Parallel Search Through Statistical Semantic Spaces
Leveraging Linked Open Data

Alexey Cheptsov

High-Performance Computing Center Stuttgart, Nohel$tr
70569 Stuttgart, Germany
cheptsov@hlrs.de

Abstract. With billions of triples in the Linked Open Datdoad, which
continues to grow exponentially, challenging tastest to emerge related to the
exploitation and reasoning of Web data. A considleramount of work has
been done in the area of using Information Retri¢\R) methods to address
these problems. However, although applied model&kwn the Web scale,
they downgrade the semantics contained in an RDphgby observing each
physical resource as a 'bag of words (URIs/litetalB)stributional statistic
methods can address this problem by capturingtthetsre of the graph more
efficiently. However, these methods are computafignexpensive. In this
paper, we describe the parallelization algorithmooé such method (Random
Indexing) based on the Message-Passing Interfatmadogy. Our evaluation
results show super linear improvement

Keywords: Statistical Semantics, Random Indexing, Paralletimat High
Performance Computing, Message-Passing Interface.

1 Introduction

We live in a big data world, which is already estied to be of the size of several
Zetta (16" Bytes. However, the most considerable growthdess the linked (open)
data domain. Recent years have seen a tremendwease of structured data on the
Web with public sectors such as UK and USA govemmepening their data to
public (e.g., the U.S.’data.gov initiative [1]), and encouraging others to builsetul
applications. At the same time, Linked Open Dat®Dl) [2] project continues
stimulating creation, publication and interlinkitige RDF graphs with those already in
the LOD cloud. In March 2009, around 4 billion staents were available in Resource
Description Framework (RDF) format [3], while in @ember 2010 this number
increased to 25 billion, and continues to grow gwyerar exponentially. This massive
amount of data requires effective exploitation amdow a big challenge not only
because of the size but also due to the naturki®idata. Firstly, due to the varying
methodologies used to generate these RDF graph® thee inconsistencies,
incompleteness, but also redundancies. These drellgaaddressed by approaches for
assessing the quality, such as through trackingptbeenance [4]. Secondly, even if
the quality of the data would be at a high leveplering and searching through large
RDF graphs requires familiarity with the structuamd knowledge of the used

ontology schema. Another challenge is reasoning these vast amounts of data. The
languages used for expressing formal semantics (&DJ use the logic that does not
scale to the amount of information and the settirg is required for the Web. The
approach suggested by Fensel and van Harmeler {B]merge retrieval process and
reasoning by means of selection or subsettingctieiea subset of the RDF graph that
is relevant to a query and sufficient for reasoning

A considerable amount of work has been done inatiea of using Information
Retrieval (IR) methods for the task of selectiod agtrieval of RDF triples, and also
for searching through them. The primary intentidrihese approaches is location of
the RDF documents relevant to the given keywordaralUnified Resource Identifier
(URI). These systems are semantic search engisbsasuSwoogle [6] or Sindice ([7],
[8]). However, although these models work on thebVgeale, they downgrade the
semantics contained in an RDF graph by observiop physical resource as a 'bag of
words (URIs/literals)’. More sophisticated IR moslelan capture the structure more
efficiently by modelling meaning similarities betare words through computing the
distributional similarity over large amount of teXhese are called statistical semantics
methods and examples include Latent Semantic Aisa[@ and a more modern
technique — Random Indexing, which is based onvewor space concept [10]. In
order to compute similarities, these methods fjesberate a semantic space model.
Both generating this model, and searching through.d., using cosine similarity), are
computationally expensive. The linear feature @ircleing through the large semantic
space model is a huge bottleneck: for the modeksgmting 300 million documents
calculating cosine similarity in order to find slari terms can take as long as several
hours, which is currently not acceptable for thabpem domain specialists.
In this paper, we describe a parallelization apgndar the Random Indexing search
algorithm, suggested by Sahlgren [10]. We alsoutissome techniques that allowed
us to reduce the execution time down to seconde@mway to achieving a Web scale.
The paper is structured as follows. In SectionMé, present the use cases in which
this work has been applied. An explicit descriptaiyout the applied parallelization
strategy and the modifications made to the Randuadexing algorithm are presented
in Section Ill. Moreover, we give a thorough evdioa about the algorithm’s
performance and scalability on a distributed shanethory system in Section IV.
Finally, Section V presents conclusions and disesissain outcomes as well as future
work directions.

