
Simplifying RDF Data for Graph-Based Machine
Learning

Peter Bloem1, Adianto Wibisono12, and Gerben K.D. de Vries1

1 System and Network Engineering Group
Informatics Institute, University of Amsterdam

the Netherlands
uva@peterbloem.nl, g.k.d.devries@uva.nl

2 Knowledge Representation and Reasoning Group
Vrije Universiteit Amsterdam

the Netherlands
a.wibisono@vu.nl

Abstract. From the perspective of machine learning and data mining
applications, expressing data in RDF rather than a domain-specific for-
mat can add complexity and obfuscate the internal structure. We in-
vestigate and illustrate this issue with an example where bio-molecular
graph datasets are expressed in RDF. We use this example to inspire pre-
processing techniques which reverse some of the complications of adding
semantic annotations, exposing those patterns in the data that are most
relevant to machine learning. We test these methods in a number of clas-
sification experiments and show that they can improve performance both
for our example datasets and real-world RDF datasets.

1 Introduction

Linked Data is fast establishing itself as the principal method for reliable, acces-
sible, long-term storage of data [1]. It contrasts starkly with the datasets tradi-
tionally used and exchanged in machine learning research, which are commonly
distributed as application-specific files (such as MATLAB formatted data), CSV
files, or relational databases. The quality of this data varies greatly and in many
cases, the original semantic context required to interpret it is missing.

We can combat these problems with Linked Data and RDF. However, for ma-
chine learning applications, this also poses new challenges. Commonly, machine
learning data is separated into instances and expressed in a canonical form like
feature vectors, trees, sequences or small graphs. Expressing such data in RDF
will add many relations and concepts on top of its native structure. If this raw
form is well suited to machine learning, we may expect that the added informa-
tion, while helpful for inference, harmonization and accessibility, can be detri-
mental to machine learning.



While the transformation to RDF is reversible, reconstructing the original data
will usually require manual effort or domain-specific methods. To process large
amounts of RDF data by generic methods, we require automatic pre-processing
that simplifies the raw RDF data to something similar to its native form.

In this paper we introduce a number of such methods and show that these meth-
ods can (at least partly) deal with the problems introduced in our illustrative
example, which uses typical graph datasets from machine learning, converted
to RDF. Furthermore, we test our techniques on a number of real-world RDF
machine learning classification datasets and show that simplification can, for the
right parameters, improve performance on such datasets as well.

For an in-depth overview of machine learning in the context of Linked Data,
we refer the reader to [2]. For examples of machine learning in a Semantic Web
context, see [3,4]. For this paper we take the approach of using graph kernels for
learning from RDF data [5,6,7] as a graph-learning workflow to test our methods.

2 An illustrative example

To illustrate the tension that exists between principles of well-authored RDF
data and data that facilitates machine learning, we adapt the MUTAG and EN-
ZYMES datasets, as used in [8,9] and translate these into an RDF representation.

These datasets contain the molecular form of enzymes and other molecules, each
encoded straightforwardly as a graph with a node per atom or tertiary structure
(colored by type), and an unlabeled link for each bond. To represent this in RDF
we create a blank node for each atom or tertiary structure. We create a node
for each label and connect the blank nodes to these by an a edge. The bonds
are represented by two symmetric bond relations and we group the blank nodes
belonging to a single molecule by connecting them to an instance node by has

and partOf relations. See Fig. 1 for an example.

This process turns the set of single, small graphs into a densely connected web.
On the one hand, we can imagine that this obscures the graph structure of the
original graph. On the other, it may provide links which help the learning algo-
rithms to connect related instances. We will see in the experiments in Sect. 4 that
this translation to RDF diminishes classification performance for the MUTAG
and ENZYME datasets. Ultimately it will depend on the learning algorithm
used and the learning context whether the transformation to RDF will harm or
help. All we can say from this example, is that the form of the data is radically
changed.

