
ACM/IEEE 17th International Conference on

Model Driven Engineering Languages and Systems

September 28 – October 3, 2014  Valencia (Spain)

MD²P² 2014 – Model-Driven Development

Processes and Practices

Workshop Proceedings

 Regina Hebig, Reda Bendraou, Markus Völter, and Michel Chaudron (Eds.)

Published on Sept 2014 v1.0

© 2014 for the individual papers by the papers’ authors. Copying permitted for private and academic

purposes. This volume is published and copyrighted by its editors. Re-publication of material from this

volume requires permission by the copyright owners.

Editors’ addresses:

Regina Hebig, Reda Bendraou

Sorbonne Universités, UPMC Univ. Paris 06, UMR 7606, LIP6, F-75005, Paris (France)

Markus Völter

independent/itemis (Germany)

Michel Chaudron

Chalmers Technical University and University of Gothenburg (Sweden)

Organizers

Regina Hebig (co-chair) Université Pierre et Marie Curie, LIP6, Paris (France)
Reda Bendraou (co-chair) Université Pierre et Marie Curie, LIP6, Paris (France)
Markus Völter (co-chair) independent/itemis (Germany)
Michel Chaudron (co-chair) Chalmers Technical University and University of Gothen-

burg (Sweden)

Program Committee

João Paulo Almeida University of Esṕırito Santo (Brazil)
Reda Bendraou Université Pierre et Marie Curie, Paris (France)
Gregor Berg BIOTRONIK SE & Co. KG (Germany)
Michel Chaudron Chalmers Technical University and University of Gothen-

burg (Sweden)
Bernard Coulette Universite de Toulouse II-Le Mirail (France)
Brian Elvesæter SINTEF (Norway)
Regina Hebig Université Pierre et Marie Curie, Paris (France)
Jochen Kuester Bielefeld University of Applied Sciences (Germany)
Bran Selic Malina Software Corp. (Canada)
Florian Stallmann SAP AG (Germany)
Jim Steel University of Queensland (Australia)
Harald Störrle Danmarks Tekniske Universitet (Dänemark)
Matthias Tichy Chalmers Technical University and University of Gothen-

burg (Sweden)
Markus Völter independent/ itemis (Germany)
Ingo Weisemöller Carmeq GmbH (Germany)

Additional Reviewers

Grischa Liebel
Tewfik Ziadi

Table of Contents

Model-Driven Development Processes and Practices: Foundations and Research
Perspectives .

2

Regina Hebig, Reda Bendraou, Markus Völter, Michel Chaudron

Approaches to Automation and Interoperability in Systems Engineering 7
Tom Ritter

Introducing Usability Concerns Early in the DSL Development Cycle: FlowSL
Experience Report .

8

Ankica Barišić, Vasco Amaral, Miguel Goulão, Ademar Aguiar

A Qualitative Study of Model Transformation Development Approaches: Sup-
porting Novice Developers .

18

Gabriel Costa Silva, Louis M. Rose, Radu Calinescu

Model-Driven Software Development of Safety-Critical Avionics Systems: an Ex-
perience Report .

28

Aram Hovsepyan, Dimitri Van Landuyt, Steven Op de beeck, Sam Michiels,
Wouter Joosen, Gustavo Rangel, Javier Fernandez Briones, Jan Depauw

Towards Enabling Cross-Organizational Modeling in Automotive Ecosystems . . 38
Eric Knauss, Daniela Damian

Model-Driven Development Processes and
Practices:

Foundations and Research Perspectives

Regina Hebig1, Reda Bendraou1, Markus Völter2, Michel Chaudron3

1 Université Pierre et Marie Curie, LIP6, Paris (France), forename.surname@lip6.fr
2 independent/itemis (Germany), voelter@acm.org

3 Chalmers Technical University and University of Gothenburg (Sweden),
michel.chaudron@cse.gu.se

Abstract. MD2P2 is a workshop about the interrelation of model-
driven development (MDD) and development processes. The workshop
provides a forum for researchers and practitioners to exchange experi-
ences on the questions how processes need to adapt or can be adapted
when model-driven techniques are applied. We argue that the interre-
lation between MDD and development processes can be crucial for the
success of MDD. For example, the need to adapt a process when introduc-
ing MDD can be a reason to decide against an MDD adoption. Further,
we aim to give an introduction to foundations and research perspectives.
MD2P2 is co-located with ACM/IEEE 17th International Conference
on Model Driven Engineering Languages & Systems.

1 Introduction

Model-driven development, which includes the synthesis of executable systems
from models or the use of abstract languages, e.g. UML, Simulink, or DSLs,
and software development processes are used to reach similar targets, such as
increasing the quality of software or the efficiency of software development. Al-
though, these goals are approached differently, MDD and software development
processes are not totally independent.

In fact, the literature has a multitude of proposals for MDD specific de-
velopment processes. Proposals for the use of MDD in context of established
development processes, such as the V-Modell XT or SCRUM, however, some-
times include significant adaptations of the development process. Stakeholders’
responsibilities might be as affected as quality assurance activities, which need to
respect the structure of the artifacts used. Partly, even process phases and sprints
are adapted to enable a combination with MDD. It seems that most adaptations
have pragmatic reasons, and aim at supporting a fruitful combination.

However, it is also possible that MDD and a particular development process
do not fit together well. For example, the benefit of an agile approach might
be reduced, if long running transformation chains enforce long running sprints.

