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Abstract. In this paper, we explain the detail analysis procedure of submission
1(Previous predicted results submission) of Task Al. We are trying to induce
decision tree models to predict pc:numberOfTenders. Since the type of target
attribute is non-negative integer value, we use the variance reduction as the at-
tribute selection criteria. Input attributes are defined based on structure infor-
mation of Public Contracts Ontology. We use the description logic constructors
to properly represent a meaning of structure information of training data.
Among all instances of the contract class, we make 10 different input data sets
through random sampling method. The procedure of decision tree learning is
performed by using SAS E-miner, and attribute selection criteria is variance re-
duction. Final prediction results of test data are the average of selected decision
tree models except few models which have extremely low R-Square value.
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1 Introduction

To predict the value of ‘pc:numberOfTenders’ of Task Al, classification algorithm
for ordinal target attribute is required to induce the prediction model. Decision Tree
algorithm [6] is one of the most popular classification method to solve a prediction
problem. There are many previous researches about Decision Tree algorithms for
structured data [1,4,5]. However, since these algorithms can only be learning on cate-
gorical target attribute, it is not appropriate to apply to Task Al problem.

In this paper, firstly we generate the single table form input data based on the sev-
eral attributes which are defined based on the schema of Public Contracts Ontology.
After that, we induce decision tree models whose attribute selection criteria is vari-
ance reduction. With this research approach, we can induce the decision tree model
for ordinal target attributes and also possible to use both nominal and interval type
input attributes.

The remainder of this paper is organized as follows. In section 2, the generation
procedure of input attributes is discussed. Section 3 describes the detail experiment
procedure about pre-processing of input data and decision tree learning. Finally, sec-
tion 4 presents conclusions and limitations of our work.
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2 Input Attributes Generation

First, we need to define input attributes for decision tree learning. To reflect the struc-
tural information of Linked data, we use the concept of the refinement [1,4,5] which
is used to represent the characteristic of instances from ontology by using the Descrip-
tion Logic constructors[2].

Input attributes for decision tree are generated based on the schema of ontology as
described in Fig 1. According to both training and test data sets, we select properties
and classes which are commonly appeared in both data sets. As we know, there exist
much more information about contracts in training data, but it is useless when test
data doesn’t have matched information. Therefore only 10 properties and 6 classes are
used for generating input attributes.

The list of final input attributes and its definitions are presented in Table 1. All in-
put attributes except the target attribute are defined based on the description logic
constructors. Some of attributes such as the schema:addressLocality, skos:notation are
indirectly related to contract class. These attributes may have no values when the
contract instance doesn’t have the value of pc:location or pc:mainObject. In this case,
‘none’ is filled in the missing value of attributes.
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Fig. 1. Refined schema of Public Contract Ontology
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3 Experiment

In this section, we present experiment procedure to learn decision tree models. This
procedure is separated into two sub procedures; Firstly, we discuss about prepro-
cessing of input data for decision tree learning. After that, decision tree learning pro-
cedure and its results are explained.



Table 1. The list of input attributes and its definition

Attribute name Definition

pc:numberOfTenders Number of tenders

The contract has the resource as the value of

= pc:contractingAuthority.(resource . .
P g y( ) pc:contractingAuthority.

d pc:location. TOP Location value exists or not.

The contract has a resource as the value of

schema:addressCountry.(value . . .
v ) pc:location, and its schema:addressCountry is value.

The contract has a resource as the value of

schema:addressRegion.(value . . -
gion.( ) pc:location, and its schema:addressRegion is value.

The contract has a resource as the value of

schema:addressLocality.(value . . o
v ) pc:location, and its schema:addressLocality is value.

pc:kind.(value) The pc:kind value of contract is value.

The contract has a resource as the value of

skos:mo_notation.(value S . Lo
- ( ) pc:mainObject, and its skos:notation is value.

The contract has a resource as the value of

skos:mo_preflabel.(value) pc:mainObject, and its skos:prefLabel is value.

The contract has a resource as the value of
1 skos:mo_inSchema.(resource) pc:mainObject, and it has the resource as the value
of skos:inSchema.