2 UseCases

In this section, we briefly discuss two use casex are taking advantage of the
parallelization of the cosine similarity algorithmsed by statistical semantics
methods, which is the main topic of this paper.i@®similarity [10] is a measure of
similarity between two vectors of n dimensions, athis finding the cosine of the
angle between them. If the cosine is zero, the mecits represented by vectors are
considered dissimilar, while one indicates a highilarity. We present the query
expansion use case, which is used to improve tel rwhen searching, e.g., Linked
Life Data (4 billion statements), followed by a saetiing scenario used to reduce the
execution time when reasoning over the FactFoegesitory [11], which contained 2
billion statements at time of performing the expemt.

2.1 Query Expansion

Query expansion is used in Information Retrievakpsively with the aim to expand

the document collection that is returned as a rdeuh query. This method employs
several techniques, such as including lemmas andngyns of the query terms, in

order to improve precision and recall. It works éxpanding the initial query thus

covering larger portion of documents. In this canhtdinding synonyms is a very

important step and one way to achieve this is bypleyng statistical semantics

methods. These methods operate on a set of docsiraadt therefore, we need to
lexicalise an RDF graph in a way that will presetive semantics and “relatedness” of
each node with those in its neighbourhood, intalastraction, which we call a virtual

document.

In order to generate virtual documents from an Rip&ph, we first select the
relevant part of the original graph and subdivideto a set of potentially overlapping
subgraphs. The next step is lexicalisation in otdecreate virtual documents from
these subgraphs. Finally, we generate the semadgx from the virtual documents.
The details of how each of these steps is perforsiguificantly influences the final
vector space model. For example, in the selectidinsabdivision step, all or just a part
of the ontology could be selected; the subgrapludcioe individual triples, or RDF
molecules (the set of triples sharing a specifigjextt node), or more complex/bigger
subgraphs. In the lexicalisation step, the URIanblnodes, and literals from an RDF
subgraph are converted to a sequence of terms. \@degrating the semantic index,
different strategies for creating tokens and penfog normalisation have to be applied
to typed literals, string literals with languaggdaand URIs.

Once the semantic index has been generated, ibeamsed to find similarities
between URIs and literals. We use the ranked fistroilar terms for URIs/literals that
occur in certain kinds of SPARQL queries [5] to make query more generic and also
return results for entities that are semanticadliated to those used in the original
query. Therefore, the application of query expamdimough the use of statistical
semantics method is feasible for those SPARQL gqgetfiat are not returning all
relevant hits. In other words, query expansion eemed to improve recall, which is
done by adding terms that are similar to the givess in the original query.

2.2 Subsetting

For reasoning at web-scale, subsetting becomesyahberause most well-known
reasoning algorithms can only operate on sets akwaters of magnitude smaller than
the Web. Getting subsetting algorithms to workhisrt of capital importance. There is
evidence that by sticking to smaller datasets, agerpand cognitive scientists may be
optimizing the wrong type of models. Basically, rinés no warranty that the proven
best performing model on thousands of entitiessis the best performing model when
datasets are four orders of magnitude larger [12].

3 Basicsof Parallel Random Indexing Algorithm

Random Indexing and other similar algorithms cabitwéen down into two steps:
generating a semantic index (vectors), and

searching the semantic index.

Both parts are quite computationally expensive, énew, the first part is a one-off
step, which does not have to be repeated and thansie index can be updated to
follow changes in the documents if they happen. S¢wnd step, however, affects the
end user, and therefore is a huge bottleneck faktime applications. Hence, our
focus is optimisation of the search part of the d®am Indexing algorithm. Usually,
search is performed over all vectors in the sermmantiex. Thereby the vectors are
analysed independently of each other, i.e., irathérary order.