2

Further, an MDD approach that requires to build languages and transforma-
tions first before ”business value” can be delivered to the customer, conflicts
superficially with some agile processes.

Thus, companies that aim at adopting MDD also have to face the questions,
how appropriate development processes have to look like as well as whether and
how existing development processes can be adapted. It is important to consider
that development process adaptation can be cost intensive (e.g. due to required
training of developers or changes in the involvement of stakeholders).

In summary, the questions whether and how an established development
process must be adapted when MDD is introduced are crucial, since they can
impact the efficiency of the development processes as well as the costs of the
MDD introduction. In face of the growing number of MDD techniques and the
variety of MDD approaches applied in practice, there is a need for systematic
guidelines or best practices that help with adjusting or tailoring of development
processes, when MDD is introduced.

In the following we give an introduction into foundations of the workshop’s
topic and present various research perspectives. We then provide an overview on
this first edition of the MD2P2 workshop.

2 Foundations
Software processes define various aspects of development, such as phases or tasks,
but also documents that need to be created at different points in time. Further-
more, software processes are concerned with “soft” aspects, e.g. teams, skills,
communication and roles. Similarly in MDD there are technical aspects, such as
automation, through e.g. generators or model transformations, that can prede-
fine fine-grained sequences of activities between manual and automated tasks.
Further, just as processes, also MDD can, due to concepts such as abstraction,
affect soft aspects as the skill set of developers. Thus, both MDD and software
development process can affect similar and related aspects of development. How-
ever, the question how these interrelations can lead to mutual constraints or to
synergy effects is only rarely studied.

Research on the keyword software process tailoring (i.e. on the question how
processes need to be customized due to environmental factors) is rarely con-
cerned with MDD directly. However, as summarized in the survey of Kalus et
al., programming languages and tool infrastructure are known to be criteria for
process tailoring [4].

A bit more attention was drawn to this topic in the modeling community [2].
For example, Aranda et al. found out that the division of labor changed within
General Motors when MDD was introduced [1]. Further, Heijstek et al. learned
in a case study with at an international IT service provider that MDD usage can
lead to an increased need for collective code ownership. Further they observed
changes in communication, required skills, and tooling [3].

As our survey on processes that had been adapted for MDD has shown,
influences between both MDD and software process can be most diverse [2].
While in some cases mainly roles had been adapted within the processes, in
other cases the structure of phases or sprints of the process changed. For example,

3

Loniewski et al. describe an adaptation of OpenUP (a variant of RUP), where
new roles, such as “model analyst” had been introduced [6]. In contrast, Kulkarni
et al. adapt SCRUM by adding a meta sprint for long running tasks [5].

Summing up, there is an awareness that software processes might need or
have the potential to adapt, when MDD is applied. However, there is still much
research to be done before we fully understand this interrelation.

3 Research Perspectives

This first workshop on model-driven development processes and practices aims
at calling attention to the question how development processes can be integrated
with an MDD approach.

First of all, this is an empirical research question. Therefore, the MD2P2

workshop provides a forum for researchers and practitioners to exchange and
discuss experiences on how the use of MDD affects the development process in
practice. For example, there is so far not much knowledge about how MDD is
affected by a maturing development processes. Further, the workshop tries to
uncover what happens to the development processes in practice, when MDD is
introduced. Empirical data or case studies from practice can help to approach
diverse questions:

– Which stakeholders are involved in modeling tasks & which stakeholders are
not affected by the integration of MDD? – These questions are interesting for
two reasons. On the short term, it might be less expensive to train a smaller
set of developers and stakeholders to the new technologies. On the long term,
however, only stakeholders who are involved in modeling also have potential
to benefit from the higher level of abstraction and the improved automation.

– Which (modeling) artifacts are subject to quality assurance activities, e.g.
reviews or testing? – MDD defines the set of artifacts that represent the
system under development. This includes the potential for quality assurance,
when certain checks can be performed earlier in development. However, it
can also change the skills that are required for e.g. reviews and with it the
roles in the process.

– Are development process phases adapted? Does the number or frequency of
iterations change? – The structure of process phases or the iterations are
essential for many processes. Changing them might have a major impact on
the characteristics of the process. Since there are hints that such changes
sometimes occur due to MDD, the question becomes pressing, when and
why these adaptations happen.

– Is there empirical evidence that the intended MDD effects occur, e.g. does
front-loading actually reduce the number of errors in later phases? – As indi-
cated above, MDD is associated with certain hopes. However, only empirical
evidence can prove whether these goals are reached.

In addition to the empirical perspective, it is also necessary to approach
the topic more theoretically. Such research can cover systematic investigations

4

of the mechanisms that drive impacts from MDD approaches on development
processes or in turn define constraints on MDD approaches that are implicitly
defined by development processes. Based on these investigations, researchers
might foster the success of MDD, e.g. by providing guidelines, methods, or tools
that support practitioners in reusing or adapting development processes when
MDD is introduced are required.

Investigations on what aspects of a process are affected by MDD can concern
diverse aspects, e.g.: How are different stakeholders integrated in the modeling
activities? Can modeling tasks be split over multiple roles and phases? What
is the effect of automated verification methods on testing methodologies and
philosophies defined in development processes (e.g. in test-driven development
processes)? Is there a need to adapt test and quality assurance activities in de-
velopment processes, such that the various modeling artifacts are covered appro-
priately? When is it necessary or beneficial to adapt the number of development
process phases or to change the frequency of iterations?