Of course, the non-RDF form of the data will always be recoverable from the
RDF, but, in general, doing so will require domain specific processing, possibly
by hand. If linked data becomes the standard means of representing data for
safe, long term storage, the easiest way to use it in machine learning applications



C

H

HH

bond
bond

bond

bond

bond bond

_1

_2

_3

_4

AtomH

AtomC

a

a

molecule1
partOf

partOf
has

hasMolecule

a

Fig. 1: A common graph-learning problem: molecular structure. The figure on
the left shows the basic form of the data, the figure on the right shows an RDF
representation. For the sake of clarity, not all RDF relations of the type a, partOf
and has are shown.

would be in that form, without manual pre-processing. In the following section
we investigate two automatic pre-processing methods that will simplify the data
for machine learning purposes.

It may seem that removing the links to ontology nodes reverses the process, but
this would leave the remaining nodes with unique labels, removing the atom
types. Additionally, we expect that some of the RDF enrichment might help
the learning process. Ultimately, we would like to have an algorithm which can
simplify a graph based on the local graph structure, rather than hard-coded
assumptions about the role of RDF, so that it removes only the annotations
that will hurt learning.

3 Pre-processing Methods

As we saw in the previous example, exposing data as RDF can have a profound
effect on its graph structure. We will present two methods to deal with this issue.
We view an RDF dataset as a directed multigraph with the resources, literals
and blank nodes as nodes in the graph, and their relations as directed, labeled
edges. Literals that occur more than once are seen as the same node, and the
fact that edges can be linked to nodes (i.e. predicates can be subjects or objects)
is ignored.

Hub removal Our first approach to simplifying graphs is based on the principle
that the hubs in the RDF graph—those nodes that are connected to many other
nodes—are likely to add little information about an instance.

This approach is partly inspired by the Slash-and-burn algorithm [10]. This
algorithm uses the property of scale-free graphs that removing the hubs causes



the graph to fall apart in to disconnected components [11]: it splits a graph into
a small collection of hubs and a long tail of disconnected islands. Our intuition is
that these islands represent the innate instances of the data, and that the hubs
represent the added semantic relations.3We use three methods to find the list of
hubs:

rdf-type We consider as hubs only those nodes which are the object in an
rdf:type relation. We sort by the number of such relations the node is a
part of.

degree-plain We sort the nodes by degree (the sum of in- and out-degree) and
choose the top h nodes as hub.

degree-signature In this method we group the edges around the node by the
combination of the direction of the edge and its label (we call this combi-
nation the signature). We take the frequency of the most frequent signature
among the node’s neighboring edges and sort all nodes by this, removing the
top h nodes with the highest such frequency. The idea is that a node which
means a lot of different things to other nodes does not make a hub. Only
when it means the same thing to a lot of nodes does it become a hub.

Relabeling Removing hubs will go some way to reducing the complexity of the
graph, but some issues remain. To illustrate, we can see that removing hubs from
the RDF version of our molecule dataset still leaves the most important nodes
blank: those representing atoms. For these nodes, their node label is irrelevant,
but the a relation and the label of the node it points to (the atomic symbol) are
essential information.

We therefore introduce a relabeling operation. We investigate all nodes that are
neighbors of removed hubs. For these nodes, we take the hub with the lowest
degree to which it is connected, and relabel it with the concatenation of the
relation to the hub and the hub’s label. We test this method both together with
node removal and on its own (where we detect the nodes, but do not remove
them).

4 Experiments

In the following experiments, we test our simplification methods on 5 classifica-
tion tasks. The first two tasks deal with the regular and RDF versions of the
molecule datasets MUTAG and ENZYMES. The goal of these two tasks is to test
whether the problems introduced in our illustrative example in Sect. 2 can be

3 Using the Slash-and-burn algorithm explicitly to detect hubs turned out to be equiva-
lent to simply removing the top h hubs by degree, since RDF graphs are not usually
scale free in a strict sense, so they can remain connected even if many hubs are
removed.



dealt with using our simplification techniques. The other three tasks use regular,
real-world RDF datasets. For machine learning, we use two representative graph
kernels for RDF: the Weisfeiler-Lehman and the Intersection SubTree graph ker-
nels. These kernels are combined with a Support Vector Machine (SVM) [12] as
our classification algorithm.

