
An Extended Data Model Format for
Composite Recommendation

Alan Said1, Babak Loni1, Roberto Turrin2, Andreas Lommatzsch3

1TU-Delft, The Netherlands
2Moviri, Italy

3TU Berlin, Germany
alansaid@acm.org, b.loni@tudelft.nl, roberto.turrin@moviri.com, andreas@dai-lab.de

ABSTRACT
Current de facto data model standards in the recommender systems
field do not support easy encoding of heterogeneous data aspects
such as context, content, social ties, etc. In order to facilitate a sim-
pler means of sharing and using the rich datasets used by research-
as well as production systems today, in this paper we propose a data
model standard for heterogeneous datasets in the recommender sys-
tems domain. The data model is based on the classical tab separated
value (TSV) data model with additional fields for encoding rela-
tional data in JSON format. Through using already established data
sharing formats, we intend to make the usage of the data model as
effortless as possible, i.e. there already exist generic tools for parsing
and managing the data format in most programming languages. We
invite the RecSys community to contribute to the proposed data
model in order to increase ease of use and adoption.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Data Sharing

General Terms
Design, Documentation, Standardization

1. INTRODUCTION
Recommender systems research is inherently based on the un-

derlying data available for the recommender systems to use. No
matter whether the systems utilize interaction data such as ratings
or purchases, or the content of the recommendable items to create
recommendations, there is always a dataset which serves as the basis
for recommendation.

In recent years, recommender systems research has seen a plethora
of recommendation approaches similar to, or based on, the recom-
mender problem defined by the Netflix Prize1, i.e. predicting the
ratings users give to movies. Recommendation of this type is often
based simply on the user-item interactions, thus the only data neces-
sary for this purpose is the triple {u, i, ru,i}, where u is a user in the
set of users U , i an item in the set of items I , and ru,i the rating given
by user u on item i. Sometimes, this will also include a timestamp
that the interaction was created on. This has become the de facto
standard for data sharing and data handling in the RecSys commu-
nity, e.g. the recommendation frameworks LensKit, MyMediaLite
and Apache Mahout all support this type of data as input, sometimes
without other alternatives. Similarly, common recommendation data
sets are based on this type of data (e.g. Movielens, LastFM, etc.).
1http://www.netflixprize.com
Copyright is held by the author/owner(s).
RecSys 2014 Poster Proceedings, October 6 – 10, 2014, Foster City, Silicon
Valley, USA.

Some datasets include additional data – there is however no standard
for sharing (or using) it.

In this work, we propose a relational data model for rich, hetero-
geneous data which can be used for recommendation. The purpose
is to facilitate easy sharing of this type of data. Our data model
is based on an extended version of the traditional TSV/CSV data
model currently used in common recommendation frameworks and
datasets.

2. DATA MODEL FORMAT
Our hybrid data model is inspired by multigraphs, i.e. it is a set of

nodes and edges. In a multigraph, an edge connects two nodes, and
two nodes might be connected by multiple edges. The multigraph
data structure allows to easily represent any entity as a node and any
edge between entities as a relation. Therefore, in our proposed data
model we define the following two concepts:

• Entities that correspond to the nodes of the graph. An entity
can be a user, an item or any context. An entity can contain
optional properties and it can be connected to other entities
through a relation.

• Relations that correspond to the edges in the graph. A relation
connects two entities and contains properties which specify
how the entities are connected.

Entities and relations consist of a set of tab-separated fields, List-
ings 1 and 2 presents examples of this.

Listing 1: Representation of a single Entity
etype \t eid \t timestamp \t properties \t

linked_entities

Listing 2: Representation of a single Relation
rtype \t rid \t timestamp \t properties \t

linked_entities

2.1 Data Model Implementation
Table 1 presents the datatype and descriptions of each of the fields

of entities or relations. Both the entity and relation concepts have the
same format, they can however be interpreted differently. The fields
properties and link_entities contain a JSON-encoded column which
allows the inclusion of any number of properties (or linked_entities)
in key-value pairs. If a property has multiple values, the different
values can be represented as a JSON array. We illustrate this in an
example in Section 2.2.

Fig. 1 schematizes the relation between a user and a movie seen
by the user; the movie is characterized by two linked entities (the
genre and the actor) and a property (the title). Note that a relation

http://www.netflixprize.com


Figure 1: An entity represented in the proposed data model format.

