
Modeling Cloud Messaging with a Domain-Specific

Modeling Language

Gábor Kövesdán, Márk Asztalos and László Lengyel

 Budapest University of Technology and Economics, Budapest,

Hungary

{gabor.kovesdan, asztalos, lengyel}@aut.bme.hu

Abstract. This paper introduces a domain-specific modeling language (DSL) for

modeling application-level network protocols. Application-level messages may

be expressed in object-oriented general-purpose programming languages as clas-

ses. Instances of these classes can be sent through the network with the help of a

customized serialization process. However, protocols have several special char-

acteristics that do not fit easily into this abstraction, for example, bitfields or spe-

cially encoded lists. Furthermore, the limitations of generic serialization frame-

works inhibit using them for this purpose. These factors suggest creating a DSL

that more easily expresses these protocols and allows for code generation to sup-

port application-level messaging. Application-level messaging is a crucial part of

cloud services that follow the Software as a Service (SaaS) paradigm and it must

be implemented at both clients and servers. A DSL that allows for efficient mod-

eling of the messages and generating implementation code significantly simpli-

fies the development of cloud applications.

Keywords: Modeling · Domain-Specific Languages · Code Generation · Proto-

cols · Cloud

1 Introduction

Nowadays, there are several high-level communication standards that allow for net-

work communication between two pieces of software. One group of these technologies

consists of object-oriented remoting standards, like Common Object Request Broker

Architecture (CORBA) [1] or Java’s Remote Method Invocation (RMI) [2]. The other

kind of commonly used technologies includes variants of Web Services, namely, the

Simple Object Access Protocol (SOAP) [3] and RESTful Web Services [4]. Despite the

availability of these mechanisms, still numerous software vendors decide to develop a

lightweight binary application-level protocol that has a lower network footprint and

does not require depending on resource-intensive libraries and application servers.

However, when it comes to developing such a protocol, developers do not get too much

help. The Specification and Description Language (SDL) defined by ITU-T Z.100 [5]

allows for describing system behavior in a stimulus/response fashion and thus, it can

also be used to specify network protocols. However, SDL has a wide scope and focuses

on the stimulus/response relations and does not capture message structure. In theory,

mailto:gabor.kovesdan

code generators can be developed for SDL to generate implementation but the gener-

ated code will cover only the stimulus/response relations. The Protocol Implementation

Generator (PiG) [6] is a domain-specific modeling language [7] [8] that is designed for

code generation but this solution also focuses on interactions. We have not found a

domain-specific language with code generator that allowed for the modeling of mes-

sage structure. In cloud services, especially in those that follow the Software as a Ser-

vice (SaaS) paradigm, the message structure has more importance than communication

states and interactions. First, these systems do not maintain a permanent connection and

their messaging is often limited to notifications and request-response messages. Sec-

ondly, lower level protocols hide the establishment and the closing of connections,

which in turn, involves communication states and interactions. Because of these factors,

the development of SaaS messaging primarily consists of determining the message

structure and developing the supporting code. Using binary messaging is more chal-

lenging to implement than relying on commonly supported formats, such as XML or

JSON, that have extensive support in third-party libraries. However, this is the most

concise form and thus it generates less network footprint and it is faster to parse. This

suggests investing in a DSL and code generator to facilitate this development task. The

messaging logic needs to be developed for both the client application and the cloud

server. If they do not run on the same platform, the supporting code cannot be shared

and has to be developed twice. A DSL and code generation techniques can remedy

these difficulties. A code generator can be constructed that uses the model of the mes-

sage structure and generates the supporting classes and the boilerplate code, even for

multiple platforms, if necessary. Such a tool facilitates development and can ensure that

the implementations in different languages are consistent.

In this paper such a DSL is presented. Our solution, ProtoKit1, is a lightweight

framework that focuses on modeling message structure and generating code to manip-

ulate messages. It encompasses a metamodel that can be used to describe a wide variety

of features that can be encountered in application-level messaging. The DSL syntax is

similar to Java class definitions because the message structure shares some commonal-

ities with them. The tool targets the use of binary messages. This format is the most

concise and helps to save bandwidth, although it does not support well versioning and

maintaining backward compatibility. As mentioned before, ProtoKit focuses on mes-

sage structure since it is the most important factor in cloud messaging. It does not deal

with modeling interaction: that is simply left for the application developers. We believe

that if individual messages can be handled easily, dealing with simple interaction sce-

narios from handwritten code is easy. However, we may decide to implement modeling

interactions in later versions of ProtoKit. The tool primarily targets cloud service pro-

viders because they always have to implement messaging at the server side and they

often also provide the client software or the client library. In this way, they facilitate

the use of their service to the consumers and they do not have to publish the protocol

specifications. In this scenario, cloud service consumer indirectly benefit from ProtoKit

as well. Additionally, if there is no appropriate client software or library but the protocol

1 See http://gaborbsd.github.io/ProtoKit/.

specification is available, the service consumers may also use the tool to develop their

own solution.

