
Reuse with Domain and Process
Ontologies

Bahar AAMERI a, Michael GRUNINGER b

a Department of Computer Science, University of Toronto, Canada
b Department of Mechanical and Industrial Eng,University of Toronto, Canada

Abstract. Although several generic process ontologies have been proposed in the
past, the design of process ontologies for specific domains remains a challenge.
Earlier work by Aameri that provided a methodology for specifying a domain pro-
cess ontology requires a characterization of the partial automorphisms of the mod-
els of an underlying static domain ontology. In this paper, we exploit the modular-
ization of domain ontologies as a means for reusing the existing domain process
ontologies through ontology combination and merging. The metatheoretic relation-
ships among ontologies within a repository play a key role in the characterization
of how a domain process ontology for a given static domain is related to the domain
process ontologies based on the different modules of the static domain ontology.

Keywords. process ontology, domain ontology, reuse, reducibility, ontology design

1. Introduction

The design of ontologies which axiomatize classes of processes specific to a particular
domain remains an important challenge in ontological engineering. A domain process
ontology axiomatizes possible classes of change within the underlying domain, with-
out enumerating the definable classes of activities. This distinguishes a process ontology
from process descriptions and action theories, which axiomatize properties of specific
activities. The focus is on domain process ontologies that only classify the atomic activ-
ities within a domain, those that characterize complex activities in the domain are more
closely related to AI planning problems.

Aameri [1] proposes a four step methodology for designing domain process ontolo-
gies. The verification of the process ontology requires the identification of the partial
automorphisms of the models that represent the underlying domain, and consequently
needs a characterization of all models of the underlying domain ontology. Unfortunately,
both of these tasks can be quite difficult. In fact, for most real-world ontologies it is cur-
rently unknown which classes of mathematical structures are isomorphic to their models;
the identification of the partial automorphisms of their models is thus neither trivial nor
available in the literature.

Suppose we need an ontology which axiomatizes sheet metal manufacturing pro-
cesses, and we utilize the CardWorld and BoxWorld ontologies, presented in [2], for rep-
resenting 2D and 3D shapes. The characterization of the models of both ontologies is not
a straightforward task, since neither ontology is synonymous with a single known math-
ematical theory. Even if we did characterize the models of these ontologies, we would

most probably get lost trying to identify the partial automorphisms. To make this prob-
lem easier, it should be possible to decompose the ontologies into modules, identify the
partial automorphisms of the models of these modules, and then use this information in
building the process ontology.

As another example, suppose we want to axiomatize abstract data types and their
operations. Intuitively, we should be able to reuse the chains process ontology [1] for
representing lists, since the ontology of lists is synonymous with the ontology of lin-
ear orderings, and the linear ordering ontology is an non-conservative extension of the
ontology of chains (which are sets of linear orderings).

The focus of this paper is the presentation of formal techniques which address the
idea of reusability and modularization in design and verification of domain process on-
tologies; in particular, we discuss how relationships between domain ontologies within
an ontology repository can assist us in identifying the properties of ontologies’ models
which are required in developing new domain process ontologies.

The concepts of reusability and modularization in the characterization of the models
of ontologies have been explored in [3]. Metatheoretical relationships (such as relative
interpretation, definability, conservative and non-conservative extension) between first-
order theories are exploited to construct models of a given ontology based on models of
the related ontologies. At the base level of such techniques are ontologies that axioma-
tize general mathematical structures like graphs and lattices. However, these techniques
cannot always be used in designing domain process ontologies, as the relationships be-
tween domain ontologies are not always preserved between the corresponding process
ontologies. Our proposed solution is to exploit the same logical relationships between the
domain ontologies, but in a weaker form of reuse; instead of directly importing the mod-
ules of ontologies that are related to a given domain ontology, we only employ certain
properties of those modules in designing the new domain process ontology.

We start by describing the general properties of domain process ontologies, and re-
viewing the methodology that Aameri proposed for designing such ontologies. In Sec-
tion 3, we review the relationships between domain ontologies within a repository, and
show how existing domain process ontologies can be reused in designing new domain
process ontologies.

2. Properties of Domain Process Ontologies

As we explained in the introduction, the objective in designing domain process ontolo-
gies is to have a complete classification of activities based on their effects, without enu-
merating all definable activity classes. By following the design methodology proposed in
[1], one can develop domain process ontologies that satisfy these requirements. We first
briefly review the design methodology, and then prove this claim.

The key idea behind the methodology is that all changes within a domain can be de-
scribed based on a fixed set of (primitive or defined) relations. If we identify those rela-
tions and axiomatize activity classes that affect them, we can be sure that we have a com-
plete classification. For a given domain, the methodology designs a first-order process
ontology with three main modules – one is the ontology of the Process Specification Lan-
guage (PSL) [4], and the other two are constructed based on the properties of the domain.

