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Abstract. Graph drawing algorithms have important practical applica-
tions, e. g. layer-based algorithms for data flow diagram layout in embed-
ded software design and planarization-based algorithms to layout UML
diagrams in software engineering.

Most current drawing methods focus on the optimization of aesthetic
criteria such as the number of edge crossings and bends. The aspects
of compactness and aspect ratio are often treated with lower priority,
but in practice these are important as well. We present computational
experiments showing that compactness can become a problem, especially
for large and nested diagrams. Furthermore, we discuss possible new
research directions.

1 Introduction

In the context of graph-based diagrams, automatic layout algorithms are a com-
mon tool to free developers from the time-consuming task of manually arranging
nodes and links on a canvas. Different kinds of diagrams may have domain-spe-
cific requirements on the arrangement of the elements. For data flow diagrams,
layer-based methods have proven themselves to work well [18], whereas for UML
class diagrams planarization-based methods yield more suitable results [6].

With diagrams used in practice, however, we found that the drawings created
with these methods often lack compactness. Consider Fig. 1, a data flow diagram
from an industrial application [8] that models the control unit of a car engine.
The original size of the diagram is 25179 x 11035 pixels. Using modern monitors
with a resolution of 1920 x 1080 pixels, this means that 134 monitors would be
required to display the diagram with its intended size (neglecting the correct
aspect ratio). In other words, less than 1% of the diagram can be shown on a
standard monitor with the original 1:1 scale. Even though for most tasks that are
conducted by engineers only parts of the diagram are relevant and sophisticated
filtering methods can help to reduce the presented information, this example
demonstrates that readability can be severely compromised by poor usage of
screen area.
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Fig. 1. A practical data flow diagram modeling the control unit of a car engine. The
diagram is scaled to less than 2.5 % of its original size. More than 90 % of the diagram’s
area is unused.

Contributions. In this paper, we review existing research on the compactness
of graph drawings, present results of experimental evaluations with practical
diagrams, and discuss new ideas for future research. Summarizing the results of
our experiments, we made the following observations:

(O1) Aspect Ratio. Layer-based algorithms yield bad aspect ratios for certain
diagrams, especially for diagrams with long directed paths.

(02) Whitespace of Compound Diagrams. For diagrams containing compound
nodes, i. e. nodes that contain nested subgraphs, the amount of whitespace
increases with the number of compound nodes when using layer-based
algorithms.

(03) Whitespace and Planarization Methods. While planarization-based meth-
ods produce drawings with few edge crossings, for certain diagrams the
amount of whitespace can increase drastically.

Outline. We define different aspects of compactness in Sect. 2 and discuss exist-
ing work on improving the compactness of diagrams in Sect. 3. Sect. 4 presents
two experiments that quantify the fraction of diagrams that lack certain criteria
of compactness. We conclude with possible future research directions in Sect. 5.

2 Definition of Compactness

We define the width w of a diagram as the difference between the largest and the
smallest x-coordinate of any element in the drawing; the height A is defined anal-
ogously using y-coordinates. Traditionally, compactness has been understood as
the goal to minimize the area w - h, or to minimize w or h independently (cf.
the optimization goals for orthogonal compaction discussed in [15, Chapter 4]).
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Fig. 2. A Ptolemy data flow diagram drawn with the methods of Schulze et al. [18].
Producer and Consumer are compound actors, where only the content of Producer is
visible. All other nodes are atomic actors.
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A difficulty with this definition is that it does not allow an absolute rating of a
drawing, since it is not known how much area is required for a good drawing of
a particular graph. Here we consider two other aspects of compactness that are
easier to assess, namely the aspect ratio and the whitespace ratio.

Aspect ratio. The aspect ratio of a drawing is r = w/h. An ideal aspect ratio
matches the used display medium. For monitors this depends on the resolution,
and is typically between 1.33 and 1.78. Often diagrams are printed to a sheet
of paper, which has an aspect ratio of 1.41 (ISO 216 format). As drawings with
aspect ratios outside, yet close to, these values are fine, we assume in the following
that all aspect ratios r in the range 1 < r < 2 are acceptable.

Whitespace. The whitespace of a drawing is the area that remains unused. We
measure the whitespace by literally painting the rectangular bounding box of
all nodes onto a black-and-white canvas. Every node’s bounding box includes
possible labels and ports that are located outside the actual node. Additionally,
layout algorithms can be configured with a parameter s controlling the minimal
spacing between any two nodes. We extend the bounding box in all directions
by the value s. The whitespace value is the ratio of the number of pixels that
are left white to the total number of pixels in the canvas.

Edges are neglected as we feel that including them in the black-and-white
drawing would bias the result: long edges would lead to larger areas that are
drawn in black and thus reduce the whitespace, contradicting the aesthetic cri-
terion of minimizing edge length. For a similar reason, we omit compound nodes
in the whitespace evaluation, since their size is adapted to the bounding box of
their nested subgraph.