This basically means that the search can be efflgienproved, when performed
on several computing nodes in parallel instead e tvector-by-vector” (i.e.,
sequential computation) processing in the curreatigation. Practically, the whole
vector space domain is decomposed into sub-doneaicis of which is processed in a
separate block/program instance on a different macfThe division of the vectors
between the blocks is defined by the domain decaitipo [13] (Figure 1).
Depending on the realisation, a synchronisatioedsired among the blocks, e.g., to
collect the partial outputs of each block and poadthe final result. Generally, the
synchronisation step is expensive, and much adterghould be paid to the correct
implementation of the synchronisation in order tswe the minimum overhead. In
the next section, we describe the major parallidimastrategies, enabling the full
utilisation of multiple computing nodes as wellths optimal synchronisation between
the distributed tasks.

Although a simple multi-threading approach wouldelséremely efficient in terms
of the performance and easy in terms of the impfeaten efforts [14], it is not
sufficient for achieving the Web-scale due to tihnated number of CPU cores/nodes
interconnected by a shared-memory bus in the dlyremvailable computing
architectures (current shared-memory architectwfésr a maximum of 8 to 16
interconnected cores).

Problem domain (vector space) PCTTm——

EEEEEEEROOOOOOO0
ENNENERENOOOOOO00
EEEEEEEEEROOOOOOO

e *.

s ‘.

| Eomputation of the Cosine| :
:| with the given vector

{ Eomputation of the Cosine|
:| with the given vector

!

]

Selection of the vectors
with max. cosines

Selection of the vectors
with max. cosines

: Parallel

Parallelé
—...olock 2

Syncronisation

| EREOO0O|

Fig. 1. Domain decomposition based parallelisation ofRheadom Indexing algorithm

Considering the arguments discussed above, ahdisgd-memory parallelisation
strategy is needed for the implementation of BigaDscenarios. There are several
parallelization strategies, differentiating in watfse synchronisation between the
processes is implemented. The most promising fer Samantic Web in terms of
performance gains are however the Message-Passiegface (MPI) [15] and
MapReduce [16].

MPI is a wide-spread implementation standard foralel applications,
implemented in many programming languages, inclydava. As the name suggests,
the MPI processes communicate by means of the gess@nsmitted between two (a
so called “point-to-point” communication) or amonany (involving several or even
all processes, i.e., a collective communicatiompgote nodes. Normally, one process
is executed on a single computing node (howeverMRI standard does not limit the
number of processes on one node). If any procesdsne send/receive data to/from
other processes, it calls a corresponding MPI fanctBoth point-to-point and
collective communications available for MPI proassare documented in the MPI
standard [15].

MapReduce is another popular framework for proogskig datasets on certain kinds
of distributable problems, originally introduced Wgoogle [16] and currently
followed by Yahoo in its Hadoop implementation. NRegaluce is a promising
parallelisation model for data centric applicatioHswever it is quite restrictive with
regard to the range of applications that it camjpglied to. In this publication, we are
focusing on practical aspect of applying the MPsduh distributed memory
parallelization for the Random Indexing search atgm. Due to the algorithmic
complexity of splitting the execution workflow aeding to the map and reduction
operation, the MapReduce-based approach [16] véll ppesented in a separate
publication.

4 Implementation With The Message-Passing Interface and
Evaluation

4.1 Parallelisation of Airhead Search

Airhead is an open source implementation of Randiosiexing in the S-Space
package by University of California [17]. Paralkgtion of the search operation in
Airhead was performed by applying the domain deamsitipn to the semantic vector
space, whereby number of domains corresponds toutimder of computing nodes the
application is running on. Thus, each process pmfocomputation only on a part
(sub-domain) of the vector space of size (m/n),r&hme is the size (dimensionality) of
the vector space, and n is the number of procéasdssub-domains, accordingly). The
boundary elements of the vector space to be compyteeach process are calculated
dynamically based on the process rank and the iotaber of processes provided by
MPI, as demonstrated in Figure 2.

int num_domains = total_proc_num ;

int vector_space_size = VS.size ():

int sub_domain_size = vector_space_size / num_domains:
int domain_bound_max = sub_domain_size * (my_rank+1):
int domain_bound_min = sub_domain_size * (my_rank):

// main computation cycle
for (int i=domain_bound_min: i<domain_bound_max: i++) {
. // each process operates only on a sub—domain:
// VS{domain_bound_min; domain_bound_max]
}

Fig. 2. Specification of sub-domains. Each process caieslliés respective sub-domain of the
vector space based on its Rank and the number oégges in the group.

