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Abstract. Different cloud platforms offer similar services with different
characteristics, names, and functionalities. Therefore, describing cloud
platform entities in such a way that they can be mapped to each other
is critical to enable a smooth migration across platforms. In this paper,
we present a DSL that uses a common cloud vocabulary for describing
cloud entities covering a wide variety of cloud IaaS services. Through
analysis of existing cloud DSLs, we advocate that our cloud DSL is more
expressive for the purpose of describing different cloud IaaS services. In
addition, when used along with TOSCA, our preliminary analysis sug-
gests that our Cloud DSL significantly reduces the workload of creating
cloud descriptions in a TOSCA specification.
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1 Introduction

Costa Coffee, Starbucks, and Caffè Nero are the three largest coffee shop compa-
nies in the UK. Although they all sell their coffees in three common sizes – small,
medium, and large – they name these sizes differently. This can create a lot of
confusion. A Starbucks customer might get frustrated when ordering a Grande
in Caffè Nero since that, in the Starbucks vocabularyGrande means medium,
whereas for Caffè Nero it means large. Likewise, those unfamiliar with Star-
bucks might find contradictory that Tall is the smallest size. Furthermore, simi-
lar products also have different characteristics. For instance, a medium skimmed
latte in Starbucks1 contains 156% more calories than its Nero2 version. Thus,
although their products look similar, they are not all the same. Therefore, having
a detailed description of each product is critical to prevent misunderstandings.

Like in the coffee-shop market, cloud platforms offer similar services, but with
different names, characteristics, and functionalities. For example, consider the
Amazon S3 and Dropbox storage services. Overall, they provide the same func-
tionality: file storage, storage elasticity, and interfaces for management. However,

1 http://www.starbucks.co.uk/quick-links/nutrition-info
2 http://www.caffenero.co.uk/Nutrition/hotdrinks.aspx
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a closer look reveals critical differences, including the use of different file systems.
Whereas Dropbox has one single file system root, Amazon S3 uses multiple root
containers called “buckets”. Furthermore, a bucket has a region, which specifies
a geographical location for the content stored within. Like for coffee shops, to
support a smooth migration of applications across different cloud platforms, it
is critical to describe the semantics of cloud entities.

Semantic differences are critical in cloud as they hinder the smooth migration
of assets (e.g., data and applications) across providers [21]. For example, the
differences between Amazon S3 and Dropbox hinder the migration (transfer) of
files from Dropbox to Amazon S3, as it is necessary to create a bucket and assign
it to a region. Cloud portability, i.e. the ability to migrate an asset deployed in
one cloud to another [18], is one of biggest challenges in cloud computing, and
it has been widely addressed by both academia and industry [17].

Providing homogeneous description of cloud platforms is a potential solution
to overcome semantic differences and achieve cloud portability in this highly
heterogeneous environment [3], [15], [19]. Recent research reveals three means to
describe cloud platforms [22]. Although we present them here, discussing their
benefits and drawbacks is beyond the scope of this paper.

(i) A platform abstraction solution consist of describing concepts of either the
entire platform or its elements, at different levels, e.g. as proposed by MODA-
Clouds [3]. This solution can adopt different technologies to achieve their
goals, such as ontologies [6] and Model-Driven Architecture [3]. This solu-
tion covers both design- and run-time, e.g. as proposed by meta cloud [20];

(ii) Standardized references focus on design-time only through at defining refer-
ences for cloud platforms [15], APIs [7], [1], [9], or applications [11]. In the
context of our paper, a reference is a set of rules, or constraints that a cloud
user or provider must follow. However, most of solutions in this type focus on
setting up references for cloud APIs. According to Escalera & Chavez, cloud
APIs consist of software libraries used by application developers to manage
cloud services [7]. Apart from [11], which targeted cloud applications, other
solutions in this type target only cloud providers; and

(iii) Domain Specific Languages (DSLs). A DSL is a language tailored for a partic-
ular domain or context [5]. Like standardized references, DSL-based solutions
are for use at design-time. However, some solutions might provide support
for run-time mechanisms, such as CloudMF [8]. As DSLs are defined for a
particular purpose [16], these solutions cover a wide range of goals, such as
automatic generation of mobile-cloud applications [19], and description and
comparison of Service Level Agreements (SLAs) [2]. Regardless of the pur-
pose, meta-models are the cornerstone of these solutions. Finally, DSL-based
solutions are mainly intended to support cloud users.