3.1 Preprocessing of Training Data

There are more than 70000 contract instances in training data, and each contract has a
value of pc:numberOfTenders. The distribution of values is given in Fig 2. As de-
scribed in details of distribution in Fig 2, 96% of contract’s values of
pc:numberOfTenders are less than 30. Besides almost 50% of contracts have ‘1’ as
value of pc:numberOfTenders. To reduce the effect of these dominant contracts to
learning correct decision tree model, we generates ten different input data sets which
are sets of randomly sampled 1500 contract instances from training data set. The
sample size is determined based on the number of contracts which have the value of
pc:kind (http://purl.org/procurement/public-contracts#kind) property. There are only
1683 contracts have the value of pc:kind, but it is one of the information that training
and test dataset have in common. Therefore, among the ten different input data sets,
five of them are randomly sampled from the set of instances which have the value of
pc:kind. Other input data sets are sampled from the set of all contract instances of
training data set.

All of input data generating procedure is performed by Java based application. We
used Jena [3] to handle given RDF data, and inferred extra information which are not
contained in original data by using the reasoner provided by Jena.
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Fig. 2. Distribution of values of pc:numberOfTenders
3.2 Decision Tree Learning

For each sampled input data, we induce decision tree by using decision tree learning
module of SAS E-miner. Since the type of target attribute is ordinal, we use a vari-
ance reduction method as the splitting criterion. Input data is partitioned into 80% of
training set and 20% of validation set. Results of experiments are shown in Table 2.
Generally, R-Squared and ASE (Average Squared Error) value can explain the good-
ness of the regression decision tree.

Table 2. Results for experiment

Training Validation
Decision Trees R-Squared ASE R-Squared ASE
Treel 0.322 7181.47 0.18 13580.168
Tree 2 0.085 9420.199 0.089 9034.793
Tree 3 0.277 9156.532 0.163 8564.653
Tree 4 0.502 4450.398 0.132 9235.575
Tree5 0.227 9980.726 0.403 12053.118
Tree 6 0.435 13.397 0.129 32.35
Tree 7 0.344 21.533 0.271 26.28
Tree 8 0.62 21.186 0.282 32.73
Tree 9 0.444 18.553 0.049 22.55
Tree 10 0.389 18.22 0.327 13.678




Tree 1 ~ 5 are induced from input data sets without pc:kind attribute. Tree 6 ~ 10
are generated on the input data with pc:kind attribute. As we can see, the scores of R-
Squared value have no big difference. However, average squared error is much differ-
ent in between decision trees based on the input data set with pc:kind (Tree 1 ~ 5) and
without pc: kind(Tree 6 ~ 10). Fig. 3 shows the sub-tree which is condensed to 3
depth from root node of Tree 10. A notation value of pc:mainObject is firstly selected
as the significant classifying attributes for decision tree. Information of contract about
main object, contracting authority and its address are used to classify remain contract
instances. There are 18 decision rules from full size Tree 10, and one of decision rules
is described in Fig. 4. This rule can classify contracts based on its local address, con-
tracting authority and notation of main object.

We select some decision tree models based on the score of experiment results. De-
cision trees in bold are finally selected models to predict the test data. The prediction
value of test data is the average value of classifying results of each selected decision
tree.
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Fig. 4. An example result decision rule of Tree 10



4 Conclusion

We have introduced the development procedure of decision tree models to solve the
prediction problem of Task Al of the Linked Data Mining Challenge. The learning
procedure of decision trees is performed on the SAS E-miner. Input attributes for
learning decision tree algorithm are defined based on the structural information of
Public Contracts Ontology. Since the type of target attribute is ordinal non-negative
integer number, the variance reduction is used for the attribute selection criterion of
decision tree.

One of the limitations of our suggested approach is that input attributes are selected
manually, which is inefficient and complicate process when the base data is Linked
data. Likewise previously researched decision tree algorithms for linked data [1,4,5],
input attributes are needed to be searched automatically through traversing the schema
of ontology, even the type of target attribute is ordinal.
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