
Ontology Repositories: A Treasure Trove
for Content Ontology Design Patterns

Torsten HAHMANN
National Center for Geographic Information and Analysis, School of Computing and

Information Science, University of Maine, Orono, ME, USA

Abstract. Ontology design patterns (ODPs) are widely accepted as important tools
for accelerated design of ontologies. We revisit content patterns (CP), an impor-
tant class of ODPs, and distinguish two kinds based on their degree of formaliza-
tion and maturity: conceptual CPs and formalized CPs. We show how formalized
CPs and the closely related knowledge patterns have natural equivalents in modular
ontology repositories. Common notions of pattern reuse (including specialization,
instantiation, and composition) are also expressible as logical relationships in the
repository. Thereby, ontology repositories support identifying mature formalized
CPs and knowledge patterns and support documenting the patterns’ reuse.

Keywords. ontology engineering, ontology design patterns, content pattern,
ontology repository, modularity, hierarchy

1. Introduction

Design patterns can be thought of as general guidelines—“best practices”—that are
modular, widely reusable, and that address frequently encountered design problems in a
particular domain, such as architecture, software engineering, or ontology engineering.
Design patterns often take the form of templates, which capture key aspects of solv-
ing a common problem while leaving room for customization to the particular problem
context. Such modular components of larger systems are commonly used throughout all
engineering disciplines to reduce the complexity of large systems by providing standard-
ized solutions to commonly occurring problems.

Ontology design patterns (ODPs) are modular, reusable pieces for ontology engi-
neering. Most closely related to the notion of ODPs are software design patterns [3],
which provide solutions to standard problems in software design. Software design pat-
terns typically address structural problems in object-oriented design: how to solve a reap-
pearing problem through the use of a certain program structure, such as the introduc-
tion of a special-purpose class, e.g. a singleton, a factory, or a mediating class, or the
introduction of a set of classes coupled in a certain way, e.g., through inheritance.

Since ontology engineering has strong parallels with object-oriented software design
in its focus on concepts (classes) and relations (methods, which are functions and thereby
relations as well), one can expect ontology design patterns to serve in a similar role in
ontology design as software design patterns in software design. However, a peculiarity
in ontology engineering is that the term ontology design patterns as coined by [4] not
only encompasses structural solutions to common ontology engineering challenges, but
also much more concrete solutions in the form of small, reusable pieces of ontologies

referred to as content ontology design patterns (abbreviated in the following as CPs).
CPs are quite distinct from other kinds of ODPs used in ontology engineering, such as
structural design patterns (which are either logical and architectural ODPs [2]). While
structural ODPs offer template solutions much like software design patterns, CPs are
chiefly concerned with formalizing a particular piece of knowledge. Over time, CPs have
become the predominant kind of ODPs as demonstrated by the number of submissions in
the different categories of ODPs on the website ontologydesignpatterns.org, the most
widely used repository for ontology repositories. The category of CPs received by far
the most submissions, significantly more than structural ODPs, the second-most popular
category1.

In this paper, we reexamine three different kinds of CPs discussed in the literature
and study to what extent they satisfy the general requirements of ODPs from [4]. Fur-
thermore, we show how CPs are related to particular kinds of modules in modular on-
tology repositories as introduced by [8] and [6], thereby being more explicit about the
nature of the close relationship between certain kinds of ODPs and ontology repositories,
a line of inquiry initiated in [12]. In particular, we identify what modules in an ontol-
ogy repository qualify as specific kinds of CPs and outline how an ontology repository
can help extract mature CPs and document their use—for example through extension
or instantiation—through formal logical relationships within the repository. This gives a
more general view of how modular ontology repositories can play a pivotal role in the
identification, formalization, documentation, and reuse of CPs in the future, overcoming
the current bottleneck of identifying and formally documenting mature and reusable CPs.
More specifically, our contributions are the following:

1. We distinguish three kinds of CPs: conceptual CPs, formalized CPs, and knowl-
edge patterns [1] and explain how they differ.

2. We show that the inherent nature of conceptual CPs is incompatible with the re-
quirements of what constitutes an ontology design pattern proposed by [4].

3. We draw a strong parallel between formalized CPs and certain modules from on-
tology hierarchies. Particularly, we show that all root modules (or root theories) of
generic ontology hierarchies in the sense of [6] qualify as formalized CPs. Simi-
larly, arbitrary modules from mathematical ontology hierarchies in the sense of [6]
qualify as knowledge patterns. This reconciles two competing views of ontology
engineering: (1) ontology engineering through the reuse of modules from an on-
tology hierarchy and (2) pattern-based ontology engineering as recombination, ex-
tension, and instantiation of CPs.