Weisfeiler-Lehman The Weisfeiler-Lehman (WL) graph kernel [8] is a fast, state-
of-the-art kernel that iteratively constructs features that represent the subtrees
that occur in the graph. These features are constructed by an efficient rewrite
procedure, which creates a new multiset label for a node based on the neighbors
of that node. This multiset is sorted and together with the original label con-
catenated into a string, which is the new label. For each unique string, a new
(shorter) label is introduced to replace the original node label. The rewriting
process can be efficiently implemented using counting sort, see [8] for details.

The Weisfeiler-Lehman algorithm was adapted for RDF in [6]. This adaptation
computes the features for all instances on the full RDF graph at once. To make
sure that as much of the results in the experiments can be attributed to the graph
pre-processing, we use a simpler adaptation, which is as close to the regular WL
kernel as possible. The version in this paper is adapted to RDF to handle directed
edges and edge labels, but is computed on separate instance subgraphs. It also
forgoes the weighting of the rewrite iterations and has the labels ‘travel’ along
the reverse direction of the edge.4

Intersection SubTree The Intersection SubTree (IST) kernel was defined specifi-
cally for RDF in [5] and takes a different approach to comparing RDF instances
than the WL kernel. This kernel works by counting the number of full subtrees
in the intersection tree that is created by taking the common children of the two
instance root nodes and iterating this to a certain depth, 3 in our experiments. A
version that counts partial subtrees is also defined in [5], but both in [5] and [7]
very little performance difference with the full subtree version is shown, so we do
not include it here. We only test the IST kernel for the real-world RDF datasets,
since it was not developed to handle the regular graphs like the molecule datasets
and performs poorly on them.

Experimental set-up We test the cross-product of our hub removal and relabeling
methods. This leads to testing: rdf-type, degree-plain and degree-signature, with
three settings: remove links to hubs (Li), relabel nodes (La) and both (LiLa).
Each of these 9 simplification variants are tested for a number of different to-
tal hub settings h, differing per task. Instance subgraphs are extracted from
the simplified graph up to depth 3 (respecting edge directions). No additional
inferencing by the triple-store is done.

4 The algorithm we use is one of the comparison algorithms of [6], without the iteration
weighting and the labels moving in the opposite direction along the edges.



For each setting an SVM classifier is evaluated using 10-fold cross-validation, re-
peated 10 times to remove random fold assignment effects. Within folds, the C
parameter of the SVM is optimized using an inner 10-fold cross-validation loop.
As performance measure we use classification error, i.e. the fraction of misclas-
sified instances. For the WL kernel we optimize over the number of iterations
parameter and for the IST kernel we use the settings from the original paper [5].

All of our experiments are implemented in Java and are available online, together
with the datasets used5. For our SVM we use the Java version of the LibSVM [13]
library and for dealing with the RDF data we use the SESAME library.6

4.1 Molecular datasets

The first two tasks involve classifying molecular data from the MUTAG and
ENZYMES datasets. In the MUTAG dataset there are 188 instances in 2 classes,
and in the ENZYMES set we have 600 instances and 6 classes. We test the
performance of the regular Weisfeiler-Lehman (WL) algorithm on the original
data and the performance of WL on the RDF versions of these datasets with
our simplification methods. These experiments aim to show that indeed our
illustrative example from Sect. 2 leads to problems and that our pre-processing
methods can (partially) alleviate these problems.

We include the 0 hubs setting as a baseline; under this setting the graph is not
simplified in any way. We test up to 6 hubs removed, since we know by our
construction that there are no more hubs in the datasets. For the regular WL
kernel we optimize over the iterations parameter from 0, 1, 2, 3, 4, 5, 6 and for the
WL RDF version from 0, 2, 4, 6, 8, 10, 12.7

The results for the MUTAG and ENZYME datasets are presented in Table 1.
Bold indicates the best score for the dataset, or those scores that do not have a
significant difference with the best score under a Student t-test with p < 0.05.

