Replicable Security Monitoring: Visualizing
Time-Variant Graphs of Network Metadata

Volker Ahlers, Felix Heine, Bastian Hellmann, Carsten Kleiner, Leonard
Renners, Thomas Rossow, and Ralf Steuerwald

University of Applied Sciences and Arts Hannover, Faculty IV,
Department of Computer Science, P. O. Box 920251, 30441 Hannover, Germany”*

Abstract. Monitoring a computer network’s security state is a difficult
task as network components rarely share their information. The IF-MAP
specification defines a client/server-based protocol that enables network
components to share security information among each other, which is
represented in a graph structure. Visualization of this data is challenging
due to the highly dynamic topology and the mapping of logical nodes
onto physical devices. Furthermore, data in a MAP server is volatile and
there is no standardized way to preserve and review changes or previous
states of a MAP graph. The evolution of such a graph, however, embodies
valuable information for the analysis of past incidents and attacks on the
network infrastructure. In this paper we introduce a software framework
to visualize MAP data and propose a solution for the efficient long-term
storage and replication of MAP graphs. We demonstrate how changes in
the graph structure between given points in time can be computed and
visualized.

1 Introduction

Within enterprise networks, many components like Intrusion Detection Systems
(IDSs) or Flow Controllers monitor different aspects of the traffic or the behavior
of the participants and are responsible for enforcing security-related decisions.
In most cases, however, these components work independently, not sharing infor-
mation with each other. For most of these separate components, different visu-
alization approaches have been proposed, many of which employ graph drawing
methods [6,9].

An aspect to consider in the visualization is that most computer networks are
not static, e.g., with users logging in and out or devices being connected to and
disconnected from the network. In recent years, the analysis and visualization of
dynamic networks has attracted much interest, e.g., [4] and references therein.
Since many real-world applications — including computer network security —
are characterized by large-scale networks, efficient storage concepts for time-
dependent network data are required.

The Interface for Metadata Access Points (IF-MAP) protocol allows to collect
information from different services, infrastructure components and endpoints on

* Email: trust@f4-i.fh-hannover.de, WWW: http://trust.f4.hs-hannover.de/

32

Ahlers et al.

a central Metadata Access Point (MAP) server in a time-variant graph data
structure. IF-MAP therefore has the potential to provide a foundation for an
integrated and comprehensive view on a network’s overall state and security for
both automated and human monitoring. As of now, data on the MAP server is
volatile, i.e., only the present state of the graph is made available via IF-MAP.

The evolution of such a graph, however, clearly embodies valuable informa-
tion, e.g., for data mining purposes since changes in the graph directly relate to
changes in the network and the state of its security. In fact, changes in the graph
themselves might be security-related incidents. An intuitive graphical represen-
tation of the changes of the MAP graph would greatly support a security officer
in (a) assessing how the overall security of the network has developed over time
or due to changes to the network infrastructure or services, (b) analyzing past
incidents and therefore greatly improving the process of human network security
monitoring.

In this paper, we introduce a system for the visualization of network security
metadata driven by the following requirements:

Data dynamics: Due to frequent changes within a computer network, a
continuous recalculation of the graph layout is necessary with the constraint
that dramatic changes in the general visual representation should be avoided.
Changes should furthermore be easily recognizable by the user.

Data semantics: As the data itself can have different semantics, this in-
formation can be used to improve the layout. Sub-graphs that feature a strong
hierarchical structure should use different layout algorithms than sub-graphs
with a seemingly random structure. Semantically cohesive sub-graphs should
also be detected and displayed in generalized form to reduce the amount of
graph elements to be presented to the user, as in a level of detail mechanism.

Data history: Both the present state as well as past states of the MAP
server’s data must be accessible through the Graphical User Interface (GUI).
The user should also be able to obtain a graphical representation of the changes
that occurred between two supplied points in time. Since data within a MAP
server (MAPS) only represents the current state of the network, a proper storage
mechanism has to be established.

The main focus of this paper thus is on the data history aspect. We propose
a timestamp-based and storage-efficient model to persist MAP graphs and sug-
gest algorithms to restore past graphs’ states and calculate cumulative changes
between two points in time. To do so, we use a combination of currently popu-
lar edge-centric and vertex-centric models. We show how the graph changes are
visualized and how the user can interact with the graph history database.

