
Content-Based Cross-Domain Recommendations Using
Segmented Models

Shaghayegh Sahebi
Intelligent Systems Program

University of Pittsburgh
Pittsburgh, PA

shs106@pitt.edu

Trevor Walker
LinkedIn

Mountain View, CA
twalker@linkedin.com

ABSTRACT
Cross-Domain Recommendation is a new field of study in the
area of recommender systems. The goal of this type of rec-
ommender systems is to use information from other source
domains to provide recommendations in target domains. In
this work, we provide a generic framework for content-based
cross-domain recommendations that can be used with var-
ious classifiers. In this framework, we propose an e�cient
method of feature augmentation to implement adaptation
of domains. Instead of defining the notion of domain based
on item descriptions, we introduce user-based domains. We
define meta-data features as a set of features to characterize
the fields that domains come from and introduce indicator
features to segment users into di↵erent domains based on
values of the meta-data features. We study an implementa-
tion of our framework based on logistic regression and per-
form experiments on a dataset from LinkedIn to perform job
recommendations. Our results show promising performance
in certain domains of the data.

1. INTRODUCTION
Recommender systems can help users to address the infor-
mation overload problem by providing related items con-
sidering user’s interests. So far, most of the recommender
systems were focused on specific domains, recommending
one type of item (such as books) to all categories of users.
Recent research introduced cross-domain recommender sys-
tems that aim to take advantage of shared information among
various domains [10]. In cross-domain recommendation, the
goal is to use various source domain information to recom-
mend items in target domains. Previous studies on col-
laborative filtering cross-domain recommender systems has
shown an improvement of accuracy of recommendations, es-
pecially in the cold-start case [14]. Most of the work on
cross-domain recommender systems and the definition of do-
mains in them has been based on cross-domain collaborative
filtering methods and ignored the domains that can be de-
fined based on user specifications. Li [10] has categorized
the domains in cross-domain recommendation into system,

CBRecSys 2014, October 6, 2014, Silicon Valley, CA, USA.
Copyright 2014 by the author(s)

data, and temporal domains. These domains are related
to, respectively, di↵erent datasets that a recommender sys-
tem is built upon, various representation of user preferences
(explicit or implicit), and various time points in which the
data is gathered. Although this is a good classification of
possible domains in recommender systems, it focuses on the
type or domains that are defined based on items. In other
words, usually the notion of domain is selected as a constant
characteristic of items, systems, etc. For example, type of
items (e.g. books, movies, etc.)[14], genre of items (e.g. for
movies) [1], or indicators of various systems that the data
is gathered from [6] are some of features that have been
used as domain indicators. Joshi et. al. [5] have chosen
domains based on meta-data features. These meta-data fea-
tures can be selected from all unique subsets of features by
experimenting (e.g. selecting the best performing features
on a validation set) which is a time-consuming task. Choos-
ing the proper domain indicator among features is still an
open field of research. In this paper, we propose a frame-
work for performing content-based cross-domain recommen-
dation. We propose that in content-based and hybrid rec-
ommender systems, the domain notion can be extended to
the type or domain of users. Here, the definition of domain
can be determined based on the recommendation task and
users’ information, such as users’ demographic data. For ex-
ample, in a movie recommendation task, age of user can be
an e↵ective factor in deciding which movies match the best
for her. As another example, in job recommendation, we
expect the model parameters to be di↵erent for di↵erent job
functions of users. For a designer, it is important to have
matching skills with the job description, while for a network
engineer, his certificates might have more importance.

We choose job recommender application in our experiment
in this paper, although it is applicable to other recommender
system domains. Having many di↵erent jobs listed online in
various industries with di↵erent job descriptions, it is es-
sential for people to find the job that best matches their
abilities and specifications. Searching for the right job is a
time-consuming task for a user. It needs spending a lot of
e↵ort on defining the criterion the user is looking for. Job
recommender systems can address this problem by actively
finding good job matches for the user, utilizing her profile
information, search keywords, etc. Based on previous results
in the job recommendation literature [8, 9] and our field ex-
perience, we believe that job recommendations can benefit
from cross-domain information.