Discussion In both experiments we see that using unsimplified graphs (h = 0)
shows clearly worse performance than when using the original data. For the
MUTAG dataset we see that using simplification allows us to reach a better
performance than on the original data. This is quite remarkable, and likely has
something to do with the fact that WL for RDF takes edges into account and
therefore the feature vectors contain a feature that represents the number of
edges. In the case of the ENZYMES dataset, simplification allows us to get sub-
stantially closer to the performance on the original data. In both experiments

5 http://www.data2semantics.org/publications/pre-processing-eswc-2014
6 http://www.openrdf.org
7 The RDF version of Weisfeiler-Lehman includes edges, therefore 2 iterations are

‘equal’ to 1 iteration of the regular WL algorithm.

http://www.data2semantics.org/publications/pre-processing-eswc-2014
http://www.openrdf.org


Table 1: Mean error for the simplification experiments on the molecular datasets.
‘Li’ indicates removal of the links to the hubs, ‘La’ indicates relabeling of the
node with the labels of the link and hub. h indicates the number of hubs used
for simplification.

MUTAG

regular data: 0.127

rdf-type degree-plain degree-signature
h Li La LiLa Li La LiLa Li La LiLa

0 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178
1 0.239 0.141 0.146 0.239 0.141 0.146 0.239 0.141 0.146
2 0.190 0.116 0.115 0.190 0.116 0.115 0.190 0.116 0.115
3 0.222 0.114 0.118 0.222 0.114 0.118 0.222 0.114 0.118
4 0.257 0.102 0.110 0.257 0.102 0.110 0.257 0.102 0.110
5 0.267 0.118 0.120 0.267 0.118 0.119 0.267 0.118 0.120
6 0.265 0.118 0.122 0.265 0.117 0.122 0.265 0.118 0.122

ENZYME

regular data: 0.474

rdf-type degree-plain degree-signature
h Li La LiLa Li La LiLa Li La LiLa

0 0.805 0.805 0.805 0.805 0.805 0.805 0.805 0.805 0.805
1 0.777 0.748 0.745 0.777 0.748 0.745 0.777 0.748 0.745
2 0.820 0.744 0.749 0.820 0.744 0.749 0.820 0.744 0.749
3 0.824 0.591 0.596 0.824 0.591 0.596 0.824 0.591 0.596
4 0.828 0.581 0.584 0.828 0.581 0.584 0.828 0.581 0.584
5 0.828 0.581 0.584 0.828 0.581 0.584 0.828 0.581 0.584
6 0.828 0.581 0.584 0.827 0.580 0.583 0.827 0.580 0.583

relabeling (La) of the RDF graph is needed to improve performance. The exper-
iments make virtually no distinction between the three simplification methods.

4.2 Affiliation Prediction

For our first experiment with a real-world RDF dataset we repeat the affiliation
prediction experiment from [6], which was introduced in [14] and repeated in [5].
In this experiment, data is used from the semantic portal of the AIFB research
institute. The goal is to predict one of four affiliations for the people in the
institute. The fifth affiliation is ignored, since it only has 4 members, leaving a
total of 174 instances. Since the affiliations are known, the affiliation relation
(and its inverse the employs relation) are removed from the RDF for training.

Table 2 shows the results for the graph simplification experiments. The h setting
is varied from 0 to 40. For the WL algorithm we optimize over the iterations pa-
rameter from 0, 2, 4, 6. Again, bold type means the best score or not significantly
different from the best score.



Table 2: Mean error for the AIFB simplification experiment.
rdf-type degree-plain degree-signature

h Li La LiLa Li La LiLa Li La LiLa

Weisfeiler-Lehman

0 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097
1 0.098 0.118 0.119 0.099 0.119 0.119 0.098 0.118 0.119
2 0.097 0.132 0.137 0.095 0.134 0.137 0.097 0.132 0.137
3 0.093 0.133 0.141 0.085 0.112 0.117 0.082 0.111 0.111
4 0.095 0.116 0.129 0.091 0.110 0.104 0.094 0.109 0.113
5 0.092 0.108 0.115 0.085 0.107 0.106 0.096 0.105 0.107
10 0.095 0.108 0.124 0.091 0.100 0.088 0.089 0.097 0.096
20 0.092 0.107 0.125 0.103 0.102 0.101 0.095 0.108 0.099
30 0.093 0.108 0.131 0.109 0.107 0.099 0.102 0.092 0.085
40 0.093 0.108 0.131 0.095 0.102 0.107 0.098 0.094 0.111