The rest of this paper is organized as follows. In Section 2 the motivation for creating

a protocol modeling language is explained. Section 3 introduces the metamodel that

was used to describe the problem domain. Section 4 explains the concrete syntax and

show its grammar. Section 5 gives a detailed explanation of how the ProtoKit language

was implemented. Section 6 presents a case study in which the solution is evaluated

and Section 7 concludes. Despite not being a cloud protocol, the Domain Name System

(DNS) protocol will be used as an example throughout the paper. The DNS protocol is

well-known, has a wide variety of features that has to be handled in the metamodel and

has similar characteristics as cloud messages: it lacks complex interactions and uses a

simple request-response communication model. We are working on other applications

that use ProtoKit and offer cloud services but they are still in an early phase of the

development. Therefore, we have chosen to use the caching DNS server as an example.

2 Motivation

Protocol message types are very similar to classes in object-oriented programming lan-

guages: both notions define a complex data type with some properties that hold values.

For example, a protocol message type may hold a transaction number of integer type,

the identifier of the sender as an integer, an integer count that specifies the length of the

payload and last but not least a variable-length payload either as a text or as binary data.

Modeling such protocol message types is definitely possible with object-oriented lan-

guages but protocol message types have several specific properties that needs further

boilerplate code in object-oriented languages. The following list summarizes these:

1. Defining the length of the field is paramount since the fields in a single message will

be parsed by calculating the boundaries. In general-purpose programming languages

(GPLs), this aspect is handled in a lazier manner. We usually choose from byte, short

integer, normal integer and long integer variable types based on our needs of preci-

sion. Some languages, like C, do not strictly define the byte sizes of these type,

whereas others, like Java, do. Still in the latter case, the byte length of a specific field

is not explicitly reflected in the code, that is, the programmer must be conscious that,

for example, a long variable takes 64 bits. Protocol message type definitions warrant

for a more precise notation that explicitly expresses field lengths.

2. GPLs do not allow easily accessing fields on a per bit basis. Protocols do need such

feature so that they can keep the network footprint low and avoid wasting bandwidth.

One-bit boolean fields grouped to one or more bytes as flags are frequent. In GPLs,

there is no native type that maps to such fields. Although it is possible to manipulate

particular bits of a larger integer by using bitwise operators or by helper accessor

methods, it requires more coding and makes the code less readable. A protocol mes-

sage type definition language certainly needs to be able to handle data bit by bit.

3. Protocol messages often use counter fields that describe how many of a particular

entry is found in the variable-length payload part of the message. These counters

make it possible to properly parse the variable-length part of the message. In protocol

definitions, it would be practical to directly associate counters to the corresponding

list of entries.

4. After the protocol message type is modeled, the serialization and deserialization of

messages must be implemented so that messages can be transmitted and received

over the network. Some GPLs, like Java, offer a standardized way for serialization

but it does not fit well serialization of protocol messages. Serialization of protocol

messages has several specific characteristics:

(a) Usually, it has to be strictly ordered based on the specification order of the fields.

(b) Length of fields is strictly specified, possibly on a per-bit basis.

(c) Counts of entries must be handled as well.

(d) Some fields may be encoded in a specific manner, for example, the Domain

Name System (DNS) [9] protocol specifies its own encoding for the requested

domain names.

When implementing the serialization of protocol messages, these requirements must be

properly addressed. The above reasons suggest introducing a DSL for protocol message

types that takes into account the above criteria and allow for easy and fast modeling of

protocol message types.

Kövesdán et. al published an intent catalog [10] that lists and describes the possible

motivating factors behind creating DSLs and their main characteristics. ProtoKit uses

the following intents:

1. Specialized Tool: GPLs are not able to properly express all of the features of network

protocols.