57

Copyright 2014 for the individual papers by the paper’s authors. 
Copying permitted for private and academic purposes. This volume is 
published and copyrighted by its editors.
CBRecSys 2014, October 6, 2014, Silicon Valley, CA, USA.



In this paper, our proposed framework can be utilized by
various algorithms defined on any notion of domain from
data attributes. Our work also di↵ers from the existing lit-
erature in defining domains on the user profile side instead
of item side. It can, of course, be used for domains defined
on item-set features. We experiment with LinkedIn data
for job recommendations. Our experiments lead to promis-
ing results for content-based cross-domain recommendations
based on user job functions.

In Section 2, we briefly discuss related literature. In Section
3, we introduce our approach to content-based cross-domain
recommendation. We present our dataset and experiment
setup in Section 4 and we discuss the results in section 5.

2. RELATED WORK
2.1 Segmented Regression Model
Segmented regression or piece-wise regression [13] can be
used as a classification method in which data features are
partitioned into intervals using some breakpoints. In the
final model, a separate model will fit each of the segments.
This model is useful for approximating higher-degree models
with multiple lower-degree models in smaller ranges. In this
paper, we adopt this method to our problem of cross-domain
recommendation.

2.2 Feature Augmentation in Domain Adap-
tation

Feature augmentation was introduced by Daumé [3] in domain-
adaptation literature. In his paper, Daumé considers a source
domain and a target domain separately. He augments each
of these domains individually by copying the feature space
three times: once copying all features for the general version,
and once for each of the source and target versions. Even-
tually, the augmented source data will contain only general
and source-specific versions and the augmented target data
contains general and target-specific versions. After Daumé’s
paper, this method have been used in the domain-adaptation
field, especially in Natural Language Processing (NLP)[2, 4,
5].

Our approach improves Daumé’s model in the possibility
of having multiple meta-data features for defining the do-
mains (instead of having one dimension of source and tar-
get domains). In addition, each of the meta-data features
can have multiple values and define multi-dimensional do-
mains. Moreover, we can have separate sets of common
(overlapping) and uncommon features in the main-e↵ect and
domain-specific models. Our model is extensible to incorpo-
rating cross-products of domain indicator features.

2.3 Job Recommendation
Despite of the importance of job recommender systems, there
have not been many research on this subject. Rafter et
al. [12] introduced CASPER, an intelligent online recruit-
ment service. Keim [7] provided a multilayer framework
to support the matching of individuals for recruitment pro-
cesses. In [11] Hutterer used hybrid user profiling to en-
hance the job recommendation results. He incorporated ex-
plicit and implicit feedback of user in the user profile. Lee
and Brusilovsky [8, 9] implemented and experimented with
Proactive, which has multiple interfaces for various types of

users. They showed that di↵erent users use various informa-
tion resources to look for the perfect job.

3. OUR FRAMEWORK: SEGMENTED MODEL
FOR CROSS-DOMAIN RECOMMENDA-
TION

In cross-domain recommendation, we aim to build a model
that can be general and flexible enough, to transfer the infor-
mation in multiple related domains, and specific enough, to
capture particular aspects of each individual domain. This
means that we expect a trade o↵ between the bias and the
variance in our model. We want all models to be close to
each other in particular dimensions (having less variance)
and we want them to be biased towards each domain’s spe-
cific distribution. For example, if we think of various job
functions as di↵erent domains in job recommendation, we
expect the user profile to have a good match to the job de-
scription in all domains (common feature of the domains).
Also, we expect the skills feature to be more important for an
artist than a university professor (domain-specific feature).
If we consider one main model for all of the data present
in various domains, we are going to have no variance in the
model, but we will lose the bias we are looking for. On the
other hand, if we treat each domain with a separate model,
we will achieve the bias each domain is introducing, but we
will have too much variance in the achieved models. In other
words, we will lose the ability to transfer common infor-
mation among di↵erent models. Our framework consists of
two parts: the main-e↵ect model, and domain-specific mod-
els. The main-e↵ect model is to model the shared statistics
among all domains. We have one domain-specific model per
domain to capture the domain-specific characteristics. A
general formulation of model can be seen in Equation 1.