Intersection SubTree

0 0.172 0.172 0.172 0.172 0.172 0.172 0.172 0.172 0.172
1 0.171 0.546 0.546 0.172 0.546 0.546 0.171 0.546 0.546
2 0.167 0.546 0.571 0.167 0.546 0.566 0.167 0.546 0.571
3 0.167 0.551 0.600 0.172 0.345 0.367 0.171 0.327 0.328
4 0.168 0.517 0.562 0.172 0.408 0.444 0.167 0.421 0.459
5 0.168 0.540 0.576 0.172 0.379 0.412 0.167 0.362 0.402
10 0.169 0.719 0.734 0.166 0.151 0.178 0.165 0.205 0.226
20 0.160 0.712 0.725 0.171 0.268 0.348 0.165 0.227 0.259
30 0.162 0.712 0.727 0.171 0.253 0.318 0.165 0.217 0.254
40 0.162 0.712 0.727 0.164 0.544 0.580 0.178 0.533 0.551

Discussion Using graph simplification, it is possible to improve the performance
for this task by nearly 16% (0.097 to 0.082) for the WL kernel, but this depends
very much on the number of hubs considered. Contrary to the molecule tasks,
there is a difference between the methods, with the degree-plain and degree-
signature techniques performing better. Also, relabeling (La) is not a necessary
step in this experiment. The intersection subtree kernel performs substantially
worse on this task. However, there are cases were performance is improved over
the h = 0 baseline. It is interesting to see that some pre-processing settings
can have a real detrimental effect on performance for the IST kernel, whereas,
although the performance for the WL kernel can also drop, it is never by such a
large amount.

4.3 ISWC Program chair prediction

For our second experiment, we use RDF data about the ISWC conferences of
2010 and 2011 to predict members of the program committee for the 2012 con-



ference8. A total of 302 people went to all three conferences, of which 115 where
part of the 2012 program committee for the research track.

The results are presented in Table 3. The experimental settings are similar to
the AIFB experiment.

Table 3: Mean error for the ISWC simplification experiment.
rdf-type degree-plain degree-signature

h Li La LiLa Li La LiLa Li La LiLa

Weisfeiler-Lehman

0 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.233
1 0.233 0.236 0.232 0.233 0.236 0.232 0.233 0.236 0.232
2 0.233 0.240 0.240 0.233 0.234 0.232 0.233 0.234 0.232
3 0.233 0.236 0.238 0.233 0.240 0.239 0.233 0.24 0.239
4 0.233 0.236 0.237 0.233 0.236 0.237 0.233 0.236 0.237
5 0.233 0.236 0.237 0.341 0.233 0.328 0.233 0.236 0.237
10 0.233 0.238 0.238 0.344 0.235 0.343 0.277 0.233 0.285
20 0.233 0.240 0.242 0.352 0.236 0.362 0.245 0.239 0.245
30 0.233 0.240 0.242 0.261 0.239 0.255 0.227 0.239 0.225
40 0.233 0.240 0.242 0.284 0.240 0.260 0.226 0.237 0.223

Intersection SubTree

0 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228
1 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228
2 0.228 0.234 0.235 0.228 0.228 0.228 0.228 0.228 0.228
3 0.228 0.251 0.252 0.228 0.234 0.235 0.228 0.234 0.235
4 0.228 0.251 0.251 0.228 0.251 0.252 0.228 0.251 0.252
5 0.228 0.251 0.251 0.336 0.251 0.339 0.228 0.251 0.251
10 0.228 0.252 0.253 0.337 0.442 0.448 0.263 0.248 0.291
20 0.228 0.456 0.459 0.306 0.429 0.441 0.227 0.242 0.257
30 0.228 0.456 0.459 0.267 0.432 0.401 0.228 0.237 0.280
40 0.228 0.456 0.459 0.259 0.438 0.357 0.227 0.234 0.250

Discussion As in the affiliation prediction task, performance can be improved for
the WL kernel, but it does depend greatly on the h setting. The degree-signature
methods show the best performance. Removing links (Li) for the degree-plain
method has a clear negative impact. The performance difference between the IST
and WL kernels as not as large as in the AIFB experiment (for the h = 0 baseline,
IST even performs slightly better). However, pre-processing does not improve
performance for the IST kernel and some settings can impact the performance
quite severely.