We are not aware of any studies evaluating how much whitespace is neces-
sary or helpful to conceive a diagram optimally. Certainly some whitespace is
necessary in order to emphasize certain structures such as grouping of nodes.
In the future a quantification would be desirable. Furthermore, our results en-
courage a metric that takes more factors into account, such as edges. Following
our definition, graphs with higher edge density typically yield higher amounts of
whitespace, hence the comparison of results for different graphs is problematic.
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3 Previous Work on Compactness

Layer-based algorithms. Layer-based methods are the standard approach for
drawing directed graphs. It consists of the following steps:

1. Cycle removal: Eliminate cycles by reversing a small subset of edges.

2. Layer assignment: Assign all nodes to layers such that edges point from
layers of lower index to layers of higher index.

3. Crossing reduction: Find an ordering of the nodes in each layer with the aim
of reducing the overall number of crossings.

4. Coordinate assignment: Determine node coordinates and replace dummy
nodes by bend points.

A very common optimization goal for layer assignment is to minimize the
sum of layer differences of source and target nodes for all edges. While this can
be solved efficiently [10], it does not solve the compactness problems described
above. Compactness has been addressed with regard to the number of layers and
the maximal number of nodes per layer [11,17,1], which is often called the width
of the layering. Further approaches target a given aspect-ratio [16] or distributed
large nodes over several layers [9)].

Planarization-based algorithms. The topology-shape-metrics approach consists
of the following three phases:

1. Planarization: Remove edges until the graph is planar, then reinsert each
removed edge with a minimal number of crossings.

2. Orthogonalization: Compute a bend-minimal edge routing that consists of
horizontal and vertical line segments.

3. Compaction: Find a valid assignment of node and bend point coordinates
such that the total length of line segments is minimized.

The simplest approach for one-dimensional compaction is based on longest
paths and guarantees a minimal width or height of the drawing, but does not
guarantee that the sum of the edge lengths is minimal. The latter can be achieved
using flow-based compaction. However, both methods require that the orthog-
onal representation has only rectangular faces; this can be achieved by adding
additional edges (dissection) but limits the amount of freedom for compaction.
An alternative approach is based on turn-regularity [4], which does not require
rectangular faces. An experimental comparison of these methods is presented
in [13]. Due to their nature of only considering one dimension, none of these
methods considers the aspect ratio of the resulting drawing. For two-dimensional
compaction, the drawing is iteratively compacted in x- and then in y-direction,
until no more improvement can be achieved. However, the resulting solutions
can be far away from an optimal solution for the two-dimensional compaction
problem. On the other hand, Klau and Mutzel [14] describe an ILP-based op-
timal algorithm for two-dimensional compaction, which can minimize the sum
of the edge lengths or the sum of width and height of the drawing. Moreover,
Eiglsperger and Kaufmann [7] present a linear-time compaction heuristic.
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Fig. 3. A UML class diagram drawn with the approach of Eiglsperger et al. [6]. While
the methods of the KLabel interface are visible, they are hidden for all other interfaces
and classes.

4 Experiments

We present experiments based on two classes of diagrams used in practice and
a set of graphs that are often used for evaluating graph drawing methods. We
analyze the aspect ratio and the amount of whitespace of the created drawings,
showing that our observations discussed in Sect. 1 hold for a considerable portion
of diagrams.

Ptolemy data flow diagrams. Ptolemy is an open source project that ships with
a number of example data flow models for testing and demonstration.® The
diagrams can be nested with compound actors, which are composed of further
actors to describe subsystems; see Fig. 2 for an example where the Producer
compound actor is expanded, i. e. its internals are made visible, and the Consumer
compound actor is collapsed. All other actors are atomic actors, i.e. do not
contain children.

For our evaluations we use three variations of these models. First, we flatten
all compound actors, i.e. all contained atomic actors are recursively moved to
the highest hierarchy level and the compound actors are eliminated. Second,
we display all atomic actors within their parent compound actors. Third, we
start with collapsed compound actors and successively expand them, obtaining
different views for each diagram. To illustrate this, Fig. 2 shows one expanded
compound actor, Producer. Expanding the Consumer actor would yield another
view where the content of both compound actors is visible. Overall we evaluated
330 flattened diagrams, 199 diagrams with full hierarchy containing at least 2
compound nodes, and 11 successively expanded diagrams.

3 http://ptolemy.eecs.berkeley.edu
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Table 1. Percentages of Ptolemy diagrams drawn with certain aspect ratios. For each
listed variation, an extra row contains the results for graphs with more than 20 nodes.