The immediate consequences of these contributions include the following three:
(a) As an immediate consequence of 3., we suggest CPs to be harvested effortlessly

from existing modular ontology repositories. The harvested CPs satisfy all criteria
of ODPs and are more mature than many currently available CPs.

(b) Moreover, ontology repositories maintain a formal documentation of uses of these
patterns through logical intertheory relationships, filling the need for documenta-
tion and exemplification demanded by [17].

(c) As an ancillary consequence, we face an important choice in future work: either
accept a surge in CPs, or identify additional conditions that a root module of a
generic ontology hierarchy must satisfy in order to qualify as a formalized CP.

1ontologydesignpatterns.org lists 101 CPs and 14 structural ODPs as of April 3, 2014.

The paper is structured as follows. Section 2 reviews the notion of content ontology
design patterns (CPs) from the literature and distinguishes two kinds of CPs: conceptual
CPs and formalized CPs. Section 3 studies conceptual CPs in more detail, identifying
three key properties usually associated with ontology design patterns that conceptual CPs
lack. Section 4 studies formalized CPs in-depth, relates them to generic hierarchies as
defined for ontology repositories, and shows why knowledge patterns [1] are a mathe-
matical variant of formalized CPs closely related to the mathematical hierarchies from
ontology repositories. Background and terminology concerning ontology repositories are
introduced in Section 4 as needed. Section 5 discusses how this close relationship be-
tween ontology repositories and ontology patterns can be exploited for extracting and
documenting patterns and for pattern-based ontology design.

2. Content ODPs

Early on, the special role of CPs as solutions to content problems instead of struc-
tural problems has been acknowledged in the literature [4, 14]. One key difference be-
tween CPs and other kinds of ODPs is how they are used in the ontology design process.
Structural ODPs, for example, offer a skeleton of a solution that are populated with for-
malized content (usually as a set of axioms in an ontology language) in order to model
a specific aspect of some domain. In contrast, CPs offer a specific conceptual piece of
knowledge that is encountered across different specialized domains. This may include
generic spatial and temporal knowledge such as generic facts about events, processes and
changes. CPs come equipped with specific axioms (sometimes rather informally speci-
fied in a conceptualization) capturing such generic, though those axioms may, on a case-
by-case basis, be supplemented by domain- or application-specific axioms. Often, such
CPs can be simply glued together in certain ways to design an ontology about a larger do-
main without having to design novel modules from scratch. The remainder of this paper
focuses exclusively on CPs and disregards other types of ODPs.

CPs were originally conceived as formalizing a generic use case (GUC) that capture
a recurrent conceptual piece about a certain reusable domain and that address a limited
set of competency questions [7] about that particular domain. We call such conceptual
pieces that lack an axiomatization in a formal ontology language conceptual CPs and
distinguish them from formalized CPs, which provide specific axiomatizations of con-
ceptual CPs. The original idea of CPs seems to encompass both formalized CPs and
conceptual CPs [4, 14], but we believe that it is beneficial to explicitly distinguish them
because of their different properties and their roles at different stages within the ontology
design process. Of course, the two kinds of CPs are closely related: each formalized CP
is grounded in a conceptual CP and, reversely, each conceptual CP gives rise to one or
multiple formalized CPs, which should only differ in the extent of the formalization de-
termined by the expressiveness of the chosen formal language. Designing a conceptual
CP is a first step towards defining a formalized CP, which can be thought of as a spe-
cific piece of ontology, that is, a “mini-ontology” or an ontology module, that extracts a
certain piece from a foundational or core ontology [4].

Next, we study both conceptual and formalized CPs in more detail. We will argue
that the conceptual variant is insufficiently formal to satisfy the requirements imposed
on ODPs by [4, 14]. Subsequently, we show how formalized CPs are related to mod-
ules defined by the hierarchical structure of an ontology repository and how they can be
extracted from such an ontology repository with ease.

3. Conceptual CPs

Conceptual CPs are essentially conceptual models that capture a specific set of
closely linked concepts, its interrelationships, as well as its relationships to other con-
cepts outside the restricted realm of the conceptual model of interest. Multiple conceptual
patterns can be composed to model a more complex domain or system [14].