4.2 Performance Evaluation on Cluster

For the evaluation, a testbed based on the BW-{@8§ cluster (Intel Xeon CPU
architecture, 2 Quad-Core CPUs and 16 GB RAM perpeding node), provided by
the High Performance Computing Center Stuttgars used. Configuration of 1, 2, 4,
8, and 16 computing nodes were benchmarked to atealine scalability of the
developed algorithms on the target architectureumtests, we mainly considered two
different datasets coming from well-known semantpositories (see test sets’
parameters in Table 1):

* Linked Life Data (LLD) repository: a large integedt repository, which
contains over 4 billion RDF statements from varisaarces covering the
biomedical domain. We investigated two subset$iefliLD that contain
major terms (for pharmacological scenarios) anatigis between them.

e FactForge repository: contains schemata and onésogom DBPedia,
lingvoj, the CIA Factbook, Wordnet, Geonames, Faseb and
musicbrainz. After full materialisation, it contaid04 million resources.
We used the DBpedia/Wikipedia section of this sp@eme will refer to it
as Wikipedia from now on, since they are paralled dave the same
number of concepts at around 4 M). After filterimgit redundant
concepts, we kept only 1M documents. After somaupater exploration,
we settled on n=1000. That is, the random vectad @00-dimensional.

Table 1. Benchmark datasets.

Dataset Nr. of Nr. of Size on Description
documents terms disk

LLDI 0.064 M 042 M | 0.082 GB | Subset of
LLD

LLD2 05 M 1.7 M 0.65 GB Subset of
LLD

Wiki term 1.OM 03 M 1.6 GB Subset of

space Wikipedia

(Wikil)

Wiki 1.OM 03 M 16 GB Subset of

document Wikipedia

space

(Wiki2)

As the first step, we investigated the scalabitityd stability of the parallelised
algorithm on the cluster, increasing the numbemnaxfes involved in the computation,
for different problem (dataset) sizes. The time l&@ding the datasets from the disk
(i.e., the whole vector file has to be loaded it® memory of each node), the actual
search operation as well as the overhead of tleg-imtde communication was in the
focus of our measurements (Table 2).

The evaluation reveals that our concern aboutatgelimpact for loading file from
the disk time on the overall application performamas feasible. For all investigated
use cases, the load time was considerably higleer tite search time. Providing the
bad scale of the load operation, the maximum spgedchieved on 16 clusters
computing nodes was only 1.29. Moreover, the erpamts with the largest available
semantic space (Wiki2) were impossible to be cotatuaue to exceeding the
available RAM on the test bed. For the first teme; although the parallelization has
been properly implemented, its usability for datsiseith the large number of
referenced documents and small amount of depereieheas not been proved. This is
because the amount of computation for the seareatipn was relatively small as
compared with the total execution time. Neverttgléise second variant based on the
split of datasets (Figure 1), demonstrated its evatuterms of both performance and
scalability for the diverse problem sizes (Table ™®)e LLD1 set has been excluded
because of its small size.

Despite the increasing communication overhead émhusy MPI operations),
which is due to more complex communication pati@® described in the previous
publication [21]), the evaluation reveals a sigmfit performance improvement for
both load and search operations (see Figure 3)eri@hy) the use cases taking
advantage of the dataset fragmentation show arowepment in time of approximately
85% (i.e., and average speed-up of approx. 7.0bkas achieved) over the non-
parallel realisation. This clearly shows that oargtlelization technique can be used to
benefit Random Indexing applications significanMoreover, the technique facilitates
applying Random Indexing for the datasets that hetebeen analysed before due to
the limitations of non-parallel test beds.