One motivation to answer these questions, is to identify combinations of MDD
and processes that do not fit together, i.e. where the benefits of the process or
of the MDD approach cannot fully be used. This is a first step towards tailoring
MDD or processes, such that a better fit can be reached. A second motivation
is that it might be possible to achieve synergies between MDD and development
processes. Associated questions are: How can the combination with an MDD
approach increase (or decrease) the benefits of a process? How can the choice or
adaptation of a process increase (or decrease) the benefits of an MDD approach?

Ideally this research leads to guidelines and methods that can support prac-
titioners in reusing or adapting development processes when MDD is used. Fur-
thermore, researchers might come up with tool support for the integration of
MDD into a given process. Finally, as both the development processes and MDD
evolve and mature, there is the question how synergistic effects can be maintained
over time, i.e. how co-evolution or co-maturation of MDD and development pro-
cesses can be supported.

To summarize, there are many open questions related to the combination of
MDD and software processes. With this workshop we want to strongly encourage
more researchers to contribute to the investigation of these questions.

4 First Edition of MD2P2

For this first edition of the workshop, we received eight papers, of which four
have been accepted for inclusion in the proceedings. The accepted papers can
be split in two groups:

The first group of accepted papers deals with the question how processes look
like that are used for the development of MDD technologies, such as transforma-
tions or DSLs. Barisic et al. present of the case study of FlowSL, how a usability
concerns can be considered throughout during DSL development throughout an
agile development approach where MDD tools are used [7]. Silva et al. present a
survey on model transformation development approaches, discuss what phases of
the development process are supported by the different approaches and present
several lessons learned [10].

5

The second group of accepted papers provide an empirical view on processes
that are used in combination with MDD. Hovsepyan et al. present an experience
report on the use of MDD in development of safety-critical avionic systems [8].
Knauss et al. investigated a case study in the automotive domain and identify
challenges for the use of MDD in multi-tier automotive ecosystems [9].

We hope that the workshop will help researchers and practitioners to build
up a community that shares data and experience. In closing, we would like to
thank all authors papers and reviewers, for their contributions, the effort they
invested, and for making this workshop possible.

References

1. Aranda, J., Borici, A., Damian, D.: Transitioning to model-driven development:
What is revolutionary, what remains the same? In: Model Driven Engineering
Languages and Systems, LNCS, vol. 7590, pp. 692-708, Springer, (2012)

2. Hebig, R., Bendraou, R.: On the need to study the impact of model driven engi-
neering on software processes. In: Proceedings of the 2014 International Conference
on Software and System Process, pp. 164-168. ACM, New York (2014)

3. Heijstek, W., Chaudron, M. R.: The Impact of Model Driven Development on the
Software Architecture Process. In: Software Engineering and Advanced Applica-
tions (SEAA) (2010)

4. Kalus, G., Kuhrmann, M.: Criteria for software process tailoring: a systematic
review. In: Proceedings of the 2013 International Conference on Software and
System Process, pp. 171-180, ACM, (2013)

5. Kulkarni, V., Barat, S., Ramteerthkar, U.: Early experience with agile method-
ology in a model-driven approach. In: Proceedings of the 14th international con-
ference on Model driven engineering languages and systems (MODELS’11), eds.
Whittle, J., Clark, T., Kühne, T., pp. 578 -590, Springer, Berlin, Heidelberg (2011)

6. Loniewski, G., Armesto, A., Insfran, E.: An agile method for model-driven re-
quirements engineering. In: The Sixth International Conference on Software En-
gineering Advances (ICSEA 2011), pp. 570-575 (2011)

7. Barisic, A., Amaral, V., Goulo, M., Aguiar, A.: Introducing usability concerns
early in the DSL development cycle: FlowSL experience report. In: Proceedings
of the 1st International Workshop in Model-Driven Development Processes and
Practices (MD2P2), pp. 8-17 (2014)

8. Hovsepyan, A., Van Landuyt, D., Op de Beeck, S., Michiels, S., Joosen, W.,
Rangel, G., Fernandez Briones, J., Depauw, J.: Model-Driven Software Develop-
ment of Safety-Critical Avionics Systems: an Experience Report. In: Proceedings
of the 1st International Workshop in Model-Driven Development Processes and
Practices (MD2P2), pp. 28-37 (2014)

9. Knauss, E., Damian, D.: Towards Enabling Cross-Organizational Modeling in Au-
tomotive Ecosystems. In: Proceedings of the 1st International Workshop in Model-
Driven Development Processes and Practices (MD2P2), pp. 38-47 (2014)

10. Silva, G. C., Rose, L., Calinescu, R.: A Qualitative Study of Model Transformation
Development Approaches: Supporting Novice Developers. In: Proceedings of the
1st International Workshop in Model-Driven Development Processes and Practices
(MD2P2), pp. 18-27 (2014)

6

Keynote

Approaches to Automation and Interoperability
in Systems Engineering

Tom Ritter

Fraunhofer FOKUS, Berlin, Germany

Creating large and complex systems typically involves a number of potentially
geographically separated development teams and a number of various different
tools. These two aspects are two important dimensions of complexity, which
should be considered when planning large system engineering efforts. The im-
portance of these aspects has become increasingly eminent and recent approaches
try to handle these issues. Among them are OSLC (Open Services for Lifecycle
Collaboration) and ModelBus R©. Those approaches address the platform aspect
of system engineering on complementary level of abstraction and are a step
forward with respect to integration and interoperability challenges. These ap-
proaches set de facto standards, which is important to increase efficiency in sys-
tems engineering. Based on these considerations big European initiatives like the
ARTMIS Joint Undertaking projects CRYSTAL and VARIES started to work
on a Reference Technology Platform with the goal to improve interoperability.
The talk will present challenges and solutions in large-scale system engineering
efforts and focuses on the aspect of collaboration and standardisation.