As already pointed out by [2], conceptual CPs are used at the early stage of the
ontology development cycle, namely when analysing the—generic or specific—domain
and creating a conceptual model thereof. Due to their role in the early stages of on-
tology development they lack a full formal axiomatization and thus cannot be readily
reused as a module (reuse by extension/specialization) or as a template (reuse by instan-
tiation/cloning). Instead, developers that encounter a similar content problem can only
rely on the conceptual analysis and develop their own formalization thereof. Because
such conceptual CPs are the product of early stage development, they lack key properties
typically associated with ontology design patterns (compare [2, 4]):

• they lack sufficient formalization for easy reuse as an extensible module or an
instantiable template,

• they lack documented instantiation in fully formalized and practically used ontolo-
gies that prove reusability,

• they lack sufficient maturity to be called “best practices”.
Instead, a conceptual pattern is an initial attempt at formalization that has not yet ma-
tured enough to be fully formalized. For this reason, calling such a conceptual model
a pattern is premature, it only becomes a pattern once it is formalized, used, and ma-
tured2. Before this happens, they are more appropriately called conceptual modules or,
as originally in [4], generic use cases (GUCs). Many recently proposed conceptual CPs,
including those of Semantic Trajectory [10] or Surface Water [16], are initial attempts
of creating a conceptual model. Thereby, they are significantly different from how CPs
were envisioned to be created [14]: all methods discussed in [14] presuppose the exis-
tence of a conceptual model—ideally already formalized in an ontology language—for
extracting a CP.

Note that not all conceptual CPs lack in all three criteria to the same degree. For
example, the conceptual CP Semantic Trajectory [10] is at least formalized in OWL-
DL (though the language’s expressivity is rather restricted compared to full first-order
logic), but has not been around long enough for it to be tested, matured, and documented
through actual use “in the wild” [10]. The large number of concepts and relations of both
the conceptual CP Semantic Trajectory and the conceptual CP Surface Water [16]—each
consisting of at least 10 classes and 14 relations depending on how one counts—may
seriously inhibit reusability. Highly reusable patterns are typically much smaller.

4. Formalized CPs

Our second perspective treats CPs as theories formalized in a specific formal lan-
guage. Such formalized CPs can be linked via the concepts and relations in their sig-
natures that cross boundaries between two related CPs. Larger patterns can be built by
taking the union of the specific formalizations and adding formal statements (in the same

2While this notion of a conceptual pattern does not match the common definition of an “ontology design
pattern”, it is still a pattern in the broader, more general sense of the word as used, e.g., in “pattern matching”
because such a conceptual pattern appears repeatedly across different applications and/or domains.

formal language) about how the individual CPs are glued together (compare the compo-
sition of CPs as discussed in [14]).

Formalized CPs are thus restricted to a specific ontology language; they are no
longer language-independent. However, it is still possible to have multiple formalized
CPs that encode a particular conceptual piece of knowledge. In this case multiple for-
malized CPs grounded in a shared conceptual CP are feasible. Alternatively, one can
formalize the conceptual CP in the most expressive formal language of interest, such
as first-order logic, and extract lightweight versions in less expressive formal ontology
languages as needed. In either case, a formalized CP is a module of a larger reference
ontology. Since modules are also thought of as reusable pieces of a larger ontology, the
question of adequate modularization arises in the context of formalized CPs: how can
we identify candidates for formalized CPs that satisfy the desired properties of encapsu-
lation and reusability from an ontology repository? Simply treating all modules as CPs
results in a too large set of CPs, for which reusability is not ensured. Instead, we want
to extract special modules that are guaranteed to be maximally reusable across multiple
domains and applications.

In this section, we show how modular ontology repositories provide intrinsic mech-
anisms that support the extraction of maximally reusable formalized CPs. To make this
point, we use a view of ontology repositories from [6, 8, 9] as a set of ontologies that are
grouped into hierarchies based on their primitive signature (the set of undefined concept
and relation symbols). Ontologies within a hierarchy use the same primitive language
and are organized by nonconservative extensions. The hierarchies themselves are par-
tially ordered by reducibility relationships among them. First, we will review the core
ideas necessary to follow this view and then show how this structure is a basis for a
logically-founded distinction between mathematical and generic ontologies [6]. We then
show how formalized CPs naturally fit into this view by playing the role of root modules
of generic hierarchies. So-called knowledge patterns [1] also fit into this view by playing
the role of modules from mathematical hierarchies.

4.1. Ontology Repository: A Partially Ordered Hierarchy of Ontology Hierarchies

We follow the approach to modular ontology repositories taken in [8], with some
more recent adaptation in [9]3. The most fundamental logical intertheory (i.e. between
ontologies) relationships of interest are conservative and nonconservative extensions and
faithful and relative interpretations. One theory extends another one if it preserves all
theorems. Such an extension is conservative if, and only if, all new theorems involve
new primitive symbols (i.e. new concepts or relations), otherwise it is nonconservative.
Relative interpretations generalize extensions in that the involved theories have disjoint
signatures, but a translation from the interpreting theory’s signature into the interpreted
theory’s signature exists such that the translated theorems are preserved. Such a rela-
tive interpretation is faithful if, and only if, the interpreting theory does not entail new
theorems whose translation is not entailed by the interpreted theory4.