In this paper, we present a DSL that uses a common cloud vocabulary for
describing cloud platform entities, such as services and resources across a wide
variety of cloud platforms. Unlike existing Cloud DSL, this work covers a wide
variety of cloud IaaS services, contributes to different phases of cloud portabil-
ity, facilitates the communication of services and resources to different levels of
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stakeholders, and enables the description of different types of clouds, such as
federation and inter-clouds. In addition to positioning this work in the related
literature (Section 5), we contribute to the advance of the state-of-the-art in
both cloud portability and Model-Driven Engineering (MDE) by: (i) supporting
cloud portability via a common meta-model for cloud computing (Section 2); (ii)
facilitating the visualization and communication of cloud assets amongst differ-
ent stakeholders by providing a graphical editor (Section 3); and (iii) reducing
the effort of describing cloud entities in TOSCA cloud standard [4] (Section 4).

2 Cloud Meta-model

The meta-model, which describes the domain covered by the language, is the cor-
nerstone of a DSL. A DSL consists of abstract and concrete syntax — whereas
the abstract syntax defines the constructs of the language, the concrete syntax
defines the representation of these constructs [5], [16]. For example, the abstract
syntax of the Web Service Description Language (WSDL) defines a set of enti-
ties and their properties, such as ServiceType and InterfaceType, representing,
respectively, a service exposed to a client, and its interfaces. To specify Services
and Interfaces, one uses XML statements like <service /> and <interface />.
These XML statements are the concrete syntax of the WSDL.

Due to the heterogeneity of cloud platforms and services, creating a cloud
meta-model that covers a broad range of cloud services is not a straightfor-
ward task. To devise a cloud meta-model, we: (i) analysed four sources of in-
formation; (ii) identified correspondences amongst similar entities across these
different sources; and (iii) combined entities and their relationships into a new
meta-model. Our analysis started with an extensive literature review [22], in
which we identified some critical cloud entities. Next, we leveraged the contribu-
tion of two important standardization efforts, OGF OCCI [9] and DTMF CIMI
[1]. We also investigated relevant research projects focusing on cloud portability,
in particular MODAClouds3 and REMICS4. Finally, we examined a wide range
of cloud IaaS services, including Amazon SQS, Microsoft Azure Compute, and
Rackspace Cloud Files. Figure 1 shows our cloud meta-model.

A cloud Platform provides Service, such as computing and storage. A cloud
Platform has a name, such as Amazon Web Services, or OpenNebula. A Service
might be managed through multiple Management Interfaces, which are provided
by cloud Platform. A Management Interface has a type, such as RESTful, or
Query-based, and properties, such as authentication attributes. The Platform is
responsible for the Cloud User management. A Cloud User is identified by its
name, and can have several keys to access its Resources. A Service is identified by
its name, such as EC2, or Cloud Servers. A Service might be supported by other
service. For example, Amazon EBS and S3 supports Amazon EC2, providing
persistent storage. Each Service might operate in a different Region. A Region
represents a wide geographical location, such as Europe or Asia. In addition to

3 http://www.modaclouds.eu
4 http://www.remics.eu
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Fig. 1. Abstract syntax of the Cloud DSL

its name, a Region might have a particular code assigned by the cloud Platform.
This code is represented in this meta-model by the url attribute. A Region might
have several Datacentres, which are identified by their names and urls.

A Service has ServiceOperations. A ServiceOperation represents those man-
agement operations that a Cloud User can perform on its Resource through
a Management Interface, such as sending a message to a queue in a message
queue service. A ServiceOperation is identified by its name, such as runInstance
or listImages, for example. Some operations rely on input parameters, such as
the name of image, and region. As these operations are implemented by APIs,
they have a single return value, which might be a list of results, for example. A
Service exists to provide Resources, such as VMs and storage containers. Each
Platform might define different properties and states for Resources provided by
its Service. However, two properties are present in most of Resources: id and
name. Once the Resource has been created, it is made accessible by one or more
Endpoints. The Resource is available in one of the Region supported by the Ser-
vice. One Resource might support another. This is the case of storage containers,
which are used to support a set of files (Resource).