The PSL ontology1 is a generic process ontology that axiomatizes fundamental con-
cepts for describing processes. Within the PSL ontology, states are represented by the

1http://colore.oor.net/process%5Fspecification%5Flanguage/psl%5Foutercore.clif

Predicate Interpretation
activity(a) a is an activity.
occurrence o f (o,a) o is an occurrence of activity a.
prior(f,o) Fluent f holds before activity occurrence o.
holds(f,o) Fluent f holds after activity occurrence o.
changes(o, f) (¬prior(f,o)∧holds(f,o))∨ (prior(f,o)∧¬holds(f,o)).

Table 1. PSL Predicates

set of fluents that hold before or after activity occurrences, and only activity occurrences
can cause state transitions. A model of the PSL ontology includes partially ordered sets
of activity occurrences, called occurrence trees. The root of an occurrence tree is associ-
ated with an initial state, and the branches are all sequences of occurrences of the atomic
activities. Table 1 briefly describes PSL predicates that we use in this paper.

The methodology begins by identifying the appropriate domain ontology that ax-
iomatizes the concepts of the underlying domain and their relationships independent of
the notion of change. To enable reasoning about change, the axioms of the domain ontol-
ogy are translated into a set of state constraints which extend the PSL ontology. Trans-
lation definitions map each relation symbol in the signature of the domain ontology into
a fluent symbol in the signature of the state constraints. If the domain ontology is not
sorted, the set of state constraints must contain an axiom which indicates sorts of the
elements in the models of the domain ontology. The set of state constraints together with
the PSL ontology is called domain state ontology.

The results in [1] show that in a model of a domain state ontology, each activity
occurrence o is associated with two models of the corresponding domain ontology; one
that represents the state before the activity occurrence (and is denoted by µ(o)) and the
other that represents the state after the activity occurrence (and is denoted by η(o)). In
the other words, an activity occurrence is a transition between two models of the domain
ontology. In that sense, classifying activities is equivalent to identifying different ways
of changing models of the underlying domain ontology. Instead of considering fluents
that are changed, the methodology characterizes an activity occurrence o by fluents that
are preserved. This means that we need a representation for invariant (or equivalently
common) substructures of µ(o) and η(o). Since we want to characterize changes to a
particular set of fluents, we use a special type of structure-preserving maps:

Definition 1 Let M1,M2 be structures with signature L.
An injective mapping ϕ : M1→M2 is a partial isomorphism loosed to a non-empty set
L− ⊆ L iff for all relations R ∈ L−, 〈x1, . . . ,xn〉 ∈ RM1 iff 〈ϕ(x1), . . . ,ϕ(xn)〉 ∈ RM2 .

A mapping ϕ : M →M is a loosed partial automorphism iff it is a loosed isomor-
phism between substructures of M .2

In general, a structure N can be represented by the set of all its partial automor-
phisms denoted by PAut(N). Note that PAut(N) forms a monoid [5]. Since µ(o) and
η(o) are models of the same theory with the same universe3 their invariant substructures

2We denote structures by calligraphic font: M ,N , ...; the extension of a relation R in a structure M by
〈a1, ...,an〉 ∈ RM ; the domain of a mapping ϕ by dom(ϕ); and the signature of a first-order theory T by Σ(T).

3We assume that for all o, the universes of µ(o) and η(o) are equal; when an element is destroyed, it is
not annihilated from the universe. Rather, its sort will change from something that is indicated by the state
constraints to ob ject. Conversely, when an element is created a new sort is assigned to an ob ject of the universe.

can be represented by subsets of PAut(µ(o)). Moreover, the results in [5] and [6] show
that the lattice of the substructures of N is isomorphic to the lattice of the partial identi-
ties in PAut(N). Consequently, if S is an invariant substructure of µ(o) and η(o) (i.e.
S ⊂ µ(o) and S ⊂ η(o)), then the submonoid of PAut(µ(o)) that represents S can be
extracted by the partial identity in PAut(µ(o)) which its domain is equal to the universe
of S . The scaffold GL

o is then the set of sets of partial automorphisms, loosed to L, that
correspond to all invariant substructures (with respect to L) of µ(o) and η(o).

Definition 2 (from [1]) Let M be a model of a domain state ontology.
A scaffold GL

o of an activity occurrence o in M is a set consisting of all sets Gi such that

1. All Gi j ∈Gi are submonoids of PAutL(µ(o)), such that their identity elements ei j
are partial identities associated with invariant substructures (with respect to L)
of µ(o) and η(o);

2. The identity element ei j of each Gi j ∈Gi has a maximal domain; that is, there is
no other identity mapping e′ that satisfies property 1 and dom(ei j)⊂ dom(e′);

3. If Gi = {Gi1, . . . ,Gim}, then dom(ei1) ∪ ·· · ∪ dom(eim) ⊆ dom(µ(o)), and
dom(ei1)∩·· ·∩dom(eim) =∅.

The trivial scaffold Io is the set of set of all partial automorphisms of µ(o).