The remainder of this paper is organized as follows: After reviewing related
work in section 2, the technical background of these topics is outlined in sec-
tion 3. Our concept for an efficient long-term storage of graph data and the
corresponding algorithms are described in section 4. Visualization and GUI as-
pects of handling time-variant MAP graphs are discussed in section 5. Section 6
concludes this work with a summary of the findings and an outlook on future
lines of research.

33

VisITMeta
2 Related Work

IF-MAP, specifically applied to the security domain, has been a topic of recent
and ongoing research. The secure integration of smartphones into corporate net-
works has been addressed by our approach called TCADS, which uses IF-MAP as
the base protocol to share security-related information between various network
entities [1,2].

For the visualization of integrated network security data, a commercial solu-
tion called IPSonar exists. It supports IF-MAP by being able to publish certain
pieces of information to a MAP server!. IPSonar, however, does not rely on an
openly specified protocol such as IF-MAP for data acquisition. Furthermore,
IPSonar does not offer the visualization of graph changes.

To the best of our knowledge there is no solution providing the visualization
of MAP data, especially regarding dynamic changes and historical development
of data. A first effort to visualize the current state of a MAP graph has been made
with the érongui® project, which can be understood as an initial exploration of
the problem domain for our current work.

The analysis of time-variant systems is part of a vast amount of different
areas of science. Different solutions have been proposed to address the complex
task of modeling these time-variant systems as graph data structures.

Casteigts et al. introduced the concept of time-varying graphs [3]. They de-
fined three ways to represent the dynamic history of a graph: the edge-centric
evolution of a graph provides information about the presence of edges at a spe-
cific point in time, the vertex-centric evolution describes the same as the edge-
centric view but for each vertex of the graph. The third view is described as
a graph-centric evolution which represents each state of the graph as a static
snapshot.

Ren et al. [8] defined so-called evolving graph sequences (EGS). An evolving
graph sequence represents changes of the graph’s structure as distinct snapshots.
Each of the snapshots represents the graph’s state at a given point in time.
These ordered snapshots form an EGS, which represents all changes to the graph
over time. Ren et al. also proposed a framework to query an EGS. Algorithmic
examples include finding the shortest path between two vertices that ever existed
in the history of the graph. Ren at al. further showed that their solution performs
well for large datasets containing social network information. They address issues
of large graph instances often associated with snapshot-based data models with a
storage model that groups multiple graphs into a cluster, that can be compressed
to fit into memory.

Holme and Saraméki [5] suggest to include the dynamic changes of a graph
data structure directly in the data model, rather than defining a dynamic sys-
tem which operates on discrete time-dependent instances of the graph. Such
graphs are known as temporal networks, where each edge may be active for
some timespan in the graph’s overall history. This approach can be viewed as an

! http://www.lumeta.com/solution/trusted_computing.html
2 https://github.com/trustathsh/irongui

34

http://www.lumeta.com/solution/trusted_computing.html
https://github.com/trustathsh/irongui

Ahlers et al.

interpretation of edge-centric models. The advantage of temporal networks over
traditional dynamic systems arises especially if the typical operation or query
in the problem domain focuses on temporal rather than pure topological fea-
tures. Holme and Saramiki showed different problem domains where temporal
networks can be useful such as models for the spread of diseases where nodes
represent persons and edges the contact of two persons at some point in time.

Dutot et al. [7] introduced the Java-based GraphStream library, which can
be used to develop models for different problem domains based on dynamic
graphs. The basis of GraphStream is formed by an event stream model, where
each event represents a change of the graph. They stated that the event stream
model allows for efficient in-memory processing of big graphs, because there is
no need to hold the complete graph in memory. Dutot et al. also developed a
file format for the preservation of a graph’s evolution. They have, however, not
published any details about it.

With respect to our problem domain, the three different views proposed in
[3] are not directly applicable. In fact, we choose to combine the edge-centric
and vertex-centric views to be able to preserve changes associated with edges
and vertices. We opt against the snapshot based graph-centric view to store
only the minimal amount of information needed to represent a changing graph.
The inclusion of temporal information directly into the graph data structure is
very similar to our approach, with the difference that in our approach validity
information is contained in the vertices rather than the edges. Also, the general
research focus of the work discussed above lies on time aware query methods and
the application of classical graph algorithms on time-variant graphs whereas our
approach targets efficient long term storage of changing graph data structures
and lightweight query methods which can be used to build more sophisticated
queries to support various different use cases.