Some Resources rely on OperationalResource. An OperationalResource repre-
sents internal resources provided by the Service, such as the hardware of a VM,
or the engine of a database service. In addition to the Cloud User credentials,
some services provide further Security Mechanism, such as firewall and permis-
sions. A Security Mechanism consists of a set of Security Entry. For example, a
file in a storage service might have different permissions (SecurityEntry). Each
SecurityEntry is assigned to the Resource it protects. More sophisticated mecha-
nisms require further elements, represented in the meta-model by Security Rule.
This is the case of security groups, provided by Amazon EC2.
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3 Proof of Concept

To implement our Cloud DSL, we adopted Epsilon5, a suite of languages and
tools for model management operations, such as model transformation and anal-
ysis. The implementation process consisted of four steps: (i) creating the cloud
meta-model using Emfatic, a textual notation for creating Ecore models; (ii)
annotating the meta-model with EuGENia annotations. EuGENia is a tool that
takes advantage of model transformation techniques to mitigate the complexity
of GMF and EMF [13]; (iii) generating the graphical editor using the EuGENia
tool; and (iv) adjusting graphical components, such as figures used to represent
cloud entities. The graphical editor consists of three parts (Figure 2): (i) a can-
vas, in which cloud entities and their relationships are represented by graphical
components; (ii) a palette, which presents the cloud meta-model entities; and
(iii) the properties tab, which shows the properties of each selected entity.

To evaluate the expressiveness of our Cloud DSL, we used our Cloud DSL
to describe the Amazon Web Application Hosting (AWAH) reference architec-
ture6. The reference architecture consists of seven different Amazon services,
which provides several resources for a Web application, such as storage and
DNS routing. In order to implement this reference architecture, we hosted the
Java PetStore7 application using the services defined in the reference. Figure
2 shows the description of two services: Amazon CloudFront and Amazon S3.
Amazon CloudFront is a content distribution service, which routes requests to
the nearest content storage location.

In this implementation of AWAH reference architecture, we have only one
distribution configured, which represents a Resource for this service (Distribu-
tion PetPictures). As Amazon CloudFront does not store the content, it relies on
a storage service, in this case, Amazon S3. The figure shows three resources pro-
vided by Amazon S3: PetPictures, petstorestaticpages, and index.html. Whereas
the first two resources are buckets, the third is a file. The two buckets are pro-
tected by a Security Entry, defined using the Security Mechanism (PERMIS-
SION). The location of PetPictures bucket is explicitly defined by a Region,
represented by US Standard in this example.

The concrete syntax of our Cloud DSL represents a ServiceOperation as a
container inside the Service. ServiceOperation might have several parameters. In
this example, the operations described represent those required to operationalise
the AWAH architecture, such as starting an instance. In Figure 2, Amazon S3
operations are hidden in the Service entity (note the “+” signal just below the
service name). Figure 3 (a), shows the Amazon RDS service and the operations
described: launchDBInstance, and terminateDBInstance. Whereas the first op-
eration has six parameters, the second has only one. Parameters are represented
by an “i” signal. This notation is used throughout our Cloud DSL to represent
parameters. For example, Figure 3 (b) shows two OperationalResources (HARD-

5 http://www.eclipse.org/epsilon/
6 http://aws.amazon.com/architecture/?nc1=f_cc
7 http://www.oracle.com/technetwork/articles/javaee/petstore-137013.html
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Fig. 2. The concrete syntax of the Cloud DSL implemented by a graphical editor

WARE and VM IMAGE) which contain particular properties. Figure 3 (c) shows
the properties tab for one cloud Resource (VM INSTANCE).

Figure 3 (b) shows the Amazon EC2 service, and its related Resource, Dy-
namicWebSite. This resource is a VM which hosts the dynamic content of the
Java PetStore application. In the properties tab (Figure 3 (c)), it is possible
to see the properties of this resource, such as id (generated by the cloud plat-
form), and the Cloud User which owns the VM. DynamicWebSite is supported
by two OperationalResources: HARDWARE, and VM IMAGE. Whereas the for-
mer represents the type of instance used, the latter represents the Amazon Ma-
chine Image (AMI) used. The AMI contains the operational system as well as all
applications required to run the Website. Different from Amazon S3 (Figure 2),
Amazon EC2 enables specifying a particular datacentre. It is possible to note it
in the Figure 3 (b), just above the globe, which represents a Region. Finally, in
order to access the VM, an endpoint is made available. The concrete syntax for
it is small rings, located just in the right side of DynamicWebSite resource.

4 Towards Simplifying Cloud Services and Resources
Description in TOSCA

Topology and Orchestration Specification for Cloud Applications (TOSCA) is
a standard supported by OASIS, and intended to support application portabil-
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Fig. 3. Our Cloud DSL in action describing the AWAH reference architecture

ity across clouds. TOSCA defines types, that describe applications and cloud
services, and templates that represent instances of these types. The TOSCA
ecosystem comprises: specification and run-time environments. Whereas the for-
mer covers both application topology and activity orchestration, the latter is re-
sponsible for processing these specifications [4]. Several companies demonstrated
the benefits of using TOSCA migrating an application across cloud platforms8.

