements. In turn, each relation is typed by means of a corresponding
RelationType element. By means of such modeling constructs it is possible e.g., to
specify the conformsTo relation between a model m1 and the corresponding metamodel
MM1 as shown in Fig. 4. Similarly, it is possible to specify any kinds of modeling

71



Fig. 3. Fragment of the MDEForge Repository Metamodel

Fig. 4. Simple content of the Repository

elements together with their relations. For example, it is possible to represent also the
execution engine of a given model transformation stored in the repository.

It is important to remark that all the artifacts stored and managed by the MDEForge
platform are related to the users that created them. The system permits also to make
artifacts public, private, or limit their visibility to specific users.

3.2 The MDEForge Core

In the following the core service previously mentioned and shown Fig. 5 are described.
Model Service: it manages models in the repository, thus it permits users to upload,
download, delete models, and even search models conforming to a specific metamodel;
Metamodel Service: it provides the means to upload, download, delete metamodels, and
find metamodels by a specific Universal Resource Identified (URI);
Transformation Service: it manages the transformations in the repository, i.e., it permits
to upload, download, delete transformations. Moreover, it permits to remotely execute

Fig. 5. Overview of the MDEForge Core services

72



transformations, or even find transformations by specifying the source and/or target
metamodel(s);
Editor Service: it permits to upload, download, or delete editors from the repository. It
is important to remark that at this stage of the project we manage the JARs containing
the implementation of a given editor (e.g., developed by means of GMF [15]). Conse-
quently, the editor service permits users to upload the implementation code of a given
repository to enable other users to find, download, and in case install them locally. In
other words, at this stage of the project we do not refer to on-line and collaborative ed-
itors even though this represents an important extension of the platform that we intend
to investigate in the near future.

A prototypical implementation of the MDEForge has been developed4 and even
though it is still at an early stage, we managed to apply the platform to support two
interesting problems: chaining model transformations, and measuring metamodels as
discussed in the next section.

4 Examples of MDEForge extensions

In this section we present two examples of extensions we have developed atop of the
core services of the platform and that have been successfully applied to deal with the
problems of chaining of model transformations (Section 4.1) and to calculate metrics
of metamodels to support the understanding of their characteristics (Section 4.2).

4.1 Automated chaining of model transformations
In [16] we have addressed the problem of automatically composing model transfor-
mations. In particular, we have proposed an approach to automatically discover and
compose transformations: developers provide the system with the source models and
specify the target metamodel. Then, by relying on the MDEForge repository, all the
possible transformation chains are calculated. Importantly, in case of incompatible in-
termediate target and source metamodels, proper adapters are automatically generated
in order to chain also transformations that otherwise would be discarded by limiting the
reuse possibilities of available transformations.

Fig. 6. Model transformation chain example

Figure 6 shows an explanatory model transformation chain. In particular, T1 is a
model transformation that generates models conforming to the target metamodel MM2

from models conforming to MM1. Additionally, T2 is a model transformation that gen-
erates models conforming to MM4 from models conforming to the source metamodel
MM3. In general, if the input metamodel of T2 would be also the output metamodel of

4 www.mdeforge.org

73



Fig. 7. Transformation Chain extension

T1, then these two transformations could be chained. However, under certain conditions,
two transformations can be chained even though the output metamodel of the first trans-
formation does not correspond to the input metamodel of the second transformation.

To support the techniques presented [16] we have developed the extension shown
in Fig. 7 consisting of the Transformation Chain service that makes use of the Trans-
formation and Metamodel core services discussed in the previous section. In particular,
users specify the model to be transformed, the target metamodel by means of the Spec-
ify transformation chain operation. Such an input is used to calculate the transformation
chains that subsequently can be executed.

4.2 Measuring metamodels
In [17] we have developed an approach to measure metamodels with the aim of under-
standing their typical characteristics by investigating the correlations of different met-
rics applied on a corpus of more than 450 metamodels. In particular, we proposed an
approach for a) measuring certain metamodeling aspects (e.g., abstraction, inheritance,
and composition) that modelers typically use; and b) for revealing what are the com-
mon characteristics in metamodeling that can increase the complexity of metamodels
hampering their adoption and evolution in modeling ecosystems.

Fig. 8. Metrics extension

To perform such analysis we have developed an extension of the MDEForge plat-
form to support the calculation of metrics as shown in Fig. 8. In [17] we discussed met-
rics calculated only on metamodels, however we are working also on the identification
of possible correlations among transformation and metamodel characteristics. Finally,
to enable the management of the calculated metrics, the added service permit to export
CSV files encoding the values of all the calculated metrics. Generating CSV files en-
ables the adoption of statistical tools like IBM SPSS, Microsoft Excel, and Libreoffice
Calc for subsequent analysis of the generated data.