Final-Model = Main-E↵ect Model+
X

i2Domains

Domain-Specific Modeli
(1)

3.1 Cross-Domain Augmentation and Segmen-
tation

As said before, we characterize the fields that the domains
come from by some features called meta-data features. Each
dataset has a set of features, such as user-related features,
item-related features, and features that represent similarities
between users and items, that we call them “base features”.
Meta-data features are a subset of base features, which spec-
ify aspects that we want to define the domains based on.
Each domain is constructed based on the values of these
meta-data features and their combinations. For example, if
we want to recommend movies to users, base features are
user features, such as age, education, language, etc, item
features, such as movie genre, actors, director, etc, or the
relationship between users and items, such as the similarity
between each movie genre and genres that a user likes. We
can choose some of these base features as meta-data features
to define the notion of domain based on them. For example,
we can choose the genre base feature as the meta-data fea-
ture. In this case, the defined domains will be action movies,
drama movies, action-drama movies, etc. If we choose two
meta-data features, the domains can be a combination of val-

57



ues for those meta-data movies. For example, if we choose
genre of movie and age of user as meta-data features, the do-
mains will be like: action-middle-age, drama-young, etc. In
the case of user-based domains for job recommendation, we
can choose some base features of users, such as job function,
or job seniority of users, as meta-data features. For example,
if we want to define the domains based on job function, peo-
ple who have IT job function form one domain and people
who have medical job function form another domain.

3.1.1 Augmentation
Each of the domain-specific models in Equation 1 works on
one domain’s data. As a result, we should split the dataset
for each domain and provide each domain-specific model
with the section of the dataset related to that domain. To
address this splitting, we expand on the idea of segmented
regression model. We propose to augment the feature space
based on the domain definitions and copy each datapoint
into the related domain’s sub-space. The main space is then
used for the main-e↵ect model and each copy of the space is
used for the related domain-specific model.

However, this augmentation has a problem: if we have k
di↵erent domains (e.g. k di↵erent job functions), we need to
partition the data space into 2k separate segments (copies)
to capture all of di↵erent settings of the dataset which takes
too much space. Each one of these copies is for each subset
of the possible combination of meta-data feature values (do-
mains). For example, if we want to partition users based on
the job function represented in their resume, and we have
three di↵erent possible job functions (e.g. operations, edu-
cation, and sales), we will have to partition the data into
23 = 8 segments: people for whom the job function is in
operations, the ones who have sales function, the ones who
have education job function, the ones who have sales and
operation functions, and etc. In addition to the space prob-
lem, segmenting the data into combinations of domains may
lead to very sparse copies of the original dataset. Addition-
ally, looking at all various combinations of the domains and
their interactions might not be necessary for our purpose.

3.1.2 Indicator Features for Segmentation
To alleviate the problem indicated in Section 3.1.1, we ex-
pand on the idea of Segmented Regression Model and in-
troduce indicator features for each domain. These features
allow us to augment the feature space in a polynomial order,
while being able to keep the main e↵ect model and control
the granularity of combinations among di↵erent domains.
Suppose that each meta-data feature can take k di↵erent val-
ues and segment our data into k domains and suppose that
we are choosing only one meta-data feature. For each of the
k possible values in each of the domains, we define a binary
indicator feature, representing if a data point falls into that
specific domain or not. As a result, we will end up with k
binary indicator features for the selected meta-data feature.
Eventually, we will augment the feature space based on the
indicator features in the following way: We keep the original
feature space for the common features used in the main ef-
fect model. For each of the features falling into the domain-
specific models, we augment the feature space by copying
it k times for each of the meta-data feature values. Con-
sequently, we have a polynomial expansion of space. Note

Figure 1: Augmented Feature Space with c Common
Features in the Main E↵ect Model, f Features in
Each of the d Domains, that Are Represented by
Indicator Features with k Possible Values

that we do not consider combinations of meta-data feature
values yet.