Aspect Ratio Intervals (0,1) [1,2] (2,00)
Flattened Graphs 24 % 36 % 40 %
> 20 Nodes 41 % 37 % 22 %

Ptolemy
Compound Graphs 26 % 44 % 30 %
> 20 Nodes 32 % 40 % 28 %
Klay Layered 52 % 30 % 18 %
North Graphs > 20 Nodes 63 % 23 % 14 %
Graphviz Dot 60 % 23 % 17 %
> 20 Nodes 70 % 16 % 14 %

Class diagrams. KIELER is an open source project written in Java with over
1.4 million lines of code.* We created eight class diagrams of several subprojects,
e.g. KIML, KLighD, and SCL. The diagrams contain 20 to 55 nodes and 27 to
75 edges. We use two variations of the class diagrams, one where the details of
classes and interfaces are visible and one where they are hidden, see Fig. 3.

North graphs (a. k. a. ATET graphs). The library is widely used in the graph
drawing community and serves as an application-independent benchmark [5].
We assigned a size of (30,30) to each node for the whitespace evaluation. We
evaluated 1276 graphs with 10 to 100 nodes and 9 to 241 edges.

We processed the North graphs with the Dot algorithm of the Graphviz
library [10] and the KLay Layered algorithm of KIELER [18]. The data flow
diagrams have been drawn using KLay Layered only, which is specialized for
handling ports. The Planarization algorithm of the OGDF library [6] has been
used for the class diagrams.

4.1 Results

(O1) Aspect ratio. Table 1 gives an overview of the resulting aspect ratios of
drawn diagrams; it can be seen that for every class of graphs less than 50 % of
the drawings have an acceptable aspect ratio.

The results for the flattened Ptolemy graphs and the North graphs are also
shown in more detail in Fig. 4. Each bar accumulates the number of graphs with
an aspect ratio within an interval of size 0.5, specified by the values left and right
of the respective bar. The four marked bars depict the desired interval 1 < r < 2
of the aspect ratio r, and the right-most interval contains all graphs with » > 9.5.
Only about 36 % (Ptolemy graphs) and 30 % (North graphs) have an aspect ratio
in the desired interval. While the drawings with aspect ratio below 1 (presuming
left-to-right layout) can be improved with alternative layer assignment methods
discussed in Sect. 3, no current methods can handle the remaining 40 % and 18 %
with an aspect ratio above 2 because the minimal number of layers is determined
by the longest paths of these graphs (see Sect. 5).

4 http://www.ohloh.net/p/kieler
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Fig. 4. Detailed aspect ratios of flattened Ptolemy graphs (light-gray) and North
graphs (dark-gray) drawn with the KLay Layered (cf. Table 1 rows 1 and 5).

Table 2. Percentage of whitespace per total area of a drawn diagram and the increase
incurred at each expansion. Figures are the average of 11 nested diagrams with 9 or
more compound actors.

Expanded Compound Nodes 1 2 3 4 5 6 7 8 9
Avg. Whitespace 71.8 80.4 85.1 87.5 87.8 89.9 91.1 91.2 91.8
Avg. Increase - 86 47 24 03 21 1.2 0.2 0.5

(02) Whitespace of compound diagrams. Table 2 shows the average amount
of whitespace of the successively expanded Ptolemy diagrams. It can be seen
that the amount of whitespace grows continuously with an increasing number
of expanded compound nodes. Diagrams with more than nine compound nodes
reach up to 97% whitespace. Better methods have to be found to reduce the
unused space for diagrams containing compound nodes (such as in Fig. 1).

(03) Whitespace and planarization methods. The amount of whitespace of the
eight class diagrams after applying the planarization-based layout can be seen in
Table 3. The same average value of about 72 % can be observed for both types
of diagrams, the ones with hidden and with visible details. We found that the
specified spacing around nodes has no significant impact on the relative amount
of whitespace. The results in Table 3 originate from a spacing value of 50. Spacing
values of 20 or 90 yield similar whitespace ratios of 70 — 73 %.

We applied the force-based FDP algorithm of Graphviz in addition to the
planarization-based method for a comparison. The algorithm was configured to
produce drawings as compact as possible while remaining legible. This setup
yields 18 % whitespace on average. While we believe that the planarization-
based drawings are more comprehensible because they produce fewer crossings,
we conclude that there are layout algorithms producing drawings with less than
a third of the whitespace when relaxing the goal to minimize edge crossings. In
terms of area, the examined class diagrams require an average of 5.3 monitors
when using planarization-based method, whereas all but three diagrams would
fit on a single monitor using force-directed methods (0.7 on average).
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Table 3. Amount of whitespace per class diagram. The “plain” row refers to classes
shown without any methods, and “detailed” to classes with visible methods. The first
two rows are results of a planarization-based layout algorithm, the last row results from
the FDP algorithm of Graphviz with overlap mode set to COMPACT. For all results a
spacing of 50 was specified.

x®

> > <
N » > = > X g ;
‘O{D)IO 6&% \é-é*g \e-ég \é.\& @% & %06“‘ ¥
plain [%)] 77.5 70.2 69.5 68.6 79.7 76.3 65.0 63.4 71.3
detailed [%)] 75.7 73.5 70.1 71.3 76.8 66.6 71.2 65.2 71.3
force-plain [%] 9.6 28.4 28.0 18.6 14.3 17.5 16.6 11.2 18.0

5 Open Problems

We present four directions for future research: minimization of longest paths and
improved layer assignment for the layer based approach, and partial orthogonal-
ization and graph decomposition for the topology-shape-metrics approach.