3We follow [8] in terminology and notation, treating ontologies and their modules as logical theories. We do
not distinguish between logically equivalent theories. For every theory T , Σ(T) denotes its signature, which
includes all the constant, function, and relation symbols used in T , and L(T) denotes the language of T , which
is the set of first-order formulae that only use the symbols in Σ(T). We assume that for every theory T a
special primitive signature Λ(T) exists. Such a primitive signature is a distinct minimal subset of the signature
in which all other nonlogical symbols in Σ(T) \ Λ(T) are definable.

4See [9] for the full definitions and more detailed explanations.

Two ontologies that have equivalent primitive signatures, that is, that each have a set
of primitives that are equivalent (up to symbol renaming), are said to be in the same on-
tology hierarchy. This considerably strengthens the definition of a hierarchy as contain-
ing only ontologies with identical signatures from [8]. We can compare two ontologies
T1 and T2 in the same hierarchy, by checking whether one of them is more restricted
than the other, meaning that the latter one is a nonconservative extension of the former
one, written as T1 < T2

5.

Definition 1. [9] An ontology hierarchy H = 〈H,≤〉 is a partially ordered, finite set of
theories H = T1, ..., Tn such that

1. for all i, j with 1 ≤ i, j ≤ n there exist some sets of primitives Λ(Ti) and Λ(Tj)
such that Λ(Ti) = Λ(Tj);

2. T1 ≤ T2 iff T2 is an extension of T1;
3. T1 < T2 iff T2 is a nonconservative extension of T1.

Hierarchies have special modules, called root theories [6,8], which are theories that
capture a set of most general assumptions in the hierarchy, that is, mo root theory non-
conservatively extends other theories within its hierarchy. A theory T that extends a hier-
archy’s root theory and that has an equivalent primitive signature is said to be compatible
with the hierarchy6.

Definition 2. [8] A theory T in a hierarchy is a root theory iff it does not nonconserva-
tively extend any other theory in the same hierarchy.

In [8], we introduced the concept of a closed hierarchy, which is a hierarchy that
has a unique root theory extended by all other theories within the hierarchy. Formally,
a closed hierarchy is defined as a hierarchy closed under similarities. The similarity of
two theories T1 and T2 within a hierarchy is their shared set of theorems that do not arise
only as disjunctions of theorems of the individual theories T1 and T2.

Definition 3. (Adapted from [8]) Let T1 and T2 be theories in the same hierarchy with
the primitive signature Λ.

The similarity between T1 and T2 is the strongest theory (up to logical equivalence)
S ⊆ T1 ∩ T2 with Λ(S) = Λ(T1) so that for all σ, ω ∈ LΛ(T1) if

T1 |= σ and T2 |= ω and S 6|= σ and S 6|= ω

then either σ ∨ ω is independent of S or σ ∨ ω is a tautology.

A repository is then a set of ontology hierarchies, related by reducibility.

Definition 4. [8] A theory T is reducible to a set of theories T1, ..., Tn iff

1. T faithfully interprets each theory Ti, and
2. T1 ∪ ... ∪ Tn faithfully interprets T .

5Notice that the primitive signature within a hierarchy is fixed, thus the only way to properly extend a theory
in the hierarchy is by further restricting the interpretation, leading to a nonconservative extension.

6We take a “lax” approach to hierarchies and explicitly store only theories that either have a practical use, are
modules of a reduction for another theories, or arise through the explicit closure of hierarchies under similarities
and differences. Compatibility with a hierarchy means that a theory could be stored in the hierarchy.

The reducibility relation is used to partially order hierarchies within a repository
by their primitive signature (in addition to nonconservative extensions), which limits
repositories to closed hierarchies with a single root theory.

Definition 5. [8] Let H1, ...,Hn be a finite set of closed hierarchies.
A repository R = 〈R,v〉 is a partially ordered set R = {H1, ...,Hn} of closed

hierarchies such that Hi v Hj iff the root theory of Hj is reducible to a set of theories
T1, ..., Tn such that at least one Ti is compatible with Hi.

In other words, H1 v H2 means that the root theory of H2 extends the root theory
of H1. The theories in H2 either reuse the theories from H1 while imposing additional
minimal conditions, or extend the primitive language of H1 (compare [9]). Each reposi-
tory has a set of irreducible hierarchies, namely the hierarchies Hi for which no Hj with
Hi v Hj exists. The root theories of irreducible hierarchies are modules closely related
to formalized CPs. Fig. 1 gives an example of interrelated hierarchies within an ontology
repository. Their division into generic and mathematical hierarchies is explained next.