3 Technical Background

IF-MAP The term IF-MAP refers to a set of specifications published by the
Trusted Computing Group (TCG) as part of the Trusted Network Connect
(TNC) framework. IF-MAP defines an XML-based network protocol for exchang-
ing so-called metadata among an arbitrary number of MAP clients via a central
MAP server. The main motivating use case for IF-MAP is the distribution of
security information within a network in a standardized and interoperable way.
Since the specifications include a flexible extension mechanism, IF-MAP can be
customized to virtually any use case — even beyond the classical network security
domain.

The main specification document defines the core data model, the basic op-
erations MAP clients and MAP servers must support and their encapsulation
within SOAP [10]. Additional documents specify metadata for specific domains.
As of now, there is a dedicated specification addressing metadata for the domain
of network security [11] and one for security in industrial control systems [12].

35

VisITMeta

Data Model The data model of IF-MAP is represented by an undirected graph
which allows cycles and loops. There are three fundamental data types: (1) iden-
tifiers, which describe entities in the network, are represented by the nodes of
the graph, (2) links, which describe relations between entities, are represented
by the edges of the graph, (3) metadata, which describe additional information
for an entity or a relation, can be attached to both identifiers and links.

There are different types of identifiers and metadata such as identity or
location, each with potentially different attributes, e.g., name or value. Meta-
data types also have a certain cardinality expressing whether exactly one meta-
datum (singleValue) or an arbitrary number of metadata (multiValue) of the
given type can be attached to a single identifier or link. An example graph using
some of the standard identifiers and metadata is depicted in Fig. 1.

capability location

name = access—intranet-allowed location-information (GPS

value = -37.815789, 144.96491

v
I
access-request role identity
name = 11:333 name = admin type = username
name = Jane Doe

Fig. 1. Example MAP graph. Ellipsoids represent identifiers, rectangles metadata.

Communication Model The communication model of IF-MAP is a content-
based publish-subscribe model. Both publisher and subscriber are MAP clients
connected to a single MAP server. A publisher can insert new and update exist-
ing information (publish update) or delete data from the graph (publish delete).
Subscriptions are handled asynchronously. The subscriber is notified whenever
changes to the subscribed information occur. Metadata can also be propagated
using the notify mechanism. Notify data is only sent to current subscribers and
never added to the graph structure in the MAP server itself.

Furthermore, IF-MAP specifies a search functionality, that allows the MAP
client to query and search for information with an immediate result. Searches
follow the same pattern as subscriptions. They can range from simple queries
for a specific metadatum, towards more complex patterns within the graph, e.g.,
only following specific links.

4 Concept for Change Tracking of IF-MAP Graphs

The following section describes our concept for change tracking of MAP graphs.
This includes the extensions needed to store changes as well as the algorithm for
restoring past graphs’ states and the calculation of changes between two points
in time.

Change Tracking Extension In the IF-MAP data model, only metadata is
volatile, i.e., has a certain lifetime of its own. Identifiers are never created nor

36

Ahlers et al.

deleted, but (at least conceptually) always exist as globally unique entities. Links
exist as relationships between two identifiers “indicated by metadata” [10]. From
an application level perspective, of course, identifiers have a lifetime — hence, only
identifiers that have valid links or metadata attached to them are considered to
be valid (or existent for that matter).

Metadata instances are provided with two pieces of additional administra-
tive information in order to examine their validity for a given point in time:
(1) the IF-MAP publish timestamp to mark the start of their validity (2) a
delete timestamp that marks the end of the metadata’s validity.

A metadatum m is considered valid for time ¢ if ¢, p1551 (M) <=t < tgetete(M).
The validity of links and identifiers is derived from the validity of metadata
as follows: A link [with an arbitrary set of metadata M; connected to it, is
considered valid at time ¢ if Im : m € M; AisValid(m,t). An identifier ¢ with an
arbitrary set of metadata M; and an arbitrary set of links L; connected to it, is
valid at time ¢ if (3m : m € M;AisValid(m,t))Vv (3l : 1 € LiAisValid(l,t)). Using
this understanding of validity, algorithm 1 can be used to restore a graph’s past
state using the corresponding timestamp and a (random) identifier as a starting
point.

