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ABSTRACT

We describe a system being designed for a leading provider of
enterprise learning solutions, to improve engagement among
learners. The system consists of an engagement timing com-
ponent which estimates a learner’s level of engagement and
likely preferred interaction times, and a recommendation
component which generates personalized content recommen-
dations. We summarize early results from a recently initi-
ated pilot deployment.

1. INTRODUCTION

The problem of interest is improving learner engagement
in an enterprise learning system, by utilizing consumption
data captured by the learning platform. The existing learn-
ing platform records each content launch, tracking user and
content ID and launch time and duration, among other data.
The platform also defines an expert-curated hierarchy of
content, wherein assets are grouped into a forest of asset-
folders on the basis of subject matter. We have developed an
engagement system consisting of two major components: 1)
an engagement timing component that is responsible for es-
timating both a learner’s level of engagement, and preference
to interact at certain days and times; and 2) a recommen-
dation component that generates personalized recommenda-
tions for each learner, based on historical learner activity. In
an initial email-based pilot, these components have demon-
strated significant improvements in user response compared
to industry benchmarks.

2. ENGAGEMENT TIMING

The goal of the engagement system is to improve the
level of engagement of its learners. The engagement timing
component helps the system with proper timing of actions,
based on each learner’s current level of engagement. We ob-
served that learners often exhibit “bursty” or self-excitation
behavior, where a learner’s interactions frequently occur in
clusters. We model these interactions as arrivals from a
stochastic process that captures the temporal dependencies
in learner behavior; the typical homogeneous Poisson pro-
cess is not capable of doing so.

For users with sufficient interaction histories, we consider
a Hawkes’ process, which can be viewed as a counting pro-
cess whose time-varying intensity function adheres to a spe-
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cific structure that enables capturing of temporal dependen-
cies. The original structure considered by Hawkes’ was[Hawkes
1971]: A(t) = ,u—|—ffoo g(t—u; 0)dN (u), where N (u) is an ap-
propriate point process. Hawkes’ specifically considered the
case where g(t) = 7| a; exp{—p;t}, t > 0. This function
states that the intensity at the current time consists of de-
cayed contributions from prior events. If only a short period
of time has elapsed since the learner’s last action, the inten-
sity function is impacted by these recent events and hence
captures the fact that the learner is more likely to reengage.
If a long period has elapsed since the last action, the process
behaves more like a homogeneous Poisson process with rate
4 until the next action. Similar models have been used to
model stock market trades and earthquake aftershocks.

The system estimates the level of engagement for each
learner by considering their reengagement probability in a
time window given their prior interaction history. For learn-
ers with sufficient history, the parameters of the model above
can first be determined using maximum likelihood estima-
tion. This was done using numerical maximization of the
likelihood, whose expressions are available in [Ozaki 1979]".
Then, the probability that a particular learner reengages
in the next s days, given their prior interaction history, is
equivalent to the event that there is at least one arrival in
the time period of interest from the underlying stochastic
process (details omitted for brevity).

In addition to knowing a learner’s engagement level, it
is also important to know the best time of day and day of
week to contact individual learners. This is derived from a
learner’s prior interactions under the assumption that prior
interaction times are indicative of preferred interaction times.
Each day of the week is divided into n uniform duration
bins, giving a multinomial distribution with a total of 7n
categories. In many cases, estimation of the category prob-
abilities suffers from sparsity due to limited interactions.
This problem is solved by using Bayesian estimation with
a Dirichlet prior that incorporates the aggregate preferences
of the entire population. Results based on a test across
multiple customers are shown in Figure 1. The preferences
estimated in this test use an exponential weighting scheme
(with parameter v) to place more weight on recent activ-
ity. The plot indicates that the perfromance saturates for
greater than 24 months. For this value of v the estimated
distribution significantly outperforms a naive model.

'For learners with fewer prior interactions, one promising
strategy is to aggregate their inter-arrival times and fit an
aggregate model.
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Figure 1: Performance of engagement time prefer-
ence estimates relative to a naive estimate (uniform)
for the case of 4 bins per day.

3. RECOMMENDATION ENGINE

The recommendation engine seeks to improve learner en-
gagement by generating personalized recommendations for
which the learner will likely have high preference and, hence,
high consumption likelihood.

The recommendation engine utilizes a blended ensemble
[Koren 2009], wherein several baseline recommenders are
combined to yield a final set of recommendations. We use
three groups of baseline recommenders, each group con-
taining multiple individual recommenders. The first group
consists of popularity-based recommenders which use sev-
eral metrics to measure popularity, including temporal re-
cency, and launch and duration information. The second
group consists of content-based recommenders, wherein the
learner’s historical consumption of certain asset-types, as
determined by the expert-curated hierarchy, is leveraged
to generate new recommendations. These include recom-
menders based on generative Bayesian models of the learner’s
type-preferences, and based on tfidf type metrics over the
content hierarchy. The third group consists of collaborative-
filtering recommenders, which leverage the implicit feedback
information [Hu et al. 2008] manifested in each user’s histori-
cal asset consumption activity; individual recommenders in-
clude some based on matrix factorization, and others based
on separate user-user and asset-asset based filtering.

The recommender ensemble described above is combined
to generate a final set of recommendations (typically 5-10)
for each learner. Activity data was temporally split into
training and validation data sets. We used several metrics
to quantify recommender goodness, including metrics based
on discounted cumulative gain and precision, and predic-
tive metrics quantifying the number of trained recommen-
dations which were consumed in the validation set. The
metrics yielded largely consistent results. We tried multi-
ple blending techniques including gradient-boosted decision
trees and random-forests; random forests were found to yield
best performance. Figure 2 shows, for one enterprise, a com-
parison of the blended recommender to the best popular rec-
ommender, as the number of recommendations varies. The
performance is normalized to that of the best popular rec-
ommender. Note that this comparison is aggregated over all
learners, including a significant number with no prior his-
torical activity, for whom the popular recommender is best.
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Figure 2: Performance comparison of recom-
menders. Metric: number of trained recommenda-
tions consumed in the validation set.

We created visualizations to help learners understand why
they were receiving specific recommendations. One type of
visualization shows the relative strength of each recommen-
dation along each of the three broad recommender groups
described above. Another set of visualizations compares
the strength of the recommendations along a single dimen-
sion using their relative ranks from a specific recommender
group. Anecdotal evidence indicates that users found these
visualizations to be useful in helping to determine which of
the recommendations might be of interest.

4. PRELIMINARY EVALUATION

Pilot deployments of the described engagement solution
have been recently initiated. Learners receive emails at en-
gagement times determined as in Section 2, containing per-
sonalized recommendations as described in Section 3. Some
preliminary quantitative indications of the efficacy of the
solution have been gleaned by examining initial email inter-
action metrics. After the first set of emails was sent to all
participants, the click-through and click-to-open rates (ie.
the fraction of participants who clicked upon one of the rec-
ommendations after opening the email) were tracked. The
overall click-through rate was 5.6%, while the click-to-open
rate was 31.6%. These metrics were compared to indus-
try benchmarks for email campaigns in the education indus-
try, as reported in [Silverpop 2014]. The comparison shows
that the both rates are significantly higher than the indus-
try median (2.8% and 14.3% respectively). These metrics
give some preliminary confirmation of the promise of the
proposed engagement approach.
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