4.2. Generic and Mathematical Hierarchies

The ontology hierarchies within the repository are partially ordered by irreducibility,
but in practise we often encounter multiple hierarchies that are either logically equivalent
or that share theories but differ in the axioms of their root theories. This often happens
when standard mathematical structures, such as partial orders, graphs, or incidence struc-
tures, are reused in the axiomatization of several realms of generic knowledge, such as
theories of space, time, events, processes, and of domain-specific knowledge.

The key difference between a mathematical and a generic theory is the absence
(or presence) of an intended semantics. Mathematical structures are abstract per se—
vocabulary terms (such as vertices, edges, and vertex adjacency in graphs, or the par-
tial order relation ≤ in posets) have no particular meaning, i.e. grounding in the real
world, they are purely abstract symbols. Non-mathematical theories, including generic7

and domain-specific ontologies, always come with some—albeit often vague—intended
meaning that corresponds to a concept or relationship in the represented (real) world.
For example, no matter what generic ontology of time one uses, the terms ‘time point’,
‘time interval’, ‘before’, ‘after’, ‘during’, etc. have intended meanings: ‘time points’ and
‘time intervals’ are things that can be temporally ordered, while ‘before’ and ‘after’ are
temporal ordering relations, not arbitrary (partial or linear) orders (compare [5]). Their
meanings vary slightly depending on the specific conceptualization and ontology one
uses, but they share certain semantics that make them ontologies of time. This shared
semantics is inherent in the axiomatization of a generic hierarchy’s root theory.

A closer investigation into differentiating criteria of generic theories (and hierar-
chies) has been initiated in [6]. The presence of ontological commitments and ontological
choices have been identified as distinguishing generic ontologies from other ontologies.
Crudely speaking, ontological commitments capture the essence of a generic concept or
relation, while ontological choices capture the optional semantics that ontologies of the
same generic domain may differ in. For example, stating that an ontology of time always

7The use of the term generic ontology here and in [6] encompasses what [15] call foundational ontologies and
core ontologies. Loosely speaking, foundational ontologies can be thought of as irreducible generic ontologies,
while core ontologies correspond to reducible generic ontologies. However, there is no clear logical distinction
between core ontologies and domain ontologies; both correspond to reducible generic ontologies.

weak_tripartite.clif

partitioning.clif strong_planar_strict_graphical.clif

pslcore_occurrence.clif

pslcore.clif

backwards.clif

sim_vc_end.clif

Tripartite Incidence Hierarchy

PSL Occurrence Hierarchy

Combined Time Hierarchy

PSL-Core Hierarchy
pslcore_object.clif

PSL Object Hierarchy

Mathematical
Hierarchies

Generic
Hierarchies

linear_order.clif

quasiorder.clif

Orderings Hierarchy

lp_ordering.clif

bp_ordering.clif

Timepoints Hierarchy

Figure 1. Two mathematical hierarchies (Tripartite Incidence Hierarchy and Orderings Hierarchy) from
COLORE. All theories therein are knowledge patterns, three of them being interpreted by the generic on-
tologies pslcore_occurrence.clif, backwards.clif, and lp_ordering.clif that instantiate them with con-
tent-specific semantics. While the ontologies in the generic hierarchy Combined Time Hierarchy are re-
ducible, the ones in PSL Occurrence Hierarchy and Timepoints Hierarchy are irreducible. Their root theo-
ries pslcore_occurrence.clif and bp_ordering.clif are thus candidates for formalized CPs. They are in turn
used by other generic ontologies through composition (pslcore.clif and pslcore_object.clif) or extension
(backwards.clif). Figure generously contributed by Michael Gruninger.

establishes a partial order over temporal objects, such as time points or intervals, is an
ontological commitment, while stating that they are linearly ordered is an ontological
choice because some theories of time may disagree with it. The ontological commit-
ments of generic concepts or relations are theorems of the generic hierarchy’s root the-
ory. Mathematical hierarchies, on the other hand, are agnostic about ontological choices:
what constitutes the root theory of a mathematical hierarchy is a matter of fiat definition.

This distinction between generic and mathematical hierarchies as one of intended
semantics is outside the semantics expressible by first-order axioms. Thus, it is a distinc-
tion that must be made by humans, e.g. the maintainer of the repository. However, it is a
binary choice that is easy for humans to make and does not overburden humans.