Now, if we have d meta-data features to choose the do-
mains from, each of which can take k values, and in each
of the domain-specific models, f of the base-features exist,
we should replicate this f dimensional space for dk+1 times.
This number is polynomial in d (number of meta-data fea-
tures) and k (number of values for each meta-data feature).
While if we have not used the indicator features in segmented
model, the f -dimensional feature space should have been
replicated for dk times. Considering having c common fea-
tures for the Main E↵ect Model, we can represent the new
feature space by Figure 1.

3.1.3 Challenges and Advantages
An advantage of this framework is its extensibility to higher
order cross-products of values between and within domains.
For example, if we want to consider the e↵ect of interaction
between two domains, we can extend the model to consider
an indicator feature, representing cross-products of feature
values in the domains. E.g. if we want to take into ac-
count the combination of every two feature values within
each of the domains, we will end up with a space that has
O(c+ f(dk+1)+ f(dk2 +1)) dimensions or is expanded for
dk + dk2 + 2 times. This gives us the ability to control the
dimensionality of feature space while avoiding the sparsity
in each of the segments.

Another challenge is choosing the features that should be
in the main-e↵ect model and the ones that should remain
as domain-specific features. In other words, which features
should be responsible for transferring the information among
domains (controlling the variance) and which ones should
provide the domain-specific bias? In our approach, the model
can learn which features to use in the main e↵ect model and
which features to use in each of the domains using regular-
ization. Since regularization imposes coe�cient values to be
as close to zero as possible, the less important coe�cients
of the model will have very small values and are removed
from the model. While the model can choose between these
sets of features, we can also initialize the main e↵ect and

58



domain-specific features by the expert’s domain knowledge.

Besides, in some of the cross-domain recommender prob-
lems, each domain has its own subset of a general feature
set, which might di↵er in the size or type with other do-
mains’ feature sets. We expect our cross-domain solution
to consider this problem and be extensible to domains with
heterogeneous number and types of features.

3.2 Implementation Using Logistic Regression
Although the approach we presented here can be used in
various classification algorithms, we used a straightforward
classification algorithm to implement the model.

Suppose that fci is the ith common feature among the do-
mains; M is the set of meta-data features; Vj is the set of
values (domains) for the jth meta-data feature; Iij is the bi-
nary indicator feature for the domain i of meta-data feature
j; fijk represents the kth base feature specific to the ith do-
main of meta-data feature j; and p is the probability of the
model’s outcome. Equation 2 shows the resulting segmented
regression model with indicator features. As we can see, it
has a simple representation that can be implemented easily
for domain adaptation.

logit(p) =
X

i

wci ⇥ fci +
X

j2M

X

i2Vj

Iij
X

k

wfijk ⇥ fijk (2)

Here w represent the weight (importance) of each feature
in the model. In case we want to extend it to having two-
way interaction e↵ects of values of each meta-data feature
(belonging to two domains), we will have:

logit(p) =
X

i

wci ⇥ fci +
X

j2M

X

i2Vj

Iij
X

k

wfijk ⇥ fijk

X

j2M

X

i2Vj

X

l2Vj

Ii,l,j
X

k

wfi,l,j,k ⇥ fi,l,j,k
(3)

In Equation 3 Ii,l,j represents the binary indicator feature
for the datapoint belonging to both i and l domains (or
having both i and l values) of meta-data feature j. To decide
which features should be in the common set of features and
which should be in each of the domain-specific models, we
use L2 regularization.

4. EXPERIMENTAL SETUP
4.1 Data
The dataset we are using in this study is LinkedIn’s job ap-
plication data. It contains records of users and job features
and a binary label indicating if the user has applied for the
job or not. Some of base features are calculated similar-
ities between the job and the user. For example, we use
TF.IDF to calculate the similarity of job description with
user’s skills and store it as a feature in the user-job record.
Some other features, from which we have chosen the meta-
data features, are user-specific. For example, the past and
current job functions of a user, past and current industries

Figure 2: Coverage of User Current Job Functions
in O✏ine Data

the user has worked at, or the geographical location of user.
Meta-data features should have categorical values, so that
we can extract binary indicator features from them. In case
we want to use features with continuous values, we partition
values into more than one category.