Dr. Tom Ritter graduated with a Masters degree in Computer Science from the Tech-

nical University of Berlin and did his PhD in 2011 at Humboldt University Berlin in

modeling quality of service of component oriented systems. Since 1998 he worked at

Fraunhofer Institute FOKUS in the area of tool development and distributed systems.

Since 2006 he was heading the Model-Driven Engineering group at FOKUS and from

2010 he was the Deputy Head of the competence center SQC (formerly MOTION).

As of December 2013 he is Head of the Competence Center ”System Quality Center”

(SQC). His major interest is the model-driven software engineering, the development

of software tools, software development processes, tool integration infrastructure and

the consideration of non-functional properties and QoS at design and execution time.

Tom is one of the Co-Authors of a CORBA Component based Middleware Platform

(Qedo). Since 2004 Tom participated to the design of the tool integration infrastruc-

ture ModelBus and he is heading the ModelBus development team. Tom is involved in

different standardization activities at the Object Management Group, he is co-author

on books about components and services and contributes continuously to workshops and

conferences.

7

Introducing Usability Concerns Early in the DSL
Development Cycle: FlowSL Experience Report

Ankica Barǐsić1, Vasco Amaral1, Miguel Goulão1, and Ademar Aguiar2

1 CITI, Departamento de Informática, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal

2 Departamento de Engenharia Informática, Faculdade de Engenharia, Universidade
do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

a.barisic@campus.fct.unl.pt, vma@fct.unl.pt, mgoul@fct.unl.pt,

ademar.aguiar@fe.up.pt

Abstract. Domain-Specific Languages (DSLs) developers aim to nar-
row the gap between the level of abstraction used by domain users and
the one provided by the DSL, in order to help taming the increased
complexity of computer systems and real-world problems. The quality
in use of a DSL is essential for its successful adoption. We illustrate
how a usability evaluation process can be weaved into the development
process of a concrete DSL - FlowSL - used for specifying humanitar-
ian campaign processes lead by an international Non-Governmental Or-
ganization. FlowSL is being developed following an agile process using
Model-Driven Development (MDD) tools, to cope with vague and poorly
understood requirements in the beginning of the development process.

Keywords: Domain-Specific Languages, Usability Evaluation, Agile Develop-
ment, Language Evaluation, Software Language Engineering

1 Introduction

Domain-Specific Languages (DSLs) and Models (DSMs) are used to raise the
level of abstraction, while at the same time narrowing down the design space [1].
This shift of developers’ focus to using domain abstractions, rather than general
purpose abstractions closer to the computation world, is said to bring important
productivity gains when compared to software development using general pur-
pose languages (GPLs) [2]. As developers no longer need to make error-prone
mappings from domain concepts to computation concepts, they can understand,
validate, and modify the produced software, by adapting the domain-specific
specifications [3]. This approach relies on the existence of appropriate DSLs,
which have to be built for each particular domain. Building such languages is
usually a key challenge for software language engineers. Although the phases of
a typical DSL life cycle have been systematically discussed (e.g. [4, 5]), a crucial
step is often kept implicit: the language evaluation.

DSLs are usually built by language developers in cooperation with domain
experts [6]. In practice the DSL will be used by domain users. These domain users

8

are the real target audience for the DSL. Although domain users are familiar
with the domain, they are not necessarily as experienced as the domain experts
helping in the language definition. Neglecting domain users in the development
process may lead to a DSL they are not really able to work with.

In this paper we apply action research to the development of a DSL, named
FlowSL, designed to support managers in specifying and controlling the busi-
ness processes supporting humanitarian campaigns. FlowSL is targeted to non-
programmers. Their ability to use this language was identified as one of the
highest concerns, so discovering usability issues in early development iterations,
facilitated the achievement of an acceptable usability, while tracking the design
decisions and their impact.

Usability has two complementary roles in design: as an attribute that must be
designed into the product, and as the highest level quality objective which should
be the overall objective of design [7].

This paper is organized as follows: Section 2 discusses related work; Section
3 provides a description of the evaluation approach; Section 4 discusses the
language and evaluation goals and its development and evaluation plan; Section
5 discusses the lessons learned from the application of the described approach;
finally, Section 6 concludes by highlighting lessons learnt and future work.

2 Related work

The need for assessing the impact of introducing a DSL in a development process
has been discussed in the literature, often with a focus on the business value that
DSL can bring (see, e.g. [8]). This business value often translates into produc-
tivity gains resulting from improved efficiency and accuracy in using a DSL [6],
when compared to using a general-purpose baseline solution [9]. The quality in
use of a DSL is, therefore, extremely important. In general, these assessments
are performed with a final version of a DSL, when potential problems with the
DSL are expensive to fix. A key difference in the work described in this paper is
that we introduce language evaluation early in the DSL development process, so
that problems can be found ’on-time’ and fixed at a fraction of the cost it would
take to fix them, if detected only in the deployment phase.