Algorithm: BuildGraph(Identifier currentld, List<Identifier> seenlds,
timestamp t)

if Iseenlds.contains(currentld) and isldentifier Valid(currentld, t) then
result.add(currentld); /* Add identifier and connected metadata */
seenlds.add(currentld);
for Identifier nectld in all linked identifiers of currentld do

if seenlds.contains(nextld) and isLink Valid(currentld, nestld, t) then

result.addLink(currentId, nextId); /* Add Link and connected
Metadata */
else
‘ BuildGraph(nextId, seenlds, t);
end
end
end

Algorithm 1: Graph construction for valid identifiers at time t¢.

Calculation of Graph Deltas The query for a graph delta takes two input
parameters: tg is the first point in time — “the starting point of the query” —
and t. is the second point in time — “the ending point of the query”. The query
returns a graph tuple (U, ¢}, Djs,]) Wwhere the graph U,) contains all identifiers
and links which happen to have new or updated metadata attached to them. In
this context new or updated means that the metadata attached to an identifier
or link was not present (or had different attributes) at ts but is valid at t.. If
some metadatum was valid at t; but is no longer valid at ¢., the identifier or
link attached to this metadatum will be included in the Dy, graph.

To calculate U, we take the current graph G which represents the state
of the graph at time ¢, and the graph G, which is the graph state at time ;.

37

VisITMeta

We now check for each metadatum in G, whether it is present in G, if we find
such metadata we remove it from G.. If this leaves an identifier or link without
any metadata attached to it, we remove the identifier or link as well. We are left
with the graph U, o) that only contains identifiers or links that have not been
present at the start time of the query, but were present at the end time of the
query. In order to calculate the graph D, .}, we apply the same operation, but
swap G, and G.: for each metadatum in G5 we check whether it is also present
in G.. If we find such a metadatum, we remove it from G;. Identifiers and links
without any metadata are dropped as described above.

device-ip

device
name = x240

ip-address
type = ipv4
value = 192.168.1.1

publish timestamp = 1
delete timestamp =

device-ip

device
name = x240

ip-address
type = ipv4
value = 192.168.1.1

publish timestamp
delete timestamp

o
n

ip-mac
mac-address P
value = aa:bb:cc:dd:ee:ff publish timestamp =

delete timestamp

ip-ma
mac-address P c

value = aa:bb:cc:dd:ee:ff

ip-address
type = ipvd
value = 192.168.1.1

publish timestamp
delete timestamp

device device-ip
name = x240 publish timestamp = 1
delete timestamp = 3

Deletes

mac-address itpmac
alue

= aa:bbicc:dd:ee:ff publish timestamp = 2
delete timestamp = -1

ts=1land t. =3

-]

Updates

Fig. 2. Example delta calculation

An example for the calculation of deltas is depicted in Fig. 2. At ¢t = 1
a device-ip metadatum is published, the negative delete timestamp indicates
that this metadatum is still valid. At ¢ = 2 an ip-mac metadatum is published
to the already known ip-address and at ¢ = 3 the device-ip that had been
published at ¢ = 1 is deleted. The query for the delta from t; = 1 to t. = 3
yields the tuple depicted at the bottom of Fig 2. U) is shown on the left, D,
shown on the right hand side.

As figure 2 shows, this algorithm may yield a U, or D that contains
edges without identifiers or “half edges” with only one identifier present. In the
implementation, one might choose to either use the algorithm as is and assign
unique identities to links or to always return an identifier-link-identifier triple
to identify links unambiguously, even if one or both of the identifiers have not
changed.

38

Ahlers et al.

5 Visualization Concept and System Architecture

In this section we show the concept and architecture of the VisITMeta software
system that combines persistence of IF-MAP data and its visualization. The
retrieval of and navigation within time variant data are also described.

Software architecture and data retrieval The system architecture of Vis-
ITMeta consists of two strongly separated applications. All application layers
are designed as independent from each other as possible, so that libraries and
algorithms can easily be exchanged.