Table 1: Fields of an Entity or a Relation record
Name Type Description
etype/rtype string representing the type of entity/rela-

tion
eid/rid string representing the id of the entity/re-

lation
timestamp long the Unix epoch time indicating cre-

ation time of entity/relation
properties JSON a JSON-formatted string indicating

the properties of entity/relation
linked_entities JSON a JSON-formatted string indicating

the linked entities

(solid line) represents a connection that links multiple entities (e.g.,
the rating given by a user to a movie seen at home with his partner
using a smartphone). In Figure 1 the relation ‘View’ has a subject
(S) and an object (O). A relation typically occurs at some point in
time (e.g., when a user gives a rating, reads a book, befriends another
user, etc.). Conversely, a linked entity represents a fact and connects
one main entity to another (e.g., the movie has an actor, where the
movie is the main entity).

Different scenarios can be described by means of the pro-
posed data model, as shown in Fig. 2, where we represent
four use cases: explicit rating, implicit rating, social connec-
tions, and contextual data (device). To understand the data
model, below we provide a sample showing how a dataset
can be represented based on the proposed data model format.

Listing 3: Representation of a MovieTweetings rating and its corre-
sponding entities with our proposed composite format
rating.explicit \t 1001 \t 129121892189 \t {

rating:5} \t {subject:"user:1002",object:"
movie:2202"}

user \t 1002 \t 129121892189 \t {twitterId:"
177651718",gender:"male",city:"Barcelona"}
\t

movie \t 2202 \t 129121892189 \t {title:"Pulp
Fiction",year:"1994"} \t {actors:["person
:3001","person:3004"],director:"person
:3003"}

person \t 3001 \t \t {gender:"male",name:"
Travolta, John"} \t

person \t 3004 \t \t {gender:"male",name:"
Jackson, Samuel"} \t

person \t 3003 \t \t {gender:"male",name="
Tarantino, Quentin"} \t

2.2 MovieTweetings Example
MovieTweetings [1] is a dataset consisting of movie ratings that

were contained in tweets. The dataset consists of three files that are
formatted similarly to the MovieLens dataset (‘::’ separated). The

Figure 2: The proposed data model in four example scenarios.

three files users.dat, items.dat and ratings.dat contain information
about users, items and ratings accordingly. Formatting this dataset
with our proposed format allows to extend the dataset with any po-
tential context and metadata about ratings. A sample representation
of a relation and its corresponding entities in our proposed format is
shown in Listing 3.

3. DISCUSSION & CONCLUSIONS
The presented data format combines simplicity with a compre-

hensive descriptive power. We have illustrated that the data model
is universally applicable covering explicit/implicit rating scenarios
as well as its suitability for describing contexts and user profiles.
Inspired by a graph model, the data model is easily extendable and
open for integration of additional dataset.

In comparison with XML-based modelling approaches, it mini-
mizes the overhead relying on data formats such as CSV/TSV and
JSON. The efficient representation of data makes the data format
well-suited for huge sparse datasets typically used in recommen-
dation scenarios. In contrast to data formats distributing informa-
tion over several different files (e.g., used in the MovieTweeting
dataset [1]), the presented data format represents all information in
a unified format in one file, simplifying parsing and processing of
the data.

In addition, a unified universal data model also helps to over-
come the fragmentation of frameworks in the recommendation do-
main. Since the presented data model covers all aspects relevant
for representing data in the recommendation domain, it simplifies
the development of recommendation and evaluation frameworks for
recommender algorithms using more than the traditional user-item
interaction matrix as foundation.

To facilitate the usage and adoption of the data model, we are
currently developing open source tools for using this model2 [2]
in combination with common recommendation frameworks. The
intention is to create a common set of guidelines for data sharing
where the RecSys community is encouraged to actively participate
either in the form of development efforts or by proposing changes
and additions which should be included in future versions of the
data model.

Acknowledgments
This research is supported by funding from the European Commission’s 7th Frame-
work Program under grant agreements no. 610594 (CrowdRec).

4. REFERENCES
[1] S. Dooms, T. De Pessemier, and L. Martens, ‘Movietweetings: a movie rating

dataset collected from twitter’, in CrowdRec Workshop, (2013).
[2] A. Said, M. Larson, D. Tikk, P. Cremonesi, A. Karatzoglou, F. Hopfgartner,

R. Turrin, and J. Geurts, ‘User-item reciprocity in recommender
Systems:Incentivizing the crowd’, in UMAP ProS Workshop, (2014).

2http://github.com/crowdrec/datasets

http://github.com/crowdrec/datasets

	1 Introduction
	2 Data model Format
	2.1 Data Model Implementation
	2.2 MovieTweetings Example

	3 Discussion & Conclusions
	4 References