8 Available from http://data.semanticweb.org/

http://data.semanticweb.org/


4.4 Lithogenesis prediction

For our last experiment we repeat the Lithogenesis prediction task from [6].
In this task, data from the British Geological Survey9 is used, which contains
information about geological measurements in Britain. The things measured by
this survey are ‘Named Rocked Units’. For these named rock units we try to
predict the lithogenesis property, for which the two largest classes have 93 and
53 instances. Triples related to this property are removed from the dataset.

Experimental settings are as in the previous two experiments. Results are in
Table 4.

Table 4: Mean error for the BGS simplification experiment.
rdf-type degree-plain degree-signature

h Li La LiLa Li La LiLa Li La LiLa

Weisfeiler-Lehman

0 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095
1 0.093 0.092 0.093 0.093 0.092 0.093 0.093 0.092 0.093
2 0.099 0.091 0.093 0.093 0.094 0.095 0.092 0.093 0.089
3 0.099 0.091 0.093 0.097 0.107 0.106 0.091 0.097 0.090
4 0.099 0.091 0.093 0.097 0.103 0.110 0.092 0.097 0.096
5 0.099 0.091 0.093 0.098 0.098 0.111 0.096 0.096 0.103
10 0.099 0.091 0.093 0.101 0.099 0.112 0.097 0.101 0.105
20 0.099 0.091 0.093 0.101 0.090 0.097 0.105 0.093 0.105
30 0.099 0.091 0.093 0.104 0.084 0.092 0.095 0.075 0.068
40 0.099 0.091 0.093 0.127 0.085 0.097 0.116 0.084 0.079

Intersection SubTree

0 0.145 0.145 0.145 0.145 0.145 0.145 0.145 0.145 0.145
1 0.144 0.497 0.497 0.144 0.497 0.497 0.144 0.497 0.497
2 0.147 0.497 0.498 0.144 0.453 0.451 0.144 0.503 0.503
3 0.147 0.497 0.498 0.150 0.551 0.549 0.144 0.501 0.503
4 0.147 0.497 0.498 0.150 0.547 0.548 0.144 0.502 0.499
5 0.147 0.497 0.498 0.150 0.547 0.546 0.144 0.510 0.510
10 0.147 0.497 0.498 0.151 0.503 0.488 0.148 0.495 0.495
20 0.147 0.497 0.498 0.140 0.246 0.237 0.138 0.388 0.402
30 0.147 0.497 0.498 0.147 0.246 0.244 0.151 0.218 0.220
40 0.147 0.497 0.498 0.150 0.171 0.162 0.153 0.369 0.370

Discussion In this task only very few simplification settings show a performance
improvement. However, the degree-signature method does show a good improve-
ment (20%) for the h = 30 setting and the WL kernel. A possible reason for the
difficulty in improving performance is that this dataset is relatively hierarchical
in nature, compared to the previous two datasets, making hubs less important.

9 http://data.bgs.ac.uk/

http://data.bgs.ac.uk/


Again, pre-processing does not improve the IST kernel and often has a severe
negative impact.

5 Conclusions and future work

We have dealt with the problem of applying graph-based machine learning di-
rectly to Linked Data. We have shown that the annotations that well-written
RDF contains, can obfuscate the patterns exploited by machine learning algo-
rithms.

We have also shown that this effect can be mitigated by automatic pre-processing,
although validation is still required to choose a pre-processing method for a given
learning task.

For tasks where no raw form of the data is available (our real-world RDF
datasets), we show that hub removal and relabeling can still improve perfor-
mance, although it is difficult to select a priori the correct number of hubs to
remove, and to decide whether or not to apply relabeling. Furthermore, the
Weisfeiler-Lehman benefits better from this preprocessing then the Intersection
SubTree Kernel.