Table 2. Performance characteristics grouped by datasehamtber of computing nodes.

‘ Vatasel Nr. of | Time (s) [Speed- |
o nodes | Load [Search | MPI | Total | up |
1 0.8 0.0 34 1.0
2 0.6 0.025 3.1 1.1
LLD1 4 2.0 0.5 0.027 3.0 1.13
8 0.42 0.031 3.0 1.13
16 0.3 0.034 2.9 1.17
1 4.7 0.0 21.0 1.0
2 2.8 0.025 18.0 I.16
LLD2 4 14.7 1.7 0.027 17.0 1.21
8 L2 0.031 16.4 1.28
16 1.0 0.034 16.3 1.29
1 1.5 0.0 30.5 1.
2 1.4 0.025 30.1 1.01
Wikil 4 28.5 0.84 0.027 30.0 1.02
8 0.7 0.031 29.7 1.03
16 0.6 0.034 295 [, 1.03
1
Z Tests could not be conducted due to
Wiki2 4 memory (RAM) limitation on the
8 computing nodes
16

Table 3. Performance characteristics for fragmented datadet number of fragments
corresponds to the number of computing nodes.

- Nr. of Time (s) Speed-
Pt nodes | Load | Search | MPI | Total pup
1 14.7 4.7 0.0 21.0 1.0
2 P 25 0.028 | 10.8 2.0
LLD2 4 4.1 1.4 0.20 6.2 34
8 2.3 0.9 0.22 3.8 5.5
16 1.6 0.65 0.375 2.8 15
1 28.5 155 0.0 30.5 1.0
2 15.4 0.99 0.027 | 16.9 1.8
Wikil 4 7.8 0.76 0.039 9.1 3.4
8 44 0.6 0.42 A5 5.6
16 2.7 0.54 0.64 3.9 7.8
1 n.a.
2 81.0 4.8 0.35 898 1.0
Wiki2 4 67.0 20 0.2§8 71.0 1.25
8 333 1.5 0.22 35.0 2.5
16 16.8 0.9 0.20 18.4 4.8

4.3 Discussion and Future Directions

As described in the previous section, the perfomaaf the complex search algorithm
greatly benefits from the “correct” implementatioithe corresponding parallelization
paradigm. Correct, here, does not solely meanNtithas been successfully applied
to the Random Indexing search algorithm in ordeenable usage of large shared-
memory systems, but rather that the algorithmfitset been modified in order to
obtain a high performance and scalability - theceqh of domain decomposition [13]
has been applied to the algorithm to allow the @ssing of large vector space files
(>= 16 GB) and (2) to obtain scalable computattmough processing (i.e., the search
and in particular the load operation) of smallebsgis of the vector space file
concurrently, i.e., distributing the processingntaltiple nodes. However, there are
many other factors, which influence the overalf@enance of a parallel application.

Developers can also tune their applications atimeby using advanced settings
for the Java Virtual Machine (JVM) [19]. For thisason, we have also experimented
with different settings for the JVM during our testVe have performed 30 runs of the
parallel Airhead search using 6 different JVM sefti (each setting has been repeated
5 times) to estimate the optimal configurationdar machines. Due to the fact that all
our machines are equipped with equivalent hardwaack software, the explicit tests
were solely carried out on one particular node wWithassumption that the settings are
optimal for all other nodes within the cluster, tdosummary of our test runs and the
speed-ups achieved is provided in the Table 4.

100

Time [s]

CPU nodes (8 cores per node)

- - - LLDZ:
— — LLDZ:
LLDZ:

- = = WiIKI

loading
search
total

I loading
— — WWiki1:
Wikl
= = = AWikI2:
—_— e WWiki2:
WulikiZ:

search
total
loading
search
total

Fig. 3. Performance results for decomposed datasets.

Table 4. Performance results for parallel Airhead seargbrithm with varying JVM setting
on Wikil dataset.