The o✏ine dataset used in the following experiments consists
of three million records of more than 150, 000 users. There
is a one to ten ratio of positive job applications to negative
job applications in the dataset. We use 100 user-job features
as base features in the model.

We pick one meta-data feature (user’s current job function)
from user-specific features and split domains based on it.
This feature is specifically related to what a user does in
his/her job, e.g., a user can be an IT (job function) engineer
in a bank. We choose this feature based on our experience
that people working in various functions (e.g. arts and legal
domain) have di↵erent requirements and definitions for a
good job recommended to them.

Based on the LinkedIn data, current job functions of a user
can have 26 di↵erent values. Each user can have multiple
job functions at the same time. The distribution of user job
functions is not uniform in the dataset: some functions are
more covered in the dataset and some include less number of
users. Figure 2 shows the coverage of current job functions
in the data. As we can see in the picture, “Sales”, “Oper-
ations”, and “Information Technology” are among the most
covered job functions in the data and “Community and So-
cial Services”, “Real Estate”, and “Military and Protective
Services” are the job functions with least coverage.

4.2 Implementation of Models for Job Recom-
mendation

As we discussed in section 3, we can have two extremes of
modeling users as our baselines: a) when there is only one
main model for all of the users, and b) when there is a sepa-
rate model for each segment of users and there is no shared

59



Figure 3: Three Experiment Settings with Di↵erent
Granularities of Domain Definition

information among the models. In each of our studies, we
compare our model to at least one of these two baselines.

To capture the e↵ect of domain granularity on recommenda-
tion results, we experiment with three di↵erent settings for
domains: segmenting on two domain indicator features ver-
sus all other domains (two-vs-all), segmenting on all indica-
tor features of a domain (all-indicators), and segmenting on
clusters of indicator features of a domain (domain-clusters).
Figure 3 shows a graphical demonstration of user segmenta-
tion in each case for job functions.

For the two-vs-all model, we choose the two most covered
values of the selected meta-data feature and define three in-
dicator features based on that: the indicator feature that se-
lects users with the most covered value, the indicator feature
that selects users with the second most covered value, and
the indicator feature for the rest of users. For example, for
user’s job function meta-data feature, we will have the fol-
lowing indicator features: IS for users with “Sales” job func-
tion, IO for users with “Operations” job function, and IOther

for all other users. The final model is presented in Equation
4. Here, fci shows the i

th common features among domains,
fSi , fOi , and fOtheri are features used in the “Sales”, “Oper-
ations”, and “Other” domains respectively, wj is the weight
for feature j, and p is the probability that the target user
applies for the target recommended job. Note that since we
have chosen only one meta-data feature, we do not need to
present it in the model (e.g. j 2 M in Eq. 2). Also, note
that by including IOther as an indicator feature, we are cap-
turing the e↵ect of the interaction or cross-product of“Sales”
and “Operations” domains.

logit(p) =
X

i

wci ⇥ fci + IS
X

i

wfSi
⇥ fSi+

IO
X

i

wfOi
⇥ fOi + IOther

X

i

wfOtheri
⇥ fOtheri

(4)

For the all-indicators model, we segment based on all values
of the selected meta-data feature. If the meta-data feature
can take k values, we will end up with k indicator features
to segment all users into k di↵erent partitions. For user’s
job function meta-data feature we end up with 26 di↵erent
indicator features. Our final model is shown in Eq. 5.

logit(p) =
X

i

wci ⇥ fci +
X

i21..26

Ii
X

j

wfi,j ⇥ fi,j (5)

Here, Ii shows the indicator feature for domain i (di↵er-

Figure 4: Clusters of User Job Function

ent values of job function); and fi,j represents the jth base
feature of domain i.