4.3. Root Modules of Generic Hierarchies Are Formalized CPs

The logical definitions and distinctions in ontology repositories together with the ex-
tralogical distinction between generic and mathematical hierarchies suffice to fully char-
acterize a small subset of a repository’s theories that are ideal candidates for formalized
CPs. We will argue which theories these are and why they are more suitable than the
other theories in the repository. To do so we specifically look at three criteria.

(i) Generic vs. mathematical theories Mathematical theories have no intended seman-
tics and thus cannot capture the semantics of some real-world concepts and relations.
This rules them out as candidates for any kind of content patterns, even though they are
reusable modules. Instead, they closely align with knowledge patterns [1] as discussed
in the next section. Generic theories, on the other hand, formalize a piece of generic
content, may it be about time, space, processes, events or other kind of content. Thus, to
mine the repository for formalized CPs, we must look in generic hierarchies.
(ii) Reducible vs. irreducible theories The repository contains both reducible and ir-
reducible generic hierarchies. By definition, the reducible ones can be reduced to more
general (and often smaller) theories, effectively breaking them into smaller modules;
they are compositions of those smaller modules. While reducible theories may qualify
as formalized CPs, the theories in irreducible generic hierarchies are more promising:
they formalize pieces of content small enough such that they cannot be further broken
down. One would expect those modules to be maximally reusable. In fact by definition
all reducible theories already reuse some modules from irreducible hierarchies (similar
to what has been called pattern composition in [14]), testifying to this reuse. Therefore,
we should focus on finding formalized CPs among the irreducible generic theories.
(iii) Root vs. non-root theories Finally, because all hierarchies are closed under similar-
ities, we can focus on the root theories rather than non-root theories as candidates for for-
malized CPs. The root theory of a hierarchy is its most general module that only contains
the shared ontological commitments about the formalized set of concepts and relations
while it abstracts away more restricted semantic interpretations. All non-root theories
in the same hierarchy specialize this root theory (another form of reuse, compare [14])
by introducing additional ontological choices that are not deemed foundational for the
described concepts and relations. Thus, instead of capturing a new pattern, a non-root
theory merely specializes the more general pattern captured by the root theory it extends.

These three observations together identify the root theories of irreducible generic hi-
erarchies as the most suitable candidates for formalized CPs. It remains to show that
the root theories of generic hierarchies actually satisfy the three criteria for formalized
CPs that conceptual CPs more or less lack (compare Sec. 3). They are (1) sufficiently
formalized because all theories in the repository must be fully formalized in Common
Logic [11] in order to properly place them into the COLORE repository; they are (2)
sufficiently general because they capture the shared ontological assumption of a set of
generic concepts and relations precisely because they are the root theory of that generic
hierarchy; and they are (3) obtained by extracting what is common to existing ontolo-
gies about those concepts and relations, thereby capturing “best practice”. Moreover, all
nonconservative extensions within the same hierarchy testify to their root theories’ reuse
as does their inclusion in the reduction of reducible theories. Both kinds of reuse are
well-documented through the logical relationships to other theories in the repository.

Thesis 1. The root theory of every irreducible generic hierarchy in an ontology reposi-
tory is a formalized CP.

The so identified formalized CPs can be used in all the ways outlined in [14]. All six
ways of their use are directly supported and documented through the following logical
intertheory relationships present in COLORE.

• import: any extension—conservative or not—in COLORE, including language ex-
tensions that introduce additional primitive symbols, constitutes an import.

• clone: while so-called shallow clones are not supported by COLORE because such
a clone would be logically identical to the original; so-called deep clones (more
commonly called instantiations) are supported. Specifically, any theory synony-
mous8 to an irreducible generic root theory in the repository constitutes a deep
clone. Note, however, that the idea of logically synonymous theories is more gen-
eral: it additionally encompasses logically equivalent theories that also differ in
axioms but that can be proven logically equivalent after symbol renaming.

• specialization: any nonconservative extension within a hierarchy constitutes a spe-
cialization.

• generalization: generalization is a questionable operation for formalized CPs be-
cause if a formalized CP can be further generalized, it seems more appropriate
to use the more general set of axioms for the pattern’s formalization. Then only
specialization is needed.

• composition: any extension across ontology hierarchies, i.e. any language exten-
sion, that extends at least two different irreducible generic root theories, constitutes
a composition operation.

• expansion: any language extension constitutes an expansion operation.
Thus, the repository is readily able to support pattern-based ontology engineering, using
the root theories of irreducible generic hierarchies as basic CPs.

Thesis 2. Let T be the root theory of some irreducible generic hierarchy in an ontology
repository. Then any reuse of T by another ontology O in the repository through either
importation, deep cloning (instantiation), specialization, composition, or expansion is
reflected in an extension or interpretation relationship betweenO and T in the repository.