Activities can be categorized based on which fluents they change. However, since
the objective is not to enumerate all activity classes, the methodology distinguishes the
invariant substructures up to isomorphism, and more importantly, does not consider the
number of fluents that activity occurrences change. The key question is how to identify
a set of fluents that can describe all possible changes within the domain ontology?
Suppose for two activity occurrences o1,o2, we have µ(o1)∼= µ(o2), but η(o1) 6∼= η(o2).
Then, there is at least one fluent, denoted by the fluent symbol F , that o1 changes it, and
o2 preserves it, and so GF

o1
is not isomorphic to GF

o2
. Therefore, the answer to the above

question is equivalent to find the set CT defined in the following:

Definition 3 Suppose a theory Tpsl ∪Tst is the domain state ontology for a domain on-
tology T , and let L be the set of all primitive and definable symbols in the language of
Tpsl ∪Tst that correspond to the symbols in the language of T .

CT = {L1, ...,Ln}, is the minimal set such that

1. L1 ⊆ L, ...,Ln ⊆ L;
2. for all activity occurrences o1,o2 in models of Tpsl ∪Tst

µ(o1)∼= µ(o2),G
L1
o1
∼=GL1

o2 , ...,G
Ln
o1
∼=GLn

o2 implies η(o1)∼= η(o2).

For the chains ontology Tchains, we have CTchains = {{point},{lt},{comparable}}
since a theorem in [1] shows that for all activity occurrences o1,o2 in models of the
chains state ontology, if µ(o1)∼= µ(o2) and the scaffolds of o1 and o2 that correspond to
fluent symbols point, lt (stands for “less than”), and comparable are isomorphic, then
η(o1)∼= η(o2).

Definition 4 summarizes the properties of domain process ontologies that are de-
signed with respect to the methodology. Considering property 2 in Definition 3, a com-
plete classification includes an activity class for each element Li of CT such that the mem-
bers of the class change fluents in Li. Thus, for each activity class the domain process
ontology includes a definition that specifies which fluents are changed and which fluents
are preserved by the members of the class. Since these definitions are in the signature

(∀a) change point(a)≡ ((∀o)occurrence o f (o,a)⊃ (∃x) changes(o, point(x))). (1)

(∀a) change lt(a)≡ ((∀o)occurrence o f (o,a)⊃ (∃x,y) changes(o, lt(x,y))). (2)

(∀a)new chain(a)≡ (change lt(a)∧

(∀o,x,y) (occurrence o f (o,a)∧ changes(o, lt(x,y)))⊃ changes(o,comparable(x,y))). (3)

(∀a) rearrange(a)≡ (change lt(a)∧

(∀o,x,y) (occurrence o f (o,a)∧ changes(o, lt(x,y)))⊃ ¬changes(o,comparable(x,y))). (4)

Figure 1. Axioms for Tchainsprocess
4(from [1]).

of the underlying domain state ontology, the domain process ontology is a definitional
extension of the domain state ontology. This is captured by property 1 in Definition 4.

Note that GLi
o represents all changes that o makes to the fluents specified by symbols

in Li. Therefore, if an activity class χi is associated with Li, the scaffolds that correspond
to Li and the occurrences of the members of χi are nontrivial. On the other hand, when
an activity is not a member of χi, its occurrences do not change fluents in Li, and so the
corresponding scaffold is trivial. This is captured by property 2a in Definition 4.

Notice however that there might be constraints in the domain that enforce changing
fluents in a set L j ∈ CT whenever the fluents in Li ∈ CT are changed. In that case, χi is a
subclass of χ j. Moreover, there are activities that change fluents in L j without changing
the fluents in Li. An additional class is therefore required to distinguish these types of
activities from activities in χi. For example, the fluent symbol comparable in Tchains is
defined based on lt, and so any activity that changes comparable will also change lt. The
activity class χcomparable is therefore a subclass of χlt , and the chains process ontology
(see Figure 1) includes a class of activities that change a fluent lt(a,b), but preserve
comparable(a,b). Property 2b addresses this requirement.