The dataservice collects metadata from a MAP server (MAPS) as a regular
MAP client (MAPC), stores it inside a Neo4j? graph database and also provides
access to the stored metadata via a REST-like interface.

The visualization application fetches metadata from the dataservice via the
REST interface and converts the data into graph elements. Layouts are generated
with the JUNG2? library and the results are rendered with Piccolo2D®. A Java
Swing GUI allows for navigating through the graph history and editing the
underlying connections to one or multiple dataservices.

To retrieve data from the dataservice, the wvisualization application — and
any other possible application — can use methods of the REST-like interface to
request (a) a map of all timestamps at which changes occurred in the graph,
(b) a delta by specifying a start and an end time, (c) the graph at a given
timestamp which contains all valid identifiers, links, and metadata, or (d) the
graph at the latest timestamp, i.e., the current state of the graph.

Graph and delta visualization Figure 3 shows a small example of a layouted
MAP graph within VisI[TMeta’s GUI application. Identifiers and metadata are
both visualized as nodes, whereas links are only shown implicitly: a link exists
between two identifiers which are connected by one or more metadata, such as
enforcement-report or device-attribute plus access-request-device.

The user controls the time-variant view on the MAP graph by using a slider
mechanism with two knobs that can be moved independently. This allows to
select (a) a single point in time to get the graph associated to that timestamp
by only moving the right knob or (b) a time interval for viewing a graph delta by
moving both knobs. Alternatively, the current state of the graph can be displayed
(“live view”).

After selecting a time interval via the slider, the resulting delta is visualized
as a graph that contains all updates and deletes. All updated and deleted meta-
data are highlighted in the corresponding user-defined colors. By selecting two
succeeding timestamps, changes in the MAP data can directly be observed.

3 http://www.neodj.org/

4 http://jung.sourceforge.net/
% http://www.piccolo2d.org/

39

http://www.neo4j.org/
http://jung.sourceforge.net/
http://www.piccolo2d.org/

VisITMeta

device-attribute
access-request-device

layer2-information

authenticated-by.

request-for-investigation. access-reques

access-request-mac

enforcement-report

authenticated-as

Fig. 3. A simple example of visualizing a MAP graph history. Identifiers are depicted
by blue rounded rectangles, metadata entities by red rectangles. Links are only shown
implicitly (cf. text). The green and red glow effects highlight identifiers and metadata
that are created and deleted within the selected time interval, respectively.

6 Conclusion and Future Work

In this paper we have introduced a system for the visualization of highly dynamic
network security metadata represented in a graph structure. An early prototype
of this work is available via Github.® Our system is able to display both the
current state and past states of the metadata graph as well as deltas between two
given points in time. We have proposed a timestamp-based model to persist time-
variant MAP graphs and developed algorithms to restore past graphs’ states and
calculate deltas. In contrast to other approaches related to time-variant graphs,
our work primarily targets long-term storage and reproduction of graphs using
a combination of edge-centric and vertex-centric methods with minimal storage
overhead.

At the time of this writing our work is subject to the following limitations:
(a) only metadata made available via IF-MAP publish update operations is
made persistent within the database, data published via notify is discarded,
(b) reconstruction of a graph’s past state is only guaranteed to be idempotent,
if the subscription used to receive data from the MAP server retrieves all data
from the map server, i.e., each identifier and each metadatum in the MAP server
can be reached using the subscription traversal at all times.

Visualization of dynamic, time-variant and potentially very large graphs still
needs research, even more so in the area of IF-MAP where both edges and
vertices can be tightly packed with information. Future work will have strong
focus on new concepts for IF-MAP graph visualization. The next tasks will be
to develop and implement multi-layout algorithms and find ways to detect and
display semantically cohesive sub-graphs.

Apart from visualization, historic IF-MAP data is also useful for mining
patterns that capture the network’s behavior. These patterns could be used to
detect outliers that might indicate incidents. We plan to build a data model that
captures the graph history for this use case. We assume that this model will be
different from the presented model as it targets different types of access.

S https://github.com/trustathsh/visitmeta

40

https://github.com/trustathsh/visitmeta

7

Ahlers et al.