; Time (s) Speed-
Vi options Load | Search | Total pup
[-Xms4000M -Xms4000M [70] 22 T2 7] 10]
[-Xms8000M -Xms8000M [30] 21 T[40] 109]
[-XmsT2000M -XmsI2000M [370 | 1.8 [388 [127 |
-Xms[2000M -XmsI2000M | 30.3 1.6 31.9 1.54
-XX:+AggressiveOpts
-Xms12800M -XmsI2800M | 29.0 1.5 30.5 1.61
-XX:+AggressiveOpts
-XX:+UseParallelGC -
XX:ParallelGCThreads=16
-Xms12800M -XmsI2800M | 28.5 1.5 30.0 1.64

-XX:+AggressiveOpts
-XX:+UseParallelGC
-XX:ParallelGCThreads=16
-XX:MaxPermSize=256M
-Xmn5120M

As shown i
performance

JVM settings. Based on these tests, we were aled@determine the best suited JVM
configuration for our environment as well as ledrngore about the optimal values for
individual JVM parameters(e.qg., the total amounheép size, the number of threads
used for garbage collection, etc.), which can bedu®r other Java applications as

well.

n Table 4, a properly configured JVM #igantly improves the overall
of an application. In our scenario, were able to optimize the
performance of the parallelized application for rappmately 40% using the proper

An alternative promising approach is suggestedhieydJUNIPER ("Java platform
for high PErformance and Realtime large scale dasmagement”) project [20].
JUNIPER is an EU-FP7 project that aims to estataislevelopment platform for new-
generation data-demanding applications. The JUNIP&Rroach is to exploit
synergies between all major parallelization tecbg®s (such as MPI, MapReduce,
COMPSs, etc.) and elaborate new paradigms in daiaic parallel processing that
will balance flexibility and performance of data opessing applications in
heterogeneous computing architectures. A possibilto combine diverse
parallelization technology within a single applioat as offered by JUNIPER, would
also be of a huge advantage for Random Indexingrithgns, e.g., to implement the
semantic space generation with MapReduce and #gretseith MPI. In our following
research, we are going to investigate the bergfitisis “heterogeneous” approach for
the Airhead package.

5 Conclusion

This paper presented an evaluation of our appreatheparallelize the Airhead

library for Random Indexing, which can be usedigmificantly improve information

retrieval methods, in particular those that use dbsine similarity for searching a
large vector space model. We use an effective [phrptogramming paradigm,

namely MPI, to exploit parallelism for the RI alghm in order to take advantage of
large-scale distributed shared-memory systems launsl tb improve its performance.
We evaluated the parallelized algorithm on différdrardware and software
configurations (i.e., we varied the amount of cotapianal nodes as well as the input
datasets) with promising results. The algorithm roves performance in all of the
presented experiments. However, if each process (iode) has to load the full
dataset at once, the overall speed-up is relatiseigll and the algorithm does not
scale very well while increasing the number of niaes. For this reason, we
implemented a way to split the input dataset intoalter junks, which can be

independently and concurrently processed by eacle.ndhis feature significantly

decreased the processing time of the load operatiohthus improved the overall
performance. Moreover, we are now able to procesmsdts with billions of

statements because we are not directly limitedhleystystem’s memory anymore. In
addition, we experimented with different Java VattiMachine settings in order to
optimize and fine-tune the application for the givauntime environment. Most

importantly, these results suggest that we neetl patallel algorithms and Java
Virtual Machine optimizations to effectively utibzmachines (not necessarily parallel
systems but any common personal computer) for amadtic Web applications.

Finally, we demonstrated the effectiveness of thielfelized algorithm and its usage
and benefits within an interesting for biomedicahthin application scenario. In the
future, we will investigate further possibilitiee bptimize our code (e.g., using a
different MPI implementation for Java) as well asmpare the actual MPI-based
parallelization with the MapReduce implementatibnparticular, methods to cross-
fertilize the advantages of diverse programming eedn a common application

workflow will be explored. Data modelling technigéenvestigated by the JUNIPER
platform [22], will be the major technology to elalsuch across-fertilization of the

parallelization technologies. The new technologiet JUNIPER works out will be
applied to the most challenging Big Data domaingadrticular to Semantic Web.