Despite from the benefits that TOSCA can provide, describing cloud re-
sources in a TOSCA specification is a cumbersome task. TOSCA does not use
the typical cloud vocabulary, such as services and resources. Instead, it defines a
set of abstract elements, such as nodes, capabilities, and policies. Although this
strategy enables the specification of both cloud and application components, it
complicates the specification of cloud platform entities using TOSCA elements,
specially because TOSCA official documentation does not define how to map
cloud entities to TOSCA elements. In addition, as TOSCA specification is de-
fined as a XML document, it is quite hard to have an overview of cloud entities.

Therefore, we proposed using our Cloud DSL to specify cloud services and
resources for TOSCA specification. To this end, we are taking advantage of
MDE techniques, in particular, model-to-model and model-to-text transforma-
tions (MT). As Hermans, Pinzger & van Deursen identified in their study [12], a
DSL along with MT techniques contribute to reduce effort and increase produc-
tivity by automating repetitive tasks, such as code generation. Indeed, Brambilla,

8 https://www.oasisKopen.org/events/cloud/2013/TOSCAdemo
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Cabot & Wimmer analyse that code generation can save much effort for imple-
menting CRUD operations, which are responsible for 80% of software function-
ality in data-intensive applications [5]. To achieve these benefits, we have begun
work on mapping between our cloud meta-model and TOSCA elements.

However, this cloud-to-TOSCA mapping is an on-going work, which has re-
quired substantial intellectual and technical effort. Thus, describing these map-
pings is beyond the purposes of this paper. Here, we report on what we want to
achieve once the mapping is complete. Our preliminary analysis has shown that
it is possible to achieve similar results to those reported in [12], in particular,
effort reduction. Our hypothesis for such statement is underpinned by the fact
that a single cloud entity can be mapped to more than one TOSCA element.

For example, a cloud Service is represented in TOSCA as a TNodeType.
However, as exists dependences between services, they also become a TCapabil-
ityType and a TRequirementType. For instance, Amazon EC2 relies on Amazon
EBS to store persistent data. Therefore, Amazon EBS provides the storage ca-
pability whereas Amazon EC2 requires such a capability. In addition, a cloud
Service carries information used by TOSCA TNodeTemplate. Thus, writing a
TOSCA specification manually would require that those four entities and all
their related information were encoded by a human developer — which is both
a time consuming and an error-prone activity.

5 Related Work

In 2010, Gonçalves et al. presented the first DSL devised specifically to de-
scribe cloud entities, CloudML [10]. CloudML is underpinned in the D-Cloud
context aiming at allowing cloud computing providers to describe both cloud
resources and services, and cloud developers, to describe their computing re-
quirements. D-Clouds stands for Distributed Clouds, and authors define it as
“smaller datacentres sharing resources across geographic boundaries.” CloudML
is an XML-based language, and it is based on three requirements: (i) represen-
tation of physical and virtual resources as well as their state; (ii) representation
of services provided; and (iii) representation of developer’s requirements. In con-
trast to this DSL, our work is not limited to a particular context. As our Cloud
DSL captures essential characteristics of cloud platforms, it can be used to model
different types of clouds, such as federation and inter-cloud.

In 2011, Liu & Zic presented Cloud#, a textual DSL that enables cloud
providers to describe internal organization of cloud resources [14]. Focused on
computing services, their requirements are: (i) to express computation units and
different privilege levels of computation; (ii) to allow programmable bidirectional
control and data transfer between computation units; and (iii) to model physical
resources. The two cornerstone entities in their meta-model are CUnit, which
represents a cloud, a virtual machine, or an operating system; and Action, which
defines a computation task. Different from this DSL, which defines a textual
language to describe computing services, our Cloud DSL provides a graphical
representation of cloud entities, presented in a diagram. Thus, our Cloud DSL
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facilitate not only the visualisation of cloud entities, but also the communication
of the cloud strategy amongst different levels of stakeholders.

In 2012, Alkandari & Paige reported on-going work towards a DSL for de-
scribing and comparing SLAs offered by different cloud providers [2]. Authors
came up with two meta-models, one for describing SLAs offered by cloud provider,
and another to describe SLAs required by cloud users. In addition, an algorithm
was developed to compare models from cloud users to those from cloud providers.
However, this DSL is limited to the first phase of cloud portability - analysis.
Although our Cloud DSL cannot describe SLAs with the richness of detail as this
DSL does, our Cloud DSL contributes to different phases of cloud portability,
such as analysis and migration.