Acknowledgements

The fruitful collaboration with J. von Helden, T. Ehlers, J. Fuchs, B. Merieau,
S. Misztal, and F. Sprengel is gratefully acknowledged. This work is financially
supported by the German Federal Ministry of Education and Research (BMBF),
projects VisITMeta (grant no. 17PNT032) and SIMU (grant no. 16KIS0045).

References

10.

11.

12.

. Bente, I., von Helden, J., Hellmann, B., Vieweg, J., Detken, K.O.: ESUKOM:

Smartphone Security for Enterprise Networks. In: Pohlmann, N., Reimer, H.,
Schneider, W. (eds.) ISSE 2011, Securing Electronic Business Processes. pp. 371—
382. Vieweg+Teubner, Wiesbaden (2011)

Bente, 1., Hellmann, B., Vieweg, J., von Helden, J., Dreo, G.: TCADS: Trustworthy,
context-related anomaly detection for smartphones. In: Barolli, L., Taniar, D.,
Enokido, T., Rahayu, J.W., Takizawa, M. (eds.) 15th International Conference on
Network-Based Information Systems, NBiS 2012. pp. 247-254. IEEE (2012)
Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. In: Frey, H., Li, X., Ruehrup, S. (eds.) Ad-hoc, Mobile,
and Wireless Networks, Lecture Notes in Computer Science, vol. 6811, pp. 346—
359. Springer Berlin Heidelberg (2011)

Federico, P., Aigner, W., Miksch, S., Windhager, F., Zenk, L.: A visual analytics
approach to dynamic social networks. In: Proceedings of the 11th International
Conference on Knowledge Management and Knowledge Technologies (i-KNOW
’11). pp. 47:1-47:8 (2011)

Holme, P., Saraméki, J.: Temporal networks. Physics Reports 519(3), 97-125
(2012)

Marty, R.: Applied Security Visualization. Addison-Wesley, Upper Saddle River,
NJ (2008)

Pigné, Y., Dutot, A., Guinand, F., Olivier, D.: GraphStream: A Tool for bridging
the gap between Complex Systems and Dynamic Graphs. In: Emergent Properties
in Natural and Artificial Complex Systems. Satellite Conference within the 4th
European Conference on Complex Systems (ECCS’2007). pp. 63-72 (2007)

Ren, C., Lo, E., Kao, B., Zhu, X., Cheng, R.: On querying historical evolving graph
sequences. Proceedings of the VLDB Endowment 4(11), 726-737 (2011)
Tamassia, R., Palazzi, B., Papamanthou, C.: Graph drawing for security visual-
ization. In: Tollis, I.G., Patrignani, M. (eds.) Graph Drawing, 16th International
Symposium, GD 2008, LNCS, vol. 5417, pp. 2-13. Springer, Berlin (2009)
Trusted Network Connect Working Group: TNC IF-MAP Binding for SOAP, Ver-
sion 2.1, Revision 15. http://www.trustedcomputinggroup.org/resources/tnc_
ifmap_binding_for_soap_specification (May 2012)

Trusted Network Connect Working Group: TNC IF-MAP Metadata for Net-
work Security, Version 1.1, Revision 8. http://www. trustedcomputinggroup.org/
resources/tnc_ifmap_metadata_for_network_security (Ma.y 2012)

Trusted Network Connect Working Group: TNC IF-MAP Metadata for ICS
Security, Version 1.0, Revision 44. http://www.trustedcomputinggroup.org/
resources/tnc_ifmap_metadata_for_ics_security (May 2014)

41

http://www.trustedcomputinggroup.org/resources/tnc_ifmap_binding_for_soap_specification
http://www.trustedcomputinggroup.org/resources/tnc_ifmap_binding_for_soap_specification
http://www.trustedcomputinggroup.org/resources/tnc_ifmap_metadata_for_network_security
http://www.trustedcomputinggroup.org/resources/tnc_ifmap_metadata_for_network_security
http://www.trustedcomputinggroup.org/resources/tnc_ifmap_metadata_for_ics_security
http://www.trustedcomputinggroup.org/resources/tnc_ifmap_metadata_for_ics_security

	Replicable Security Monitoring: Visualizing Time-Variant Graphs of Network Metadata