4.4. Theories of Mathematical Hierarchies are Knowledge Patterns

The term knowledge patterns [1] refers to an idea similar to that of formalized CPs.
The term has been introduced independently of the notion of ontology design patterns,
putting greater emphasis on the importance of reuse for “structurally similar patterns
of axioms” through the definition of modules of axioms that formalize common classes
of mathematical structures, thereby “explicitly modularizing and separating the abstract
theories (the knowledge patterns) from the phenomena in the world which those theo-
ries are deemed to reflect” [1]. Reuse can be achieved by cloning patterns and appropri-
ately renaming the symbols in the pattern’s signature. For each instance where such a
knowledge pattern is reused, the new ontology includes a logically equivalent subset of
axioms. Such a new ontology is thereby reducible to a theory just describing the pattern
plus additional theories (possibly containing more subtheories that are also reducible to
patterns). Formally, each time a knowledge patterns is reused—“instantiated”—the new
ontology faithfully interprets the theory defined by the knowledge pattern. Two examples
are given in [1]: containers (with functions such as insertion and removal of entities) and
different kinds of graphs.

Generic theories reuse mathematical structures, giving them more specific semantics
and restricting the mathematical structure to fit the intended semantics. For the example
of time theories brought up in [1], the underlying reused knowledge patterns are partial
orders, whose involved ordered entities are assigned the semantics of time points or time

8Theories are synonymous iff they are logically equivalent with adequate translation definitions from the
symbol of one to another, see [6].

intervals, and whose key order relations <,> are assigned the meanings before and af-
ter. This demonstrates how knowledge patterns capture the structure of the vocabulary,
thereby justifying the term mathematical CP. This is supplementary to structural ODPs,
which focus on logical/architectural structure of the entire ontology and to formalized
CPs, which focus on the formalized reusable content of generic concepts and relations.

An ontology repository consisting of generic and mathematical hierarchies and with
a reduction order over hierarchies naturally reflects reuse of knowledge patterns: all the-
ories in mathematical hierarchies can be treated as knowledge patterns in the sense of [1].

Thesis 3. Every theory in a mathematical hierarchy in an ontology repository is a knowl-
edge pattern.

Not only the root theories of mathematical hierarchies, such as the most generic
theory of partial orders or the most generic theory of directed graphs, qualify as knowl-
edge patterns, but all theories of partial orders or of graphs qualify. This is demonstrated
by the example of graphs given in [1]: the theory Tdag (directed acyclic graphs) and its
restriction to the theory Tdag−blockable (blockable directed acyclic graphs) are treated
as knowledge patterns. Both utilize the same primitive signature node(x), to(x, y), and
reaches(x, y), which suffice to define the concept blocked(x) (and unblocked(x)). Thus,
both are in a single hierarchy and Tdag−blockable is a nonconservative extension of Tdag

and therefore definitely not a root theory, but still a knowledge pattern9.
Reuse of knowledge patterns is either through instantiation or expansion. Either one

manifests itself in a relative interpretation relation between a (generic or domain) ontol-
ogy and a mathematical theory in the repository.

Thesis 4. LetO and T be two distinct ontologies in an ontology repository, with T being
contained in a mathematical hierarchy. Then O instantiates or expands T if, and only if,
O is not contained in a mathematical hierarchy and O relatively interprets T .

5. Discussion

We expressed two central kinds of ontology design patterns, namely Formalized
Content Design Patterns (formalized CPs) and Knowledge Patterns, in terms of logically
well-defined concepts and intertheory relationships in ontology repositories, and thereby
demonstrated that the COLORE repository already contains hundreds of knowledge pat-
terns and dozens of formalized CPs10. Because many knowledge patterns are already in-
stantiated by non-mathematical ontologies (generic and domain- or application-specific
ontologies) residing in the repository, they have taken initial hurdles for passing the “best
practice” test. Equally, formalized CPs can been identified in the repository through simi-
larities between multiple ontologies, which ensures that they are “best practices” as well.
By mapping these two kinds of ontology patterns to logic-based criteria, we have pro-
vided an objective basis for the identification of suitable patterns of either kind. These
patterns can be easily extracted from the repository for reuse independent of the reposi-

9The hierarchy that contains both theories is different from the graph hierarchy, http://colore.oor.net/
graphs/, available in COLORE that utilizes only a single primitive relation of adjacency and cannot define
reachability and blocking.