Finally, in 2013, Ferry et al. introduced the CloudMF [8]. CloudMF aims
at supporting provisioning and deployment of applications in multiple clouds
at run- and design-time. To accomplish this objective, CloudMF covers four re-
quirements: (i) separation of concerns; (ii) provider independence; (iii) reusabil-
ity; and (iv) abstraction. CloudMF consists of two components: (i) CloudML,
the modelling environment (DSL); and (ii) Models@run-time, which provides an
abstract representation of the running system. However, this DSL is limited to
computing and storage services. Our Cloud DSL enables the description of a
wide variety of cloud services, such as message queue, scaling, and DNS routing.

6 Conclusion

This paper introduced a Cloud DSL which supports cloud portability by describ-
ing cloud platform entities. The wide coverage of cloud IaaS services, and our
ongoing work towards the integration of our Cloud DSL and TOSCA, suggest
that our Cloud DSL can cover critical aspects of cloud service specification. As
next step, we will investigate literature to identify means of evaluating and com-
paring our Cloud DSL to other cloud-related languages. Finally, in our project,
we have been working towards mapping our Cloud DSL to platform-specific of-
ferings by mapping entities of cloud meta-model to platform-specific cloud APIs.
Exploiting these capabilities requires the maintenance of these mappings.
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4. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: Portable Automated
Deployment and Management of Cloud Applications. In: Advanced Web Services,
pp. 527–549. Springer, New York (2014)

5. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in
Practice. Morgan & Claypool Publishers (2012)

6. Ejarque, J., Alvarez, J., Sirvent, R., Badia, R.M.: A Rule-based Approach for
Infrastructure Providers’ Interoperability. In: IEEE 3rd CloudCom. pp. 272–279.
IEEE, Athens (Nov 2011)

7. Escalera, M.F.P., Chavez, M.A.L.: UML model of a standard API for cloud com-
puting application development. In: 9th Intl Conf on Electrical Engineering, Com-
puting Science and Automatic Control. pp. 1–8. IEEE, Mexico City (Sep 2012)

8. Ferry, N., Chauvel, F., Rossini, A., Morin, B., Solberg, A.: Managing multi-cloud
systems with CloudMF. In: 2nd Nordic Symposium on Cloud Computing and
Internet Technologies. pp. 38–45. ACM, Oslo, Norway (2013)

9. Forum, O.G.: Open Cloud Computing Interface (OCCI), http://occi-wg.org/
10. Goncalves, G., Endo, P., Santos, M., Sadok, D., Kelner, J., Melander, B., Mangs,

J.E.: CloudML:An Integrated Language for Resource,Service and Request Descrip-
tion for D-Clouds. In: IEEE 3rd CloudCom. pp. 399–406. IEEE, Athens (Nov 2011)

11. Hamdaqa, M., Livogiannis, T., Tahvildari, L.: A reference model for developing
cloud applications. In: 1st International Conference on Cloud Computing and Ser-
vices Science. pp. 98–103. SciTePress, Noordwijkerhout (2011)

12. Hermans, F., Pinzger, M., van Deursen, A.: Domain-Specific Languages in Practice:
A User Study on the Success Factors. In: Model Driven Engineering Languages and
Systems, pp. 423–437. Springer Berlin Heidelberg, Berlin (2009)

13. Kolovos, D., Rose, L., Abid, S., Paige, R., Polack, F., Botterweck, G.: Taming emf
and gmf using model transformation. In: Model Driven Engineering Languages and
Systems, LNCS, vol. 6394, pp. 211–225. Springer Berlin Heidelberg (2010)

14. Liu, D., Zic, J.: Cloud#: A Specification Language for Modeling Cloud. In: IEEE
4th CLOUD. pp. 533–540. IEEE, Washington, DC (Jul 2011)

15. Loutas, N., Peristeras, V., Bouras, T., Kamateri, E., Zeginis, D., Tarabanis, K.:
Towards a Reference Architecture for Semantically Interoperable Clouds. In: IEEE
2nd CloudCom. pp. 143–150. IEEE, Indianapolis (Nov 2010)

16. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Computing Surveys 37(4), 316–344 (Dec 2005)

17. Petcu, D.: Multi-Cloud: expectations and current approaches. In: MultiCloud ’13.
pp. 1–6. ACM Press, Prague (2013)

18. Petcu, D., Macariu, G., Panica, S., Crăciun, C.: Portable Cloud applications—From
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