For the last set of experiments (domain-clusters), we clus-
ter the values of meta-data features into groups. Each group
represents a cluster of domains. We use one indicator feature
for each group. We use spectral clustering to group 26 di↵er-
ent job functions into 8 clusters. The clusters are based on
the user transition between job functions in the data. Figure
4 shows a tag-cloud representation of these clusters. Each
color indicates one cluster. As we can see in the picture,
functions like “Sales” and“Marketing”are clustered together
and “Research” and “Education” functions fall in one clus-
ter. We run the segmented model having one indicator per
cluster. Suppose that C is the set of cluster indicators for a
meta-data feature. The final model is shown in Equation 6.

logit(p) =
X

i

wci ⇥ fci +
X

i2C

Ii
X

j

wfi,j ⇥ fi,j (6)

The final model we have in domain-clusters is similar to the
all-indicators model, but domain indicators are representa-
tive of each cluster of job functions.

5. PERFORMANCE ANALYSIS
We experiment in the two-vs-all and domain-clusters set-
tings for current job function of users as meta-data feature.
We divide the data into 70% train and 30% test subsets.

We measure accuracy of the algorithms on the test set. To
find the performance of algorithm in each domains of the
data, we partition the test set into domains in the same
way that we partitioned the training set and calculate the
accuracy in each domains of the dataset. Our model is com-
pared to at least one of the two baseline models: “one-for-
all” and “independent”models. The “one-for-all”model only
contains one model for all of the datapoints, ignoring the
domain-specific models. The “independent” model trains a
separate model for each of the domains independently. This
model ignores the common information among the domains
and treats them as independent from each other.

To dig deeper into the o✏ine results, we look at the coe�-
cient values obtained by the algorithm in each of the models.

60



Table 1: Accuracy of “two-vs-all” vs. “one-for-all”
and “independent” models for job functions

Domain One-for-All
Two-vs-All
(Segmented)

Independent

Sales 96.28% 96.33% 95.01%
Operations 96.43% 96.49% 94.93%
Sales and
Operations

96.54% 96.58% NA

Other 96.44% 96.45% 96.44%

5.1 Two vs. All Model
As explained in Section 4, in this two-vs-all setting two most
covered domains are compared to the rest of the domains.
We compare our model with the two base models: “one-
for-all” and “independent” models. The most covered job
functions in the data are “Sales” (about 12% coverage) and
“Operations” (about 8% coverage). The accuracy results
for the “job function” meta-data feature are shown in Table
1. The “Sales and Operations” row represent the domain
with users in both“Sales”and“Operations”domains and the
“Other” row shows the users who are not in any of “Sales”
or “Operations” domains. The first two rows show the users
who are only in “Sales” or only in “Operations” domains
respectively.

As we see in table 1, the segmented model has slightly higher
accuracy than the base models. The di↵erence is bigger for
the “independent” base model, specially in the two most-
covered domains. To understand how the models work dif-
ferently, we look at the coe�cients assigned to base vari-
ables of “two-vs-all” segmented model and “one-for-all” base
model in Figure 5. In this picture, we can compare the co-
e�cient values for these two models. The “two-vs-all” seg-
mented model can have more than one coe�cient for each
variable: the variable might repeat in the main-e↵ect part
of the model or in each of the domain-specific parts of the
model. To be able to compare the coe�cient values, we use
the average coe�cient value of the main-e↵ect and domain-
specific parts of the “two-vs-all” segmented model. The red
dots represent this average value and the bars around them
represent the variance of these coe�cients in the model.
The blue dots are coe�cient values in the “one-for-all” base
model. As we can see in the picture, some of coe�cients have
a di↵erent value in the two models. For example, the simi-
larity of user skills with job description has more importance
in the “two-vs-all” segmented model. In addition, we can see
that some of base variables existing in the “two-vs-all” seg-
mented model, do not exist in the “one-for-all” base model.
The reason is that these variables were removed automat-
ically during the regularization process. For example, the
similarity between user location and the location of the job
is only present in the “two-vs-all” segmented model. Based
on Figure 5, the “two-vs-all”model’s coe�cients have di↵er-
ent variance in the main-e↵ect and domain-specific models.
Some of the coe�cients vary more than the others. This
can indicate that this model is able to capture the di↵erence
between di↵erent domains.