5 Acknowledgment

This research has been supported in part by the=EU-projects JUNIPER and
DreamCloud.

References

. U.S’s data.gov intiative website. [Online].phttwww.data.gov/. [retrieved: April, 2013].

. Linked Data project website. [Online]. httprikeddata.org. [retrieved: April, 2013].

. C. Bizer, T. Heath, and T. Berners-Lee, “Linkecadathe story so far”, International Journal

on Semantic Web and Information Systems (IJSWI&), 2009, pp. 1-22.

4. O. Hartig and J. Zhao, “Using web data provemafar quality assessment”, in Int.
Workshop on Semantic Web and Provenance Managei&ashington D.C., USA, 2009,
pp. 29-34.

5. D. Fensel and F. van Harmelen, “Unifying reasgrdand search to web scale”, IEEE Internet
Computing, vol. 11(2), 2007, pp. 95-96.

6. L. Ding et al., “Swoogle: a search and meta@aigine for the semantic web”, in Proc. the
thirteenth ACM international conference on Inforroatand knowledge management CIKM
‘04, New York, NY, USA, 2004, pp. 652-659.

7. G. Tummarello, R. Delbru, and E. Oren, “Sindioeic Weaving the open linked data”, in
Proc. the 6th International Semantic Web ConfereBasan, Korea, 2007, pp. 552-565.

8. E. Oren et al., “Sindice.com: A document-orienteokup index for open linked data”,
International Journal of Metadata, Semantics antiogies, vol. 3, 2008, pp. 37-52.

9. T. K. Landauer, P. W. Foltz, and D. Laham, ‘twoluction to latent semantic analysis”,
Discourse Processes, vol. 25, 1998, pp. 259-284.

10. M. Sahlgren, “An introduction to random indexinin Proc. Methods and Applications of
Semantic Indexing Workshop at the 7th InternatioBahference on Terminology and
Knowledge Engineering, TKE 2005, 2005, pp. 1-8.

11. Fact Forge semantic repository website. [Ohlihép://factforge.net/. [retrieved: April,
2013].

12. A. Halevy, P. Norvig, and F. Pereira, “The @s@nable effectiveness of data”, IEEE
Intelligent Systems, vol. 24, 2009, pp. 8-12.

13. T. F. Chan and T. P. Mathew, “Domain decompasitilgorithms”, Acta Numerica, vol. 3,
1994, pp. 61-143.

14. S. Akhter and J. Roberts, “Multi-core programgnirincreasing performance through
software multi-threading”, Intel Press, Santa Claexh. Rep., 2006.

15. W. Gropp and A. S. E. Lusk, Eds., Using MPIrtlale Parallel Programming with the
Message-Passing Interface. Cambridge: MIT Presg,.199

16. R. Lammel, “Google’s mapreduce programming medelisited”, Science of Computer
Programming, vol. 70,1, 2008, pp. 1-30.

17. D. Jurgens, “The S-Space package: An open sqackage for word space models”, in
Proc. the ACL 2010 System Demonstrations, 20103@p35.

18. High Performance Computing Center Stuttgart’'s BkMG@luster description. [Online].
https://wickie.hlrs.de/dgrid/index.php/Hardwarestfreved: April, 2013].

19. J. Shirazi, Ed., Java Performance Tuning. $epals O'Reilly & Associates, Inc, 2002.

WN P~

20. Juniper project website. [Online]. Availabletpt//juniperproject.org. [retrieved: April,
2013].

21. A. Cheptsov and M. Assel, “Distributed Paratlalion of Semantic Web Java Applications
by Means of the Message-Passing Interface”, M. Rescal. (eds.), High Performance
Computing on Vector Systems 2011, Springer VerladiBeiedelberg 2012, pp. 51-64.

22. A. Cheptsov and B. Koller, “JUNIPER takes aim afj Biata”, inSiDE - Journal of
Innovatives Supercomputing in Deutschland, vol.Nd, 1, Spring 2011, pp. 68-69.