The term quality in use is often referred to more simply as usability [7], and
includes dimensions such as efficiency, effectiveness, satisfaction, context cov-
erage and freedom of risk (ISO 25010 2011). Usability evaluation investments
have brought an interesting return on investment in software development [10].
Usability evaluation benefits span from a reduction of development and main-
tenance costs, to increased revenues brought by an improved effectiveness and
efficiency by the product users [11].

Two important issues are how and when to assess DSL usability.
Concerning the how, we have argued that we can think of DSLs and their

supporting editors as communication interfaces between DSL users and a com-
puting platform, making DSL usability evaluation a special case of evaluating
User Interfaces (UIs) [12] . This implies identifying the key quality criteria from

9

the perspective of the most relevant stakeholders, in order to instantiate an eval-
uation model for that particular DSL [13, 14]. These criteria are the evaluation
goals, for which a set of relevant quantitative and qualitative measurements must
be identified and collected. We borrow from UI evaluation several practices, in-
cluding obtaining these measurements by observing, or interviewing, users [15].
In general, it is crucial that the evaluation of human-computer interactions in-
cludes real users [16], for the sake of its validity. In the context of DSLs, the
“real users” are the domain users.

Concerning the when, we argued that we should adopt a systematic approach
to obtain a timely frequent usability feedback, while developing the DSL, to bet-
ter monitor its impact [17]. This implies the integration of two complementary
processes: language development and evaluation. Software language engineers
should be aware of usability concerns during language development, in order
to minimize rework caused by unforeseen DSL usability shortcomings. In turn,
usability designers should have enough understanding of the DSMs involved
in software language development to be able to properly design the evaluation
sessions, gather, interpret, and synthesize meaningful results that can help lan-
guage developers improving the DSL in a timely way. This requirement is in line
with agile practices, making them a good fit for this combined DSL building
(i.e.software development) and evaluation process (i.e. usability design) [18].

3 Building usability into a DSL development process

Building a DSL may have a rather exploratory nature, with respect to the DSL
requirements, particularly when the DSL is aimed for users with limited com-
putational skills or poorly understood, or evolving domains. To build up a cost-
effective and high quality process, we defined an agile and user centered DSL
evaluation process [17, 13].

By placing DSL users as a focal point of DSLs’ design and conception, the
goal was to ensure that the language satisfies the user expectations. Besides in-
volving Domain Experts and Language Engineers, as typically happens in the
development of a DSL, we add the role of the Usability Engineer to the develop-
ment team. Usability engineers are professionals skilled in assessing and making
usability recommendations upon a given product (in this case, the DSL) and
gathering unbiased systematic feedback from stakeholders [18].

Each development iteration focuses on a different increment or level of ab-
straction to be evaluated or refined. In the early phases it is important to study
existing guidelines or standards for a particular domain and interview current or
potential users about their current system or tools they are using to help them
in accomplishing their tasks. This context of use study of a particular situation
is intended to elicit the strengths and weaknesses of the baseline approach as
well as the user expectations for the DSL.

Finally, once the language is deployed to users, an evaluation of its use in
real contexts should be conducted, reusing the methods and metrics that were
validated in the previous iterations.

10

4 Flow Specification Language (FlowSL)

The generic process described in the previous section was instantiated to the
development of a concrete DSL — the FlowSL. FlowSL is a DSL for specify-
ing humanitarian campaigns to be conducted by a non-governmental organiza-
tion. FlowSL is integrated in MOVERCADO3 (MVC), a mobile-based messaging
platform at the core of an ecosystem that enables real-time and a more efficient
impact, by facilitating interactions among beneficiaries, health workers and facil-
ities, e-money and mobile operators. The platform is meant to allow data mining
in the search of insights that can be used to improve the effects of the campaigns
while supporting a high degree of transparency and accountability.

A first version of the system (MVC1) was developed as a proof-of-concept to
validate the key underlying principles. The second version of the system (MVC2)
was developed in the form of a platform easily customizable by managers and
extensible by developers of the organization’s team. An important goal was to
develop a language, FlowSL, to empower the Campaign Managers to define new
kinds of campaign flows taking advantage of their domain knowledge.

Without FlowSL, managers needed to specify the flows orchestrating their
campaigns exclusively by means of presentations and verbal explanations. The
implementation and evolution of campaigns often resulted in rework and un-
expected behavior, usually due to vague specifications, incorrect interpreta-
tions, and difficulties in validating the implementation, a phenomenon known
as impedance mismatch [19]. Therefore, the primary goal was to evolve the sys-
tem to enable new users to easily create new campaigns and underlying flows.
FlowSL is expected to enable the organization to streamline the process of defin-
ing campaigns and their base workflows, namely participants, activities, inter-
action logic, and messages.

4.1 FlowSL development process

In order to balance the development effort with effective reusability (e.g. while
envisioning new marketing solutions), MVC2 was developed in a fast-paced way,
iteratively, along six two-weeks sprints, following an agile development process
based on Scrum4 and best practices of evolving reusable software systems [20]. In
the process of FlowSL development, the Domain Experts were part of the Prod-
uct Owners team, while the Language Engineers were part of the Scrum Team.
The DSL evaluation process was guided by the FlowSL development stages, as
different effort was estimated in each sprint for its development.