Definition 4 Let Tpsl ∪Tst be a domain state ontology for a domain ontology T .
Let λ (Tprocess) = Σ(Tprocess)\Σ(Tpsl ∪Tst).
Tpsl ∪Tst ∪Tprocess is a domain process ontology for T iff

1. Tpsl ∪Tst ∪Tprocess is a definitional extension of Tpsl ∪Tst such that for each χi ∈
λ (Tprocess) there is an axiom in Tprocess of the following form,

(∀a)χi(a)≡ ((∀o)occurrence o f (o,a)⊃Ψi(o),

where Ψi(o) is a formula in the language of Tpsl∪Tst with a unique free variable o
2. Let Act(χi) = {a : 〈a〉 ∈ χM

i }, where M ∈ Mod(Tpsl ∪ Tst ∪ Tprocess), and
SubClass(χi) = {Act(χ j) : Act(χ j)⊂ Act(χi)}.
There is an injective mapping ϕ : CT → λ (Tprocess) such that

(a) if χi = ϕ(Li), then 〈a〉 ∈ χM
i iff for all occurrences o of a, GLi

o 6= Io.
(b) if there is no Li ∈ CT such that χi = ϕ(Li), then exists χ j = ϕ(L j), such that

SubClass(χ j) 6=∅, and Act(χ j)\
⋃

SubClass(χ j)⊂ Act(χi).

We call Tprocess the domain process schemata for T .

4http://colore.oor.net/chains%5Fprocess/definitions/chains%5Fprocess.clif

From this point forward, we will be using the phrase “domain process ontology”
exclusively when referring to process ontologies that satisfy the properties specified by
Definition 4.

Let o be an occurrence of an activity a which satisfies property 2 in Definition 3,
but a is not a member of any activity class defined by the domain process ontology. Ac-
cording to the above definition, all scaffolds of o are trivial, and since o satisfies property
2, a has no effects in the underlying domain. In the other words, all nontrivial activities
within a domain are members of at least one activity class defined by the respective do-
main process ontology. This implies that the classifications specified by domain process
ontologies are complete.

A domain process ontology classifies activities and defines the corresponding hier-
archy in such a way that classes in the leaves of the hierarchy tree includes activities that
have same effects on isomorphic substructures of the respective domain. This ensures
that the classification is neither enumerative, nor too general.
Theorem 1 proves these two important properties of domain process ontologies.

Theorem 1 5 Let Tpsl ∪Tst ∪Tprocess be the domain process ontology for T , and χ1, ...,χn
be the activity classes defined in Tprocess.

1. Tpsl ∪Tst ∪Tprocess |= (∀a)activity(a)⊃ χ1(a)∨ ...∨χn(a),
2. Let a1,a2 be activities in a model M of Tpsl ∪Tst ∪Tprocess such that the effects of

a1 and a2 on the isomorphic substructures of a model of T are not isomorphic.
Then, either exists a leaf activity class χi in Tprocess such that 〈a1〉 ∈ χM

i and
〈a2〉 6∈ χM

i , or a1 and a2 are members of more than one leaf activity class.

The chains process ontology, for example, specifies a complete classification of pos-
sible activities, but does not enumerate all definable sets of activities. In the meantime, it
is not too general as the members of each leaf activity class have same effects. To make
this more clear, consider this example: let M ∈ Mod(Tchains), where M = {x,y}, and
〈x,y〉 ∈ ltM . Suppose a1 changes M to M1, where 〈y,x〉 ∈ ltM1 , and a2 changes M to
M2, where M2 = {x,y}, but 〈x,y〉 6∈ ltM2 and 〈y,x〉 6∈ ltM2 . Clearly, both a1 and a2 are
members of change lt, however, this class is too general since a1 and a2 change isomor-
phic substructures of M , but have different effects. The chains process ontology resolves
this problem by defining two subclasses, new chain and rearrange, for change lt.

3. Designing Process Ontologies Using Repositories

In designing domain process ontologies we face two main challenges. First, we need to
find the smallest set of fluent symbols C , that satisfies property 2 in Definition 3. Second,
we have to identify the set of partial automorphisms for the relations that correspond to
those fluents. For domains with more complex structures this is even harder, since the
number of combinations that have to be examined with respect to property 2 increases
exponentially. Fortunately, in practice we have found that elements (Li) of the fluents set
C usually includes at most three fluent symbols. Therefore, in most cases we can find
mathematical structures, with well-studied sets of partial automorphisms, that represent
axioms that correspond to elements in Li. This would address the second challenge.

For the first challenge, one solution is to decompose the domain ontology into mod-
ules, determine the fluent set for each module, and then find the fluent set for the original

5Proofs of the theorems can be found at http://stl.mie.utoronto.ca/publications/reuseprocess.pdf

ontology with respect to the fluent sets of its modules. In the following, we explore this
idea further. We investigate three types of relationships among domain ontologies in a
repository, namely extensions, synonymy and reducibility, and show how these relation-
ships can help us in developing domain process ontologies.

3.1. Extensions in Hierarchies

We start by the simplest relationship between first-order ontologies.