2. Modeling Tool: from the textual description, a model is constructed. This is used

later for code generation.

3. Domain-Specific Formalism: since human language is ambiguous, developers may

decide to also include the ProtoKit description in specifications.

4. Human-Friendly Notation: the ProtoKit language is much more concise than, for

example, a Java class definition, therefore it is easier to read and write for non-

programmers.

3 The Metamodel

The metamodel that we used for modeling network protocols is depicted in Figure 1.

The elements of the metamodel are the following:

 DataType: message type or complex data structure. The class that is used to encap-

sulate the whole message is not treated in any special way so there is no need for

introducing other metamodel element. A complex data structure may as well be em-

bedded into another one.

 BinaryField, IntegerField, StringField, ListField, CountField, LengthField, Bit-

Field: specific types of fields that are embedded into messages or complex data

structures.

 BitFieldComponent: BitField is further divided into components, which occupy only

specific bits of the member. We generate specific getters and setters for these to

handle the appropriate bits transparently.

 Formatter: some fields are encoded in a specific way. This kind of encoding can be

implemented with the support of formatters. For formatters, only a template is gen-

erated that has to be filled in by the developer of the application.

 ProtocolModel: aggregates the DataType and Formatter elements into a model. It

can be used to traverse the model for code generation.

 Field: abstract type of fields used as messages or complex data structure members.

Fig. 1. The metamodel used for the ProtoKit language

4 The Concrete Syntax of the Language

In this section, we briefly describe the concrete syntax of ProtoKit. The syntax is some-

what similar to class diagrams. This is helpful for the developers since the nature of the

models is also similar to class diagrams. A model starts with the package keyword and

an identifier. These will define the package of the generated Java classes. After this, we

can define protocol messages and embedded data types. The former starts with the pro-

tocol keyword and the latter uses the datatype keyword. The definition of messages and

data types is given in curly braces. We specify fields by their name and type, separated

by a colon. The type may have arguments that refer to the length of the field or to a

referred field in case the field is a counter or a length field. After a field of the string

type, we can also specify a formatter with its name. Components of bitfields are also

defined in curly braces and these are always treated as integer types so only their length

is specified in bits. The names of normal fields (that are not components of bitfields)

can be preceded by the transient keyword and an asterisk. The former means that the

field will not be serialized2 and the latter marks the fields that should determine the

identity of instances. This is used for generating equals() and hashCode() methods. The

ANTLR grammar of the language is cited in the following code listing.

grammar NetworkProtocol;

start: packageDefinition? protocolDefinition+;

packageDefinition: 'package' name = ID;

protocolDefinition: ('protocol'|'datatype') name = ID '{'

variableDefinition+ '}';

variableDefinition: trans='transient'? identityVar='*'? name =

ID ':' (intType| stringType|binaryType|embeddedType|bitfieldType

|listType|countType|lenType);

intType: type = 'int' ('(' len = NUMBER ')')?;

stringType: type = 'string' ('(' len = (NUMBER|'*') ')') for-

matterDefinition?;

binaryType: type = 'binary' ('(' len = (NUMBER|'*') ')');

embeddedType: type = ID;

bitfieldType: type = 'bitfield' '{' bitfieldDefinition+ '}';

listType: type = 'list' '(' (listElement = ID) ')';

2 It can be disputed whether this feature should be part of the modeling language since it is not

related to the actual model but to the implementation. However, it allows for adding imple-

mentation-specific members to the generated classes without having to modify them. This

does not make it necessary to deal with manual changes when regenerating classes.

countType: type = 'count' '(' len = NUMBER ',' countedList = ID

')';

lenType: type = 'length' '(' len = NUMBER ',' countedField = ID

')';

bitfieldDefinition: name = ID ':' bitLength = NUMBER;

formatterDefinition: 'formatter' name = ID;

ID: [a-zA-Z]+;

NUMBER: [1-9] [0-9]*;

WS: [\t\r\n]+ -> skip

5 Implementation Decisions

In this section, we describe step by step what implementation decisions we considered

during the developing of ProtoKit. This gives a deeper insight into the development

process and allows for understanding how our motivations and the requirements af-

fected the architecture and the development process. By examining these points regard-

ing a new DSL that is being developed, we can also reuse these experiences as a recipe.