While our pre-processing methods show improvements in certain cases, and at
times with consistent parameter values across datasets, they also show that there
is room for improvement. Specifically, there is room to investigate the reason for
the variation in performance with respect to the number of hubs removed, and
to investigate the cause of the good performance at h = 30, for the WL kernel,
across datasets. Since the top 30 hubs differ entirely across these datasets, it is
surprising that good performance should occur at an absolute value for these
three tasks.

Pre-processing is just one issue in the task of bringing machine learning to a
world where data is represented in RDF. The following questions remain:

– Given a node representing an instance, how do we determine which nodes in
its neighborhood we should extract to create an RDF subgraph representing
the instance? Currently we simply extract to a fixed depth.

– Given a subgraph, can we translate it to feature vectors? Translating to
feature vectors, rather than applying graph-based methods would allow us
to use almost any traditional classifier or clustering algorithm. The WL
algorithm can be used as a feature extractor. 10

– What is the best way to evaluate a classifier on RDF data? There is no
straightforward way to split the whole dataset in disconnected testing and
training parts. Here, we have removed all target relations, and provided these
to the training algorithm separately, but other schemes can be imagined.

10 This is analogous to the technique of ‘propositionalization’ in knowledge discovery
in relational databases.



Finally, since most of our methods apply to graphs in general, not just to RDF,
they might be useful in any learning task where the raw data consists of a single
large graph, and the instances are represented by its nodes.

Acknowledgments We thank the reviewers for their insightful comments. This
publication was supported by the Dutch national program COMMIT. We thank
the authors of [5] for the AIFB dataset.

References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked data—the story so far. Int. J.
Semantic Web Inf. Syst. 5(3) (2009) 1–22

2. Rettinger, A., Lösch, U., Tresp, V., d’Amato, C., Fanizzi, N.: Mining the semantic
web—statistical learning for next generation knowledge bases. Data Min. Knowl.
Discov. 24(3) (2012) 613–662

3. Fanizzi, N., d’Amato, C., Esposito, F.: Induction of robust classifiers for web
ontologies through kernel machines. J. Web Sem. 11 (2012) 1–13

4. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on
multi-relational data. In Getoor, L., Scheffer, T., eds.: ICML, Omnipress (2011)
809–816

5. Lösch, U., Bloehdorn, S., Rettinger, A.: Graph kernels for RDF data. In Simperl,
E., Cimiano, P., Polleres, A., Corcho, Ó., Presutti, V., eds.: ESWC. Volume 7295
of Lecture Notes in Computer Science., Springer (2012) 134–148

6. de Vries, G.K.D.: A fast approximation of the Weisfeiler-Lehman graph ker-
nel for RDF data. In Blockeel, H., Kersting, K., Nijssen, S., Zelezný, F., eds.:
ECML/PKDD (1). Volume 8188 of Lecture Notes in Computer Science., Springer
(2013) 606–621

7. de Vries, G.K.D., de Rooij, S.: A fast and simple graph kernel for RDF. In
d’Amato, C., Berka, P., Svátek, V., Wecel, K., eds.: DMoLD. Volume 1082 of
CEUR Workshop Proceedings., CEUR-WS.org (2013)

8. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12 (November
2011) 2539–2561

9. Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R.I., Borgwardt, K.M.: Graph
kernels. Journal of Machine Learning Research 11 (2010) 1201–1242

10. Kang, U., Faloutsos, C.: Beyond’caveman communities’: Hubs and spokes for graph
compression and mining. In: Data Mining (ICDM), 2011 IEEE 11th International
Conference on, IEEE (2011) 300–309

11. Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex
networks. Nature 406(6794) (2000) 378–382

12. Vapnik, V.: The nature of statistical learning theory. Springer (2000)
13. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM

Transactions on Intelligent Systems and Technology 2 (2011) 27:1–27:27 Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

14. Bloehdorn, S., Sure, Y.: Kernel Methods for Mining Instance Data in Ontologies.
The Semantic Web (2007) 58–71

http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Simplifying RDF Data for Graph-Based Machine Learning