Definition 5 Let T1,T2 be two first-order ontologies such that Σ(T1) ⊆ Σ(T2). T2 is an
extension of T1 iff for any sentence Φ in the language of T1, T1 |= Φ implies T2 |= Φ.
T2 is a conservative extension of T1 iff T1 6|= Φ implies T2 6|= Φ.

Unfortunately, extension (or reduction) between domain ontologies is not preserved
between the corresponding domain process ontologies. The reason is that in classifying
activities, we consider partial symmetries between the models of the domain ontology
(partial symmetries are captured by partial automorphisms), while an arbitrary extension
might both increase or decrease partial symmetries among the models. However, we can
take advantage of extensions within the hierarchies of an ontology repository.

Definition 6 (from [7]) A hierarchy H = 〈H ,≤〉 is a partially ordered finite set of on-
tologies H = T1, ...,Tn such that Σ(Ti) = Σ(Tj), for all i, j, and T1 < T2 iff T2 is a non-
conservative extension of T1.

We know that T ′ ≤ T implies Mod(T)⊆Mod(T ′). That means that there might be
axioms in the extension which excludes transitions to models that are related to a specific
type of change, and so eliminates some of the activity classes of T ′. The extension might
also change the definitions of the activity classes.

Theorem 2 Let T ′ ≤ T . Then CT ⊆ CT ′ .

Consider the ontology Tchains , and the ontology Tlinorder of linear orderings. Tlinorder
is an extension of Tchains, and they are in the same hierarchy. As we described earlier, the
chains process ontology includes three leaf activity classes, where the first class includes
activities that create or destroy elements in the orderings, the second one includes activi-
ties which reorder elements in a single chain, and the third one is the set of activities that
break a chain into a group of chains, or join a group of chains to make a single chain.
However, the domain process ontology for Tlinorder only includes the first two classes
since there is an axiom in Tlinorder which states that models of Tlinorder are single chains.

3.2. Definitional Extensions and Synonymous Ontologies

Recall that every constant, function, and relation in a model of a definitional extension
of an ontology is definable in a model of the ontology. Consequently, every model of
the ontology can be expanded to a unique model of its definitional extension, and two
models of the ontology are isomorphic iff their expansions are isomorphic. This leads us
to conclude that a domain ontology and all its definitional extensions share one single
domain process ontology.

Theorem 3 Let P1 be the domain process schemata corresponds to T1, and T2 be a defi-
nitional extension of T1. Then P1 is the domain process schemata for T2.

Definition 7 Two ontologies T1 and T2 are synonymous iff there exists an ontology T3
with the signature Σ(T1)∪Σ(T2) that is a definitional extension of T1 and T2.

Translation definitions are sentences that interpret non-logical symbols of an ontol-
ogy, in the language of another ontology. It can be easily proved that for two synonymous
ontologies T1 and T2, there exists a set of translation definitions ∆21 from T2 into T1 and a
set of translation definitions ∆12 from T1 into T2 such that T1∪∆21 is logically equivalent
to T2∪∆12. The other direction is true as well.

Definition 8 Let T0 and T1 be two ontologies such that Σ(T0)∩Σ(T1) =∅.
Translation definitions for T0 into T1 are sentences in Σ(T0)∪Σ(T1) of the form

∀x pi(x)≡Φ(x),

where pi(x) is a symbol in Σ(T0) and Φ(x) is a formula in the language of T1.

By definition, every pair of synonymous ontologies have a common definitional
extension. Thus, the following theorem is an immediate consequence of Theorem 3.

Theorem 4 Let P1 be the domain process schemata corresponds to T1, and T2 be syn-
onymous with T1. P1 is synonymous with the domain process schemata for T2.

Suppose two ontologies T1,T2 are synonymous, and the process ontology P1 for T1
already exists in the repository. We can translate the axioms of P1 into the language of
T2, using ∆12, and the result is the process ontology for T2.

Consider the DOLCE direct quality ontology Tdir qual
6 (discussed in [8])

(∀x,y1,y2)dqt(x,y1)∧dqt(x,y2)⊃ y1 = y2 (5)

(∀x1,x2,y)T Q(x1)∧T Q(x2)∧PD(y)∧dqt(x1,y)∧dqt(x2,y)⊃ x1 = x2 (6)

(∀x)T Q(x)⊃ (∃y)PD(y)∧dqt(x,y) (7)

Using an automated theorem prover, it can be shown that Tdir qual is synonymous with
the ontology of injection bipartite incidence structures Tin j bipartite

7 under the following
translation definitions

Π : (∀x,y)dqt(x,y)≡ in(x,y)∧ point(x)∧ line(y) (8)

(∀x)T Q(x)≡ point(x) (9)

(∀x)PD(x)≡ line(x) (10)