1. Implementing generic functionality in the runtime framework. It is not a trivial deci-

sion at what extent the code should be factored out into a generic runtime framework

and what should be generated. Developing generic code is generally more challeng-

ing and sometimes may have worse performance than a customized solution. For

example, in Java environment, it is often done by using reflection, which has a per-

formance hit. On the other hand, generic code is more reusable and helps to reduce

the generated code. It is easier to generate custom code than having a generic frame-

work but the latter is easier to test since it does not depend on the input model. The

reusable framework can be covered by extensive unit tests, whereas the generated

code is not trivial to test. It may be tested for the complete functionality but it is

difficult to think of all of the possible corner cases. Because of these considerations,

in ProtoKit we have implemented most of the functionality in a reusable runtime

framework. The most important example of this is the generic serialization logic.

The generated classes only encompass the serialization parameters. It would have

been possible to generate the serialization logic and to make it part of the generated

class but this would have resulted in a significantly more complex generator.

2. Separating tree parser logic from code generator. In theory, it is possible to process

the input file in an event-driven approach with a single read since we can store arbi-

trary amount of details in the state of the parser that will be required in further phases

of the processing. However, this technique has several drawbacks. Because of the

event-driven nature, the code fragments that are generated are triggered by visiting

a certain grammar rule. This does not facilitate generating non-consecutive code

fragments from the same node. For example, if the generated code is a Java class,

certain nodes can be mapped to Java variables. Java variables are usually declared

with private visibility and accompanying getter and setter methods are provided with

public scope. Although it is not mandatory, the variable declarations are convention-

ally placed together at the beginning of the class definition and the getter and setter

pairs come after all variable definitions. A single variable and its getter and setter

methods are generated from the same node so they cannot be generated in the con-

ventional order by a purely event-driven manner. This requires the parser to use its

internal state to store some details. This makes the parser more complex and partly

leads to building a semantic model in the memory. Secondly, the use of a pure event-

driven approach does not allow for validating cross-references in the input file. To

address these issues, we have separated the tree parser logic and the actual code

generation. The only responsibility of the tree parser is building a semantic model.

By using a semantic model, validation and code generation become much easier.

Furthermore, the use of a semantic model better facilitates changes in the syntax or

building another, possibly visual modeling language on top of the code generator.

3. Decoupling code generation and formatting. Although generated code does not nec-

essarily need to be read by humans, readability is definitely a great advantage. For

example, it may help debugging or facilitate the comprehension of how the ProtoKit

tooling works. However, hardcoding formatting, like indentation level, line breaks

etc. in the generator significantly deteriorates the readability of the generator itself.

The readability of the generator is definitely more important than the readability of

the generated code so this is not a viable trade-off. However, collecting the output

in a buffer and using a code beautifier before flushing the code to the disk has proven

to be a favorable solution. This solution makes the code formatter reusable. In

ProtoKit, the code formatter provided by Eclipse JDT [11] has been used.

4. Using template language for code generation. When traditional programming lan-

guages are used for code generation, fragments of the generated text must be quoted

and concatenated to the variables that are substituted. All of this is written to a buffer

with method calls. These method calls, the quotation marks and the concatenations

deteriorate the readability and make it hard to see what output will be actually gen-

erated. Template languages reverse the logic: everything that is written will be part

of the output by default and only variable substitutions and branching need special

markup. In Java environment, Xtend [12] is a good choice of a template language. It

does not compile directly to bytecode but to Java source code so it can be easily used

anywhere where Java is used. ProtoKit is written mostly in Java but the code gener-

ator classes are implemented in Xtend. There are some branching statements and

substitutions but the readability of the generator is much better than it could be in

pure Java. The separation of the code formatter logic and the use of Xtend have sig-

nificantly improved the productivity during the development of ProtoKit.

5. Using a metamodeling framework and decoupling the validator logic. The validation

logic was first coded into the tree parser but as we added more features to the lan-

guage, it started to deteriorate the readability so we decided to factor it out. At the

same time, we introduced an explicit metamodel, described with the Eclipse Model-

ing Framework (EMF). [13] Using a modeling framework allows for reusing its val-

idation solutions and we wanted to benefit from this. However, associating line and

column numbers from the input text with validation errors is more challenging. Its

implementation requires attaching extra information to the model.