The problem analysis was performed by mutual interaction and brainstorm-
ing between Domain Experts and Language Engineers in each sprint planning.
Usability Engineers, in this case the researchers, had the role of observing and
guiding the analysis outputs, while preparing the evaluation plan, without being
directly involved in the language specification. To better understand and define

3 http://enter.movercado.org/ (accessed in July 19, 2014)
4 http://www.scrum.org/ (accessed in July 18, 2014)

11

the problem, the required functionalities were described in terms of small user
stories. Also, the new description of the user roles was introduced as the FlowSL
is expected to change existing organizational workflows. To improve interaction
between the development team and the users, all the produced results from the
analysis were continuously documented in a wiki. As Scrum suggests, the project
management was based on a product backlog maintained and shared on-line.

The relationship between the MVC system, FlowSL development, and rele-
vant language users and expected workflow is presented in Fig.1. The original
MVC1 system was developed in a GPL (Ruby). FlowSL was first developed as
a Ruby-based internal DSL. This approach allowed an optimal use of resources
while keeping the existing system running. The second phase of language de-
velopment was intended to support the managers to design the campaign flow
specifications by themselves, using simple and understandable visual language
constructs. In the planned third phase (future work), the focus will be on evolv-
ing the language’s editor to be collaborative and web-based. It will also be an
opportunity to work on language’s optimizations in the generation process.

Fig. 1. FlowSL development and relevant language users with expected workflow

After defining the evaluation plan, the Usability Engineer prepared the us-
ability requirements, using a goal-question-metric approach presented in Table 1,
where goals conform to the Quality in Use model. These requirements were de-
tailed and related to the right metrics and measurement instruments to perform
appropriate usability tests in each development cycle. The validation of some
of these requirements in earlier stages (e.g. understandability, readability) are
stepping stones to achieve other soft requirements that cannot be evaluated in
early phases (e.g. learnability). Multiple evaluations helped in validating and
improving the set of identified metrics.

12

Table 1. Usability requirements

Requirement Metric

Understandability: Does the user

understand the different concepts

and relations, and when and why

to use each one of the concepts?

NCon - number of concepts, NRel - number of relationships

NErrSpec - incorrect verbal definitions of total NCon and Nrel

given in language

NErrMod - incorrect interpretations of presented NCon and NRel

given in modeled solution

Readability: How accurately is the

user able to read the specified flows

and interpret their meaning?

NConInst - number of concept instances in the model (flow), NRe-

Inst - number of relationship instances in the model

NErrInst - number of incorrect verbal interpretation of NConInst

and NRelInst given in language

Efficiency: How much time is

needed for a user to read existing

or specify a new flow?

TModInst - time necessary to read existing model instance (flow)

TModSpec - time necessary to implement a new model instance

(flow)

Effectiveness: Is the user able to

correctly implement a flow from a

given high-level description of the

required flow?

NErrModInst - number of misinterpretation while reading exist-

ing model instance (flow)

NErrModSpec - number of errors while implementing new model

instance (flow)

Learnability: How much time is

needed for users to learn the

FlowSL language?

TLearNov - training time necessary to learn novice users to use

language TLearExp - training time necessary to learn domain

experts to use language

Flexibility How long does it take to

quickly change or correct existing

flow specifications?

TModEvol - time necessary to evolve model instance (flow)

TModCorr - time necessary to correct incorrect implementation

of model instance (flow)

Reusability How often user reuse

existing flow specifications?

NModReuse - number of reusing existing model instance (flow)

NModEvol - number of evolving existing model instance (flow)

Expressiveness Is the user able to

specify all parts of flow?

NErrCon - number of concept, or its property that user is missing

to implement model instance (flow)

NErrRel - number of relationships, or its appropriate role that

user is missing to implement model instance (flow)

Freadom of Risk Is the user able

to implement the specifications in

a way that can lead to unexpected

or unwanted system behavior?

NEconDem - number of occurrence of economic damage due to

incorrect flow specification

NSofCor - number of occurrence of software corruption due to

incorrect flow generation to system (flow)

Satisfaction How much is the user

satisfied with FlowSL?

ConfLevel - self rated confidence score in a Likert scale

LikeLevel - self rated likability score in a Likert scale

5 FlowSL evaluation and lessons learned

5.1 First FlowSL iteration: bottom-up approach (MVC2.1)

The language goal of the first iteration was to find the differences and common-
alities in the Ruby code relevant for visual FlowSL and then do a corresponding
mapping into a graphical representation, which would define the first draft of
the concrete visual syntax of FlowSL. This is considered as a way to describe
appropriate activities step by step by mapping relevant fragments of extracted
code to a visual representation and to identify repetitive patterns that represent

13

reusable code artifacts. The evaluation goal was to assess whether this represen-
tation would be good enough to enhance the understandability and readability of
flows from the perspective of Campaign Managers. It was expected that with the
flow abstraction, the Domain Experts could describe more concrete requirements
for the visual flow concepts.

The evaluation intervention was conducted when all existing flows of the
MVC1 system were migrated to MVC2. This was the moment when the stake-
holders could more clearly express the language purpose by distinguishing cam-
paign processes from the flows underneath. The intervention was followed by an
interview conducted with one representative subject : the Domain Expert with
the role of Campaign Manager that was involved in specifying flows using the
MVC1 system and who was also involved in the MVC2 Scrum development
assuming, in that case, the role of Product Owner.