∆ : (∀x,y) in(x,y)≡ dqt(x,y)∨dqt(y,x)∨ x = y (11)

(∀x) point(x)≡ T Q(x) (12)

(∀x) line(x)≡ PD(x). (13)

Therefore, the process ontology for Tdir qual can be achieved by translating Tin jbipart proc
8,

which is the process ontology for Tin j bipartite, into the language of Tdir qual using ∆. The
result is depicted in Figure 2.9

6http://colore.oor.net/quality/direct%5Fquality.clif
7http://colore.oor.net/bipartite%5Fincidence/injection%5Fbipartite.clif
8http://colore.oor.net/injection%5Fbipartite%5Fprocess/definitions/injection%5Fbipartite%5Fprocess.clif
9http://colore.oor.net/direct%5Fquality%5Fprocess/definitions/direct%5Fquality%5Fprocess.clif

(∀a) change PD(a)≡ ((∀o)occurrence o f (o,a)⊃ (∃x) changes(o,PD(x))). (14)

(∀a) change quality(a)≡ ((∀o)occurrence o f (o,a)⊃ (∃x,y) changes(o,dqt(x,y))). (15)

Figure 2. Axioms of Tdqtyprocess.

3.3. Reducible Ontologies

So far we have considered relationships between two ontologies. In the remaining of this
section, we investigate reusing domain process ontologies of theories that are synony-
mous with the constructing modules of a domain ontology. We exploit the the notion
of faithful interpretation [3], which is the generalization of the notion of conservative
extension to ontologies with distinct signatures.

Definition 9 The mapping π is an interpretation of an ontology T1 into an ontology T2
iff for all sentence Φ in the language of T1, T1 |= Φ implies T2 |= π(Φ).
π is a faithful interpretation of T1 into T2 iff T1 6|= Φ implies T2 6|= π(Φ).

Synonymy is a relation between two ontologies. The notion of reducibility (from
[3]) extends it to a relationship among a set of ontologies.

Definition 10 An ontology T is reducible to a set of ontologies T1, ...,Tn iff

1. T faithfully interprets each ontology Ti;
2. T1∪ ...∪Tn faithfully interprets T ;
3. T is synonymous with T1∪ ...∪Tn.

The following lemma shows the construction of a domain process ontology from the
domain process ontologies of the modules of the underlying domain ontology.

Lemma 1 Suppose T = T1 ∪ ...∪Tn is a consistent theory, and P,P1, ...,Pn are domain
process schemata correspond to T,T1, ...,Tn respectively.

If Σ(Ti)∩Σ(Tj) =∅, for all 1≤ i, j ≤ n, then P = P1∪ ...∪Pn.

Suppose in a reduction T1, ...,Tn for T , all modules except T1 and T2 have disjoint
signatures. We can construct a new reduction T ′1 ,T3, ...,Tn for T , where T ′1 = T1∪T2, so
that the signatures of theories in the new reduction is disjoint. The following theorem,
which is a consequence of Definition 10 and Theorem 4, shows the construction of the
domain process ontology for T using the domain process ontologies of its disjoint re-
ductive modules. Note that the domain process ontologies for T1 and T2 can be reused in
constructing the domain process ontology for T1∪T2.

Theorem 5 Suppose T is reducible to a set of ontologies T1, ...,Tn such that Σ(Ti)∩
Σ(Tj) =∅, for 1≤ i, j≤ n. Suppose P,P1, ...,Pn are domain process schemata correspond
to T,T1, ...,Tn respectively.

Then P is synonymous with P1∪ ...∪Pn.

Consider a version of the Blocks World problem, in which at most one block can be
placed on another, and each block has one unique color [9]. It is easy to verify that the col-
ored blocks world ontology is reducible to the bounded chains ontology Tbounded chains

10

and Tdir qual under the following translation definitions

10http://colore.oor.net/orderings/bounded%5Fchains.clif

(∀x,y,z)C(x,y,z)⊃ ((∃l)line(l)∧ in(x, l)∧ in(y, l)∧ in(z, l)). (20)

(∀x,y,z, l) line(l)∧ in(x, l)∧ in(y, l)∧ in(z, l)∧ (x 6= y)∧ (x 6= z)∧ (y 6= z)⊃ (C(x,y,z)∨C(z,y,x)). (21)

Figure 3. Two axioms in the residue of Tmcg.

(∀x,y)on(y,x)≡ lt(x,y) (16)

(∀x)block(x)≡ T Q(x)≡ point(x) (17)

(∀x) color(x)≡ PD(x) (18)

(∀x,y) colored as(x,y)≡ dqt(x,y) (19)

For the bounded chains ontology, we reuse the verified chains process ontology from
[1] (Figure 1). Considering Theorem 5, the colored blocks process ontology11 can be
obtained by translating the axioms in Figure 1 and Figure 2 using axioms 16-19.