6 Evaluating ProtoKit

To demonstrate that ProtoKit is in fact useful and really helps the development of ap-

plications that use network communication, it must be put into practice. For this pur-

pose, we have implemented a caching DNS server that either answers queries from its

local cache or forwards queries to the configured resolver. ProtoKit was in fact easy to

use. We could model DNS messages easily. The generated classes and the generic se-

rialization logic highly simplified the process. Describing the caching DNS server is

beyond the scope of this paper but we have summarized some statistics about the gen-

erated and handwritten code in Table 1.

Table 1. Statistics in code lines

 Language Generated Reused Hand-written TOTAL

 ProtoKit 0 0 39 39

 Java 463 328 289 1080

 TOTAL 463 328 328 1119

In this case, only about 27% of the Java code had to be manually implemented. If we

also take into account the textual model of the protocol, we get about 29% hand-written

code, which seems to be a really good proportion.

The caching DNS server is a simple but realistic application so we believe it is a

good case study to evaluate ProtoKit. More complex applications also contain more

application logic that is independent of the networking code. The proportion will be

worse in such cases but ProtoKit is only meant to facilitate network messaging.

Using SaaS cloud services is always more common in computing, especially in mo-

bile applications. As described above, cloud messaging protocols are similar to the DNS

protocol in complexity: they use a request-response communication model and do not

encompass complex interactions. Since ProtoKit performed well in modeling DNS

messages, it will also be very useful for implementing the messaging between clients

and the cloud services. The Android platform uses Java as its main programming lan-

guage – however the class library is slightly different – which means that the generator

can also be used for Android applications with no or few modifications. Furthermore,

Java is also a popular platform in backend development, so the messaging code can be

shared between the client and the cloud server backend. Besides, ProtoKit is easy to

extend to support other target languages.

7 Conclusion

In this paper we have reported about our progress in developing the ProtoKit language

and tooling. We have explained our motivations and how we created a DSL to solve

these issues. We have also summarized the decisions that we met during the implemen-

tation and why we took these decisions. Finally, we have also reported on a simple but

realistic application that we developed with the help of ProtoKit. In this case study

ProtoKit in fact simplified the development. However, the main focus of this solution

is developing cloud messaging. Cloud messages use simple interactions but require a

message structure that is easy to work with and can be serialized efficiently. This is

exactly what ProtoKit is meant to be used for. We hope that it will prove to be useful

in practice on the long term and that our experiences will help other developers that

implement cloud-enabled applications.

Acknowledgments. This work was partially supported by the European Union and the

European Social Fund through project FuturICT.hu (grant no.: TAMOP-4.2.2.C-

11/1/KONV-2012-0013) organized by VIKING Zrt. Balatonfüred. This work was par-

tially supported by the Hungarian Government, managed by the National Development

Agency, and financed by the Research and Technology Innovation Fund (grant no.:

KMR_12-1-2012-0441).

References

1. The Object Management Group: CORBA 3.3 Specification,

http://www.omg.org/spec/CORBA/3.3/

2. Grosso, W.: Java RMI, O’Reilly Media (2001)

3. World Wide Web Consortium: Simple Object Access Protocol (SOAP) Specification,

http://www.w3.org/TR/soap/

4. Richardson, L., Ruby, S.: RESTful Web Services, O’Reilly Media (2007)

5. International Telecommunication Union: ITU-T Z.100 Standard. Specification and Descrip-

tion Language (SDL),

 http://www.itu.int/ITU-T/studygroups/com10/languages/Z.100_1199.pdf

6. Quaresma, J.: A Protocol Implementation Generator, Master Thesis,

http://nordsecmob.aalto.fi/en/publications/theses_2010/jose_quaresma.pdf

7. Fowler, M.: Domain-Specific Languages, Addison-Wesley (2010)

8. Kelly, S., Tolvanen, J.: Domain-Specific Modeling: Enabling Full Code Generation, Wiley-

IEEE Computer Society Press (2008)

9. The Internet Engineering Task Force: Domain Names – Implementation and Specification,

Request for Comments 1035, http://www.ietf.org/rfc/rfc1035.txt

10. Kövesdán, G., Asztalos, M., Lengyel, L.: A classification of domain-specific language intents,

International Journal of Modeling and Optimization, vol. 1, no. 4, pp. 67–73 (2014)

11. The Eclipse Project: Eclipse Java Development Tools, http://www.eclipse.org/jdt/

12. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend, Packt Publish-

ing (2013)

13. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework

(2nd Edition), Addison-Wesley Professional (2008)