To understand if the “two-vs-all” segmented model is cap-
turing the di↵erence between each of the domains, we look
at coe�cients of variables in all four job function domains
(Sales, Operations, Sales and Operations, and other) in Fig-

Figure 5: Coe�cient Values for Two-vs-All Seg-
mented Model (Red) Compared to the“One-for-All”
Base Model (Blue)

Table 2: Accuracy of domain-clusters segmented
model vs. “one-for-all” model for job functions

Domain One-for-All
Domain Clusters

(Segmented)
Cluster 1 96.57% 96.52%
Cluster 2 96.18% 96.26%
Cluster 3 96.62% 96.75%
Cluster 4 96.98% 97.09%
Cluster 5 97.58% 97.61%
Cluster 6 96.68% 96.85%
Cluster 7 96.56% 96.61%
Cluster 8 96.34% 96.36%

ure 6. The coe�cient values are shown as stacked over each
other in the picture. Since there are many base variables
in the model and their names are not easily readable, we
removed the names in figures of this section. As we can see,
coe�cient values for some of the variables are di↵erent for
various domains. With a closer look we can find the dif-
ferences in coe�cient values. For example, the similarity of
past positions of user to the job description is more impor-
tant for the Sales domain than the Operations domain. The
similarity of user skills to the job’s required skills are more
important for users in the Operations domain than Sales
domain.

5.2 Domain Clusters Model
As explained in section 4, user job function meta-data fea-
tures are grouped into 8 clusters. The accuracy results for
the clusters in the “job function”meta-data feature is shown
in Table 2. As we can see in this table, the accuracy of
the models are very close to each other, for some clusters
the baseline models work better than the domain-clusters
segmented model and for others it is the reverse.

We compare coe�cient values of the one-for-all baseline and
domain-clusters model to have a more detailed insight of
the results. Looking at the di↵erences of coe�cient values
for each of the domains in the segmented model, we can
understand how di↵erent features are more important for
each of the domains. Figure 7 shows the coe�cient values of
domain-clusters model for the job function meta-data fea-
ture. As we can see in the picture, some of the coe�cients
are more important in some of the domains and less in oth-
ers. For example, The similarity of user’s previous searches
to the job description is more important to users in cluster
2 (including sales, marketing, and similar job functions).

61



Figure 6: Coe�cient Values for Di↵erent Domains in Two-vs-All Segmented Model

Figure 7: Coe�cient Values for Domain Clusters Segmented Model for Job Functions

Figure 8: Accuracy of for All Indicators Segmented Model for Job Functions

62



Figure 9: Coe�cient Values for All-Indicators Seg-
mented Model (Red) Compared to the“One-for-All”
Base Model (Blue)

5.3 All Indicators Model
In this model, we pick all of the possible values for a meta-
data feature as domain indicators: each indicator feature
is representative of one of the values the meta-data feature
can take. Since we choose job function as our meta-data
feature, we will end up with 26 domains related to job func-
tions, such as IT, sales, engineering, real estates, and mar-
keting. We can see accuracy results of the all-indicators
segmented model and the two one-for-all and independent
baseline models in Figure 8. As we can see here, the all-
indicators model is usually slightly better than the two other
models. In some of the domains (such as Product Manage-
ment (number 19) and Real Estate (number 23) domains)
the one-for-all model has more accuracy than all-indicators
model.

Comparing coe�cients of one-for-all and all-indicators mod-
els in Figure 9, we can see that some of the base features
have a very di↵erent coe�cients in the model. Also, some
of base features have a large variance in di↵erent domains of
the all-indicators model. There are some base features that
are removed from the one-for-all model by regularization,
while they still play a role in the all-indicators model.