The evaluation document was prepared by the Usability Engineer contain-
ing 4 tasks: Task 1 and Task 2 describing user scenarios by roles and a global
organization scenario that evaluator was asked to clarify and improve by plac-
ing him in organization workflow; Task 3 presenting alternative feature models
of FlowSL that are reviewed and redefined with a goal of separating campaign
instantiation data and improving a vague language definition; Task 4 present-
ing campaign flow based on simple and complex level of specification of the
flow example (IPC Validation) that was found to be the most representative to
describe. This task used metrics from the GQM table, which showed that the
considered solution is very hard to understand.

The two major threats to validity of this evaluation were that it was subjec-
tive and only one user surrogate was involved. However, as the intended solution
was seen as a step that helped to understand and to model the domain bet-
ter, the guided interview helped to redefine the technical concepts using domain
terms. Evaluation resulted in a clearer plan for the next development cycles
as well as clarifying usability requirements and appropriate tasks. The textual
FlowSL makes explicit all relevant domain concepts, but also many extra more.
considered more technical, The performed evaluation helped the DSL develop-
ers to adjust the level of abstraction to the needs of the DSL end users. The
language at this phase, could be used by the System Managers (knowledgeable
of the concepts of the baseline system), but not by Campaign Managers.

5.2 Second FlowSL iteration: top-down approach (MVC 2.2)

The language goal of this iteration was to develop a visual FlowSL prototype
using the MetaEdit5 language workbench, that was selected for its support to
top-down development. The evaluation’s goal was to assess whether both the
campaign managers and novice system managers were able to validate the speci-
fied flows using the newly proposed visual language and editor. These evaluations
covered also the effectiveness and expressiveness of the target language.

5 http://www.metacase.com/ (accessed in July 19, 2014)

14

The First evaluation intervention was organized very quickly and involved
interviewing two subjects: the campaign manager from the first development
iteration and the system manager who was involved in the DSL development.
The intervention consisted of one task where the subjects had the opportunity
to compare two alternative concrete flow representations for the same ongoing
example.

Based on the evaluation results the Usability Engineer produced designs of
the concrete syntax for the DSL development team.

The second evaluation intervention involved the same subjects. The evalua-
tion document had three tasks: Task 1 focused in assessing the understandability
and expressiveness of the individual symbols; Tasks 2 and Task 3 meant to mea-
sure the readability and efficiency of the designed solution of the simple and
complex flow. In addition to that, the Domain Expert was asked to describe the
use of the symbols from Task 1 to produce the presented flow solutions and to
describe the situations in which the existing flows can be reused. The evaluation
session with the System Manager made it possible to identify important missing
relationships between FlowSL concepts, as well as their connection points (hot
spots) with the MVC system underneath.

For the third evaluation intervention the usability engineer introduced the
design improvements motivated by the feedback obtained the previous evalua-
tion. The new notations were designed and implemented, to be again compared.
The tasks were similar to the previous intervention, although more elaborated.
Here, the same subjects from the previous interventions were involved, as well
as a member of the Scrum team.

For this third intervention the rules related to the usage of a certain activity
were discussed. The usability engineer evaluated the cases where the system
manager would have the need to hack the existing campaign flows, in order to
customize certain functionality or rule. The goal was to use an example-based
approach to identify improvements in the language.

It became clear that the evaluation materials prepared earlier helped to speed
up the following evaluation phases and reduced their implementation costs. Be-
sides, they became templates for the corresponding learning materials. Also, it
was possible to abstract the language one level further, so that an online visual
editor was built to support rapid high level specifications of flows. To better deal
with the increasing complexity of the specified models, rather than presenting
all the concepts related to the flow definition visually, a better option would be
to present just high level concepts that are reused often, while others are hidden
and based on predefined rules that can be eventually reconfigured textually. This
approach empowered both the domain experts and the product owners to better
control the design decisions.

6 Conclusions and future work

In this paper, we presented an experience report on how to integrate top-down
usability engineering practices into a bottom-up agile development of a DSL

15

from its beginning. While playing the role of Usability Engineers, we experi-
enced that small iterations involving Domain Experts, Product Owners and End
Users can help us to clarify the meaning and the definition of the relevant lan-
guage concepts. This enables an early identification of possible language usability
shortcomings and helps reshaping the DSL accordingly.

Early evaluations can be executed with a relatively low cost thanks to model-
driven tools that support production of rapid prototypes and presenting the idea.
These evaluations support well-informed trade-offs among the strategy and de-
sign of the DSL under development, and its technical implementation, by im-
proving communication. Besides, they improve the traceability of decisions, and
of the solution progress. These iterations also help to capture and clarify con-
tractual details of the most relevant language aspects that need to be considered
during DSL development, and are a key element to improve the End Users ex-
perience while working with FlowSL.

We plan to validate our decisions, metrics, and the overall merit of the devel-
oped DSL, by performing experimental evaluations with both expert and novice
users, by making comparisons to the baseline approach in Ruby, as well as to
other process modelling languages that are natural candidates to serve for similar
purposes (e.g. BPMN, JWL).

An additional step is to conceptualize the traceability model of design changes
and evaluate its impact on the decision making process. We expect that in each
iterative evaluation step we will not only identify opportunities to improve the us-
ability of the DSL, but also to improve the evaluation process itself (e.g. through
the validation, in this context, of the chosen metrics).