1. Longest paths. The minimal number of layers for an acyclic graph is de-
termined by its longest path, since all nodes of a path have to be assigned to
different layers. Hence the longest path limits the freedom of layer assignment
algorithms regarding their goal of finding a layering that allows a compact draw-
ing. This fact has been neglected in previous approaches to cycle elimination,
which only address the number of reversed edges [12]. We propose to generalize
the edge reversal phase such that it targets two optimization goals: Minimize
the number of reversed edges and minimize the length of the longest path.

An important question is how to balance the two optimization goals. Ideally,
this balancing should be controllable with a parameter, allowing to adapt the
drawings to the needs of individual applications.

A possible heuristic for the generalized edge reversal problem is to separate
the two goals: first make the graph acyclic using a standard method [12], then
shorten the longest path by reversing additional edges. For acyclic graphs a
longest path can be found in linear time. As a first experiment, we simply reverse
the middle edge of each longest path, if that does not introduce new cycles. An
example is shown in Fig. 5(a) and (b). We evaluated this approach using 180
Ptolemy diagrams and found that the aspect ratio of 76 diagrams with original
aspect ratios above 2 decreased on average by a factor of 0.59. For none of
the tested diagrams the aspect ratio is reduced below 1. The results include
improvements from 8.1 to 3.1 and from 6.0 to 1.9.

2. Layer assignment. In the example in Fig. 5(b) it can be observed that reduc-
ing the number of layers can lead to a higher number of edge crossings. It is an
open problem how to address this in the layer assignment phase. Furthermore,
the aspect ratio of the layering shall be optimized, which can be defined as fol-
lows. Given a layer assignment Vi,...,V, with k layers and nmyax = max{|V;| :
1 < i < k}, the predicted aspect ratio is k/nmax for left-to-right layout and
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Fig. 5. Improving the compactness of drawings. Layer-based: (a) and (b) depict how
by reversing additional edges, the longest path in an acyclic graph can be shortened,
allowing a better aspect ratio. Planarization-based: Two orthogonal drawings of the
same graph. The drawing (c) has been produced by removing 8 edges from the graph,
applying a topology-shape-metrics layout, and reinserting the missing edges manually.
By this we obtain 20 additional edge crossings compared to (d), but only 58% of the
drawing area.

Nmax/k for top-to-bottom layout. For drawings with large nodes it may be ap-
propriate to consider the nodes’ dimensions in this prediction. Another possible
extension is to solve the edge reversal problem as part of the layer assignment
process. This would allow more effective choices of which edges to reverse such
that compact drawings are possible.

3. Partial orthogonalization. We propose to temporarily remove a subset of the
edges from the topology-shape-metrics approach and reinsert them in a post-
processing step using existing routing methods such as the algorithm of Wybrow
et al. [19]. An example is shown in Fig. 5(b) and (c).

— FEdge removal during planarization. Edges with many crossings introduce
many dummy nodes, potentially increasing the size of the drawing. Instead
of inserting such edges during planarization, they could be removed.

— Edge remowal during orthogonalization. Edges with many bend points require
additional space in the compaction phase. A possible heuristic is to compute
an orthogonal representation, remove edges with too many bend points, and
then repeat the process iteratively.

4. Graph decomposition. Decomposing graphs and processing the components

with force-based drawing methods is known from multi-level approaches [3]. Ar-
chambault et al. extended this idea to also consider other layout methods such as
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tree layouts and circular layouts [2]. The topology-shape-metrics method, how-
ever, has not been considered for graph decomposition yet. By putting together
separately processed components, more detailed control on the area and aspect
ratio of the composed drawing could be obtained.

— Trees. We remove subgraphs which are free trees from the input graph, so

we get one core graph plus a collection of tree subgraphs. There are many
options for drawing trees, and this freedom can be exploited to optimize
compactness, €. g. the face into which to embed a tree can be freely chosen.
Biconnected components. Another possibility is to use the decomposition of
the graph into its biconnected components. We can use a similar approach
as for trees, identifying a large core graph and cutting out some subgraphs
which are only connected at cut vertices. A more complex variant would be
to use this approach recursively, i. e. for each removed subgraph we can again
cut out subgraphs connected at cut vertices.
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