6. CONCLUSION AND FUTURE WORK
In this paper, we propose a framework for content-based
cross-domain recommender systems. This framework is flex-
ible enough to be implemented with various classifiers. The
model in this framework can transfer common information
among di↵erent domains while keeping them distinct. We
define user-based domains based on users’ meta-data fea-
tures and implement our framework using logistic regression.
The regularization in the model allows us to pick important
features of each of the domains automatically, while keeping
it flexible to accept expert knowledge in choosing the fea-
tures. We experiment on job recommendations for LinkedIn
users. Our results indicate slight improvement in recom-
mendation accuracy in the o✏ine setting. Furthermore, the
experimental results are promising: i) di↵erent features have
di↵erent coe�cient values in each of the domains; and ii) co-
e�cients are di↵erent in the cross-domain model compared
to the one-for-all base model. As a result, we are hopeful
that this model can be a good fit to our problem in the online
experiments (A/B testing). We expect several directions for
future work: implementing the framework based on various

classifier algorithms, expansion of experiments of the model
using di↵erent meta-data features, and experimenting on in-
teraction of various possible domains. Automatic selection
of meta-data features is another interesting direction of re-
search.

7. REFERENCES
[1] S. Berkovsky, T. Kuflik, and F. Ricci. Mediation of

user models for enhanced personalization in
recommender systems. User Modeling and
User-Adapted Interaction, 18(3):245–286, 2008.

[2] J. H. Clark, A. Lavie, and C. Dyer. One system, many
domains: Open-domain statistical machine translation
via feature augmentation. In Proceedings of the Tenth
Biennial Conference of the Association for Machine
Translation in the Americas, 2012.

[3] H. Daumé III. Frustratingly easy domain adaptation.
In ACL, volume 1785, page 1787, 2007.

[4] L. Duan, D. Xu, and I. Tsang. Learning with
augmented features for heterogeneous domain
adaptation. arXiv preprint arXiv:1206.4660, 2012.

[5] M. Joshi, M. Dredze, W. W. Cohen, and C. P. Rosé.
What’s in a domain? multi-domain learning for
multi-attribute data. In Proceedings of NAACL-HLT,
pages 685–690, 2013.

[6] M. Kaminskas and F. Ricci. Location-adapted music
recommendation using tags. In User Modeling,
Adaption and Personalization, pages 183–194.
Springer, 2011.

[7] T. Keim. Extending the applicability of recommender
systems: A multilayer framework for matching human
resources. In System Sciences, 2007. HICSS 2007.
40th Annual Hawaii International Conference on,
pages 169–169, 2007.

[8] D. Lee and P. Brusilovsky. Fighting information
overflow with personalized comprehensive information
access: A proactive job recommender. In Autonomic
and Autonomous Systems, 2007. ICAS07. Third
International Conference on, pages 21–21, 2007.

[9] D. Lee and P. Brusilovsky. Proactive: Comprehensive
access to job information. Journal of Information
Processing Systems, 8(4):721–738, December 2012.

[10] B. Li. Cross-domain collaborative filtering: A brief
survey. In Tools with Artificial Intelligence (ICTAI),
2011 23rd IEEE International Conference on, pages
1085–1086. IEEE, 2011.

[11] H. M. Enhancing a Job Recommender with Implicit
User Feedback. PhD thesis, Fakult Lt f§r Informatik
der Technischen Universit Lt Wien, 2011.

[12] R. Rafter, K. Bradley, and B. Smyth. Personalized
retrieval for online recruitment services. In In
Proceedings of the 22nd Annual Colloquium on
Information Retrieval, 2000.

[13] H. Ritzema. Frequency and regression analysis
(chapter 6). Drainage principles and applications,
16:175–224, 1994.

[14] S. Sahebi and P. Brusilovsky. Cross-domain
collaborative recommendation in a cold-start context:
The impact of user profile size on the quality of
recommendation. In User Modeling, Adaptation, and
Personalization, pages 289–295. Springer, 2013.

63