3.4. Weakly Reducible Ontologies

Many ontologies are not reducible to standard mathematical ontologies, however, they
have subtheories that are. These cases can be captured by the notion of weak reducibility.

Definition 11 An ontology T is weakly reducible to ontologies T1, ...,Tn iff

1. T faithfully interprets each ontology Ti;
2. T1∪ ...∪Tn faithfully interprets a subtheory T ′ ≤ T ;
3. T ′ is synonymous with T1∪ ...∪Tn.

The domain process ontologies of the reductive modules of a weakly reducible on-
tology T can be reused in designing the domain process ontology for the subtheory T ′

of T which is synonymous with the weak reduction. The new domain process ontology
would be helpful in constructing the domain process ontology for T , as T and T ′ are in
the same hierarchy and T is an extension of T ′.

Theorem 6 Let T be weakly reducible to T1, ...,Tn.
Then CT ⊆ CT ′ , where T ′ ≤ T and T ′ is synonymous with T1∪ ...∪Tn.

Consider the ontology Tmcg
12 of Megiddo cyclic geometries. Tmcg is weakly re-

ducible to the ontology Tcyclic
13 of cyclic orderings and the ontology Tweak bipart

14 of
weak bipartite incidence geometries. Figure 3 shows the axioms of Tmcg that are not in
Tcyclic and Tw bipart . The domain process ontologies for Tcyclic

15 and Tw bipart
16 already

exist in the repository, and so we know that CTcyclic = {{point},{C},{cmp}} (where
cmp(x,y,z) holds iff C(x,y,z) or C(z,y,x) hold) and CTw bipart = {{point},{line},{in}}.
Consequently, we have CTmcg ⊆ {{point},{line},{in},{C},{cmp}}. However, Axioms

11http://colore.oor.net/colored%5Fblocks%5Fprocess/definitions/colored%5Fblocks%5Fprocess.clif
12http://colore.oor.net/cyclic%5Fgeometry/mcg.clif
13http://colore.oor.net/cyclic%5Fordering/cyclic.clif
14http://colore.oor.net/bipartite%5Fincidence/weak%5Fbipartite.clif
15http://colore.oor.net/cyclic%5Fprocess/definitions/cyclic%5Fprocess.clif
16http://colore.oor.net/weak%5Fbipartite%5Fprocess/definitions/weak%5Fbipartite%5Fprocess.clif

20 and 21 prevent any changes in the fluent cmp without changing the fluent in, and
therefore CTmcg = {{point},{line},{in},{C}}. Theorem 7 formally proves this claim.17

Theorem 7 (MCG Classification Theorem) Suppose Tpsl ∪ Tstmcg is the domain state
ontology for Tmcg, and M ∈Mod(Tpsl ∪Tstmcg).
For any activity occurrences o1,o2 in M with µ(o1)∼= µ(o2), if Gpoint

o1
∼=Gpoint

o2 , Gline
o1
∼=

Gline
o2

, Gin
o1
∼=Gin

o2
, GC

o1
∼=GC

o2
, then Gcmp

o1
∼=Gcmp

o2 , and consequently η(o1)∼= η(o2).

3.5. Decomposable Ontologies

Decomposability is the weakest relation among the ontologies in a repository, but it can
still assist us in developing domain process ontologies.

Definition 12 An ontology T is decomposable into ontologies T1, ...,Tn iff

1. T interprets each ontology Ti;
2. T1∪ ...∪Tn faithfully interprets a subtheory T ′ ≤ T ;
3. T ′ is synonymous with T1∪ ...∪Tn.

We can reuse the domain process ontologies of the reductive modules of a decom-
posable ontology in the same way as they are used for weakly reducible ontologies.

Theorem 8 Let T be decomposable to T1, ...,Tn.
Then CT ⊆ CT ′ , where T ′ ≤ T and T ′ is synonymous with T1∪ ...∪Tn.

Consider the theory Trcc
18 which axiomatizes the mereotopology Region Connection

Calculus (RCC) [10]. The results in [3] shows that Trcc is decomposable to the theory
TBA

19, which is a first-order axiomatization of the Boolean algebras, and a connection
theory Tconnection.20

We know that CTBA = {{element}} and CTconnection = {{C}}. Considering the trans-
lation definitions between Trcc and TBA, we can rename element to region, and therefore
CTrcc ⊆ {{region},{C}}. By the following theorem we have CTrcc = {{region},{C}}. 21

Theorem 9 (RCC Classification Theorem) Suppose Tpsl∪Tstrcc is the domain state on-
tology for Trcc, and M ∈Mod(Tpsl ∪Tstrcc).