5 Conclusion and future works
In this paper we presented MDEForge, an extensible modeling framework supporting
the creation of a community-based modeling repository, which underpins the develop-
ment, analysis and reuse of modeling artifacts. The platform consists of core service
that can be extended and all of them are remotely available as software as a service
thus users are not overwhelmed with intricate and error-prone installation and con-
figuration procedures. Two concrete extensions and applications of the platform have

74



been presented. As future work we intend to investigate issues that are typical in Cloud
computing, e.g., scalability of the platform, and workload management. Moreover, we
intend to implement further extensions for instance to support advanced queries on the
repository. To this end we intent to investigate the integration of tools that have been
recently proposed [18]. Moreover, we plan to extend the platform by adding services
enabling collaborative modeling activities.

References
1. Schmidt, D.C.: Guest NOOPeditor’s Introduction: Model-Driven Engineering. Computer 39

(2006) 25–31
2. Di Ruscio, D., Paige, R.F., Pierantonio, A.: Guest editorial to the special issue on Success

Stories in Model Driven Engineering. Science of Computer Progr. (2014)
3. Whittle, J., Hutchinson, J., Rouncefield, M., Burden, H., Heldal, R.: Industrial Adoption of

Model-Driven Engineering: Are the Tools Really the Problem? In: MODELS. Volume 8107
of LNCS. Springer Berlin Heidelberg (2013) 1–17

4. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling Frame-
work. Addison Wesley (2003)

5. Brosch, P., Langer, P., Seidl, M., Wimmer, M.: Towards End-user Adaptable Model Version-
ing: The By-Example Operation Recorder. In: Procs.of CVSM ’09, Washington, DC, USA,
IEEE Computer Society (2009) 55–60

6. Kutsche, R., Milanovic, N., Bauhoff, G., Baum, T., Cartsburg, M., Kumpe, D., Widiker, J.:
BIZYCLE: Model-based Interoperability Platform for Software and Data Integration. In:
Procs.of the MDTPI at ECMDA. (2008)

7. Koegel, M., Helming, J.: EMFStore: a model repository for EMF models. In: Software
Engineering, 2010 ACM/IEEE 32nd Int. Conf. on. Volume 2. (2010) 307–308

8. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C., Nordstrom, G.,
Sprinkle, J., Volgyesi, P.: The Generic Modeling Environment. In: Workshop on Intelligent
Signal Processing. (2001)

9. Hein, C., Ritter, T., Wagner, M.: Model-driven tool integration with ModelBus. Workshop
Future Trends of Model-Driven (2009)

10. Holmes, T., Zdun, U., Dustdar, S.: Automating the Management and Versioning of Service
Models at Runtime to Support Service Monitoring. In: EDOC. (2012) 211–218

11. France, R., Bieman, J., Cheng, B.: Repository for Model Driven Development (ReMoDD).
In: Models in Software Engineering. Volume 4364 of LNCS. Springer Berlin Heidelberg
(2007) 311–317

12. Brunelière, H., Cabot, J., Jouault, F.: Combining Model-Driven Engineering and Cloud
Computing. In: MDA4ServiceCloud’10 Workshop co-located with ECMFA. (2010)

13. Clasen, C., Didonet Del Fabro, M., Tisi, M.: Transforming Very Large Models in the Cloud:
a Research Roadmap. In: First International Workshop on Model-Driven Engineering on and
for the Cloud, Copenhagen, Danemark, Springer (2012)

14. Paige, R., Cabot, J., Brambilla, M., Chechik, M., Mohagheghi, P.: Procs. of CloudMDE -
First Workshop on MDE for and in the Cloud. (2012)

15. Eclipse: Graphical Modeling Framework. http://www.eclipse.org/gmf/ (2014)
16. Basciani, F., Di Ruscio, D., Iovino, L., Pierantonio, A.: Automated Chaining of Model Trans-

formations with Incompatible Metamodels. In: Procs. MODELS 2014 Accepted. (2014)
17. Di Rocco, J., Di Ruscio, D., Iovino, L., Pierantonio, A.: Mining metrics for understanding

metamodel characteristics. In: MiSE 2014 - ICSE Workshop. (2014)
18. Szárnyas, G., Izsó, B., Ráth, I., Harmath, D., Bergmann, G., Varró, D.: IncQuery-D: A

Distributed Incremental Model Query Framework in the Cloud. In: Procs. MODELS 2014,
Valencia, Spain, Springer, Springer (2014) Accepted.

75