10The mapping between patterns and ontology modules extends to other repositories that include and re-
late ontologies formalized in different logical languages. For example, ontological repositories that explicitly
express intertheory relations in a a higher-order logical language such as the Distributed Ontology Language
(DOL) outlined in [13] are equally suited to identify and document ontology patterns.

tory.Therefore, it may make more sense to extend existing ontology hierarchies and de-
fine new ones instead of developing CPs from scratch. The repository serves as an objec-
tive way of ensuring that only the most suitable theories become patterns. Furthermore,
the logic grounding enables using the repository for pattern-based ontology design.

A recent small survey of ontology pattern use [17] identified the lack of detailed
documentation and, specifically, the lack of abundant examples as a major impediment
for use and adaptation of patterns. By identifying mathematical and generic patterns in
a repository, this issue can be easily and permanently addressed: each pattern is linked
to ontologies that use the pattern through logical relationships such as extensions or in-
terpretations. Therefore, one can pick out a pattern and follow all logical relationships
(which are explicitly stored in the repository) to specific examples of their use. This
applies both to mathematical and generic ontology patterns. Adding more logical rela-
tionships immediately makes more examples of pattern reuse visible. Thereby, the use
of ontology repositories helps realize the original ideas for the role of CPs from [1, 4]
that envisioned constructing hierarchies of patterns through importation, instantiation
(cloning), specialization, generalization, composition, and expansion.

References
[1] Clark, P., Thompson, J., Porter, B.: Knowledge patterns. In Staab, S., Studer, R., eds.: Handbook of

Ontologies. Springer (2003) 191–207
[2] Falbo, R.A., Guizzardi, G., Gangemi, A., Presutti, V.: Ontology patterns: Clarifying concepts and ter-

minology. In: Workshop on Ontology and Semantic Web Patterns (WOP 2013). (2013)
[3] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley (1995)
[4] Gangemi, A.: Ontology design patterns for semantic web content. In: Int. Semantic Web Conf (ISWC-

2005). (2005)
[5] Grüninger, M.: Verification of the OWL-Time ontology. Int. Semantic Web Conf (ISWC-2011). (2011)
[6] Grüninger, M., Chui, C., Hahmann, T., Katsumi, M.: A sideways look at upper ontologies. In: Conf. on

Formal Ontology in Inf. Systems (FOIS-14). (2014 (to appear))
[7] Grüninger, M., Fox, M.S.: The role of competency questions in enterprise engineering. In: IFIP WG5.7

Workshop on Benchmarking – Theory and Practice, Trondheim, Norway. (1994)
[8] Grüninger, M., Hahmann, T., Hashemi, A., Ong, D., Ozgovde, A.: Modular first-order ontologies via

repositories. Applied Ontology 7(2) (2012) 169–209
[9] Hahmann, T.: A Reconciliation of Logical Representations of Space: from Multidimensional

Mereotopology to Geometry. PhD thesis, Univ. of Toronto, Department of Comp. Science (2013)
[10] Hu, Y., Janowicz, K., Carral, D., Scheider, S., Kuhn, W., Berg-Cross, G., Hitzler, P., Dean, M., Kolas, D.:

A geo-ontology design pattern for semantic trajectories. In: Conf. on Spatial Inf. Theory (COSIT-13),
Springer (2013)

[11] Intern. Electrotechnical Commission (ISO/IEC) 24707: Common Logic (CL). http://standards.iso.org/
ittf/PubliclyAvailableStandards/c039175_ISO_IEC_24707_2007(E).zip (2007)

[12] Katsumi, M., Grüninger, M.: Specifying ontology design patterns. In: 4th Workshop on Ontology and
Semantic Web Patterns (WOP2013). (2013)

[13] Mossakowski, T., Lange, C., Kutz, O.: Three semantics for the core of the distributed ontology language.
In: Conf. on Formal Ontology in Inf. Systems (FOIS-12), IOS Press (2012)

[14] Presutti, V., Gangemi, A.: Content ontology design patterns as practical building blocks for web ontolo-
gies. In: Conceptual Modeling (ER 2008). LNCS 5231, Springer (2008) 128–141

[15] Scherp, A., Saathoff, C., Franz, T., Staab, S.: Designing core ontologies. Applied Ontology 6(3) (2011)
177–221

[16] Sinha, G., Mark, D., Kolas, D., Varanka, D., Romero, B.E., Feng, C.C., Usery, L.E., Liebermann, J.,
Sorokine, A.: An ontology design pattern for surface water features. In: 8th Int. Conf. on Geographic
Information Science (GIScience 2014). (2014 (to appear))

[17] Warren, P.: Ontology patterns: a survey into their use. Technical Report kmi-14-02, Knowledge Media
Institute (2014)