For any activity occurrences o1,o2 in M with µ(o1) ∼= µ(o2), if Gregion
o1

∼= Gregion
o2 ,

GC
o1
∼=GC

o2
, then η(o1)∼= η(o2).

4. Conclusion and Future Work

By designing a domain process ontology based on its underlying static domain ontology,
we lay the foundations for the verification of the domain process ontology with respect
to its intended models. Nevertheless, there is more to the evaluation of a domain process
ontology than a characterization of its models. One of the challenges in designing process
ontologies is to avoid the pitfall of enumerating all definable classes of activities while
still showing that the classes in the ontology capture all of the necessary distinctions. To
this end, we have provided a formal definition of a domain process ontology and have

17MCG process ontology: http://colore.oor.net/mcg%5Fprocess/definitions/mcg%5Fprocess.clif
18http://colore.oor.net/mereotopology/rcc.clif
19http://colore.oor.net/lattices/boolean%5Flattice.clif
20http://colore.oor.net/connections/connection.clif
21RCC process ontology: http://colore.oor.net/rcc%5Fcontinuous%5Fprocess/definitions/rcc%5Fprocess.clif

shown that this enables us to prove the completeness of the classification specified by the
ontology with respect to all possible changes within the domain.

A second challenge is that the methodology for designing process ontologies also
requires a characterization of the partial automorphisms of the models that represent the
underlying domain, and such a characterization is not known in many cases. To over-
come this difficulty, we have proposed techniques for using the decomposition of the
ontologies into modules, identifying the partial automorphisms of the models of these
modules, and then using this information to build the process ontology. Furthermore, we
applied these techniques to design three new domain process ontologies to demonstrate
the feasibility of the approach.

In developing formal ontologies, reusability is exploited in different forms; existing
ontologies can be imported, extended, specialized, combined [11], or translated [7] to
build new ontologies. Likewise, reusability has been explored for the purpose of ontology
verification [3], and in the context of ontology design patterns [12]. The type of reuse
that we apply for designing domain process ontologies (except for the case of synonymy
and reducibility) is not similar to the forms that are mentioned above. It is weaker, in the
sense that we do not directly use the existing domain or process ontologies, but is still
effective since it simplifies the design challenges and saves us from redoing a complex
and error-prone task.

All of these process ontologies have been designed by starting with some existing
domain ontology (such as orderings, geometries, or mereotopology). In practice, there
also exist taxonomies of process classes that are part of upper ontologies or ontologies for
areas such as chemical pathways and manufacturing. In these cases, there is no explicit
static domain ontology which was used in the design of the taxonomies. Future work
will need for evaluating such process taxonomies through the identification of the correct
static domain ontology.

References

[1] B. Aameri. Using Partial Automorphisms to Design Process Ontologies. In Proceedings of the 7th
International Conference on Formal Ontology in Information Systems, pages 309–322. IOS Press, 2012.

[2] M. Gruninger and S. Bouafoud. Thinking Outside (and Inside) the Box. In SHAPES 1.0, 2011.
[3] M. Gruninger, T. Hahmann, A. Hashemi, and D. Ong. Ontology Verification with Repositories. In Proc.

of the 6th FOIS Int. Conference, pages 317–330, Toronto,Canada, 2010. IOS Press.
[4] M. Gruninger. Ontology of the Process Specification Language. In Handbook on Ontologies in Infor-

mation Systems. Springer-Verlag, 2003.
[5] M.V. Lawson. Inverse Semigroups: The Theory of Partial Symmetries. World Scientific, 1998.
[6] D.A. Bredikhin. Inverse semigroups of local automorphisms of universal algebras. Siberian Mathemat-

ical Journal, 17(3):386–393, 1976.
[7] M. Grüninger, T. Hahmann, A. Hashemi, D. Ong, and A. Ozgovde. Modular First-order ontologies via

repositories. Applied Ontology, 7(2):169–209, 2012.
[8] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari. WonderWeb Deliverable D18–

Ontology Library (final). Technical Report, Laboratory for Applied Ontology, ISTC-CNR, Trento, Italy.
[9] F. Lin and R. Reiter. State Constraints Revisited. Journal of logic and computation, 4(5):655–677, 1994.

[10] D. A. Randell, Z. Cui, and A. Cohn. A spatial logic based on regions and connection. In Proceedings of
the Third Int. Conference on Principles of KR, pages 165–176. San Mateo, California, 1992.

[11] H.S. Pinto and J.P. Martins. Reusing Ontologies. In AAAI 2000 Spring Symposium on Bringing Knowl-
edge to Business Processes, pages 77–84. AAAI Press, 2000.

[12] A. Gangemi and V. Presutti. Ontology Design Patterns. In Handbook on Ontologies. Springer, 2009.