Weaving usability concerns into agile process is helping us to continuously
evolve FlowSL, improving the cost-effectiveness of DSL usage in specifying cam-
paigns, and supporting a clearer assessment of which language concepts are more
relevant to the different kinds of language users, which in turn helps finding the
right level of abstraction and granularity of concepts. All these benefits come
with the cost of adding usability skills and of introducing new practices in the
agile process, namely the introduction of lightweight metamodeling tools. The
balance however, seems to be very positive, but ROI should be calculated pre-
cisely to support this claim.

References

1. Gray, J., Rossi, M., Tolvanen, J.P.: Preface. Journal of Visual Languages and
Computing, Elsevier 15 (2004) 207–209

2. Kelly, S., Tolvanen, J.P.: Visual domain-specific modelling: benefits and experi-
ences of using metacase tools. In Bézivin, J., Ernst, J., eds.: International Workshop
on Model Engineering, at ECOOP’2000. (2000)

3. Deursen, A.V., Klint, P.: Little languages: Little maintenance? Journal of Software
Maintenance: Research and Practice 10(2) (1998) 75–92

4. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Computing Surveys 37(4) (2005) 316–344

16

5. Visser, E.: WebDSL: A case study in domain-specific language engineering. In Gen-
erative and Transformational Techniques in Software Engineering II, Ralf Lämmel,
Joost Visser, and João Saraiva (Eds.). Lecture Notes In Computer Science 5235
(2007)

6. Voelter, M., Dietrich, C., Engelmann, B., Helander, M., Kats, L., Visser, E.,
Wachsmuth: DSL Engineering: Designing, Implementing and Using Domain-
Specific Languages. CreateSpace Independent Publishing Platform (2013)

7. Petrie, H., Bevan, N.: The evaluation of accessibility, usability and user experience.
Human Factors and Ergonomics. CRC Press (2009)

8. Kelly, S., Tolvanen, J.P.: Domain-specific modeling: enabling full code generation.
John Wiley & Sons (2008)

9. Kosar, T., Mernik, M., Carver, J.: Program comprehension of domain-specific and
general-purpose languages: comparison using a family of experiments. Empirical
Software Engineering 17(3) (2012) 276–304

10. Nielsen, J., Gilutz, S.: Usability return on investment. Technical report, Nielsen
Norman Group (2003)

11. Marcus, A.: The ROI of usability. In Bias, Mayhew, eds.: Cost-Justifying Usability.
North- Holland: Elsevier (2004)

12. Barǐsić, A., Amaral, V., Goulão, M., Barroca, B.: Quality in use of domain-specific
languages: a case study. In: Proceedings of the 3rd ACM SIGPLAN workshop
on Evaluation and usability of programming languages and tools. PLATEAU ’11,
New York, NY, USA, ACM (2011) 65–72

13. Barǐsić, A., Monteiro, P., Amaral, V., Goulão, M., Monteiro, M.: Patterns for eval-
uating usability of domain-specific languages. Proceedings of the 19th Conference
on Pattern Languages of Programs (PLoP), SPLASH 2012 (October 2012)

14. Kahraman, G., Bilgen, S.: A framework for qualitative assessment of domain-
specific languages. Software & Systems Modeling (2013) 1–22

15. Rubin, J., Chisnell, D.: Handbook of Usability Testing: How to plan, design and
conduct effective tests. Wiley-India (2008)

16. Dix, A.: Human computer interaction. Pearson Education (2004)
17. Barǐsić, A., Amaral, V., Goulão, M., Barroca, B.: How to reach a usable DSL?

moving toward a systematic evaluation. Electronic Communications of the EASST
50 (2011)

18. Lárusdóttir, M., Cajander, Å., Gulliksen, J.: Informal feedback rather than per-
formance measurements–user-centred evaluation in scrum projects. Behaviour &
Information Technology (ahead-of-print) (2013) 1–18

19. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information
systems engineering: the Tropos project. Information systems 27(6) (2002) 365–
389

20. Roberts, D., Johnson, R.: Evolving frameworks: A pattern language for developing
object-oriented frameworks. In: Proceedings of the Third Conference on Pattern
Languages and Programming, Addison-Wesley (1996)

17

A Qualitative Study of Model Transformation
Development Approaches: Supporting Novice

Developers

Gabriel Costa Silva, Louis M. Rose, and Radu Calinescu

Department of Computer Science, University of York,
Deramore Lane, York YO10 5GH, UK

gabriel@cs.york.ac.uk,

{louis.rose,radu.calinescu}@york.ac.uk

Abstract. Developing model transformations is not a straightforward
task. It is particularly challenging when the developer has limited or
no experience in this area. This not only impedes the adoption of model
transformations, but also prevents companies from the benefits of Model-
Driven Engineering. We qualitatively analyse eight of the most relevant
approaches to developing model transformations cited in the literature.
Different from most studies in this area, we focus on life-cycle activi-
ties other than implementation. By highlighting the strengths and weak-
nesses of these approaches, we help new developers in selecting an ap-
proach and complement existing studies in this area.

Keywords: Model transformation; Development; Analysis; Comparison

1 Introduction

The use of Model Transformations (MT) in software engineering leads to several
benefits, such as complexity reduction and portability [3], [4]. However, develop-
ing MT is a challenge. As Siikarla et al. state in [12], “An application developer
with proper domain knowledge can manually create a target model based on a
source model. He can probably even come up with some of the most often used
rules of thumb for the transformations. However, defining a complete mapping
from all possible source models to target models is remarkably harder.” The state-
of-the-art for developing MT consists of describing the MT definition informally
in natural language [5], based on an “educated guess” [12], and implementing
the transformation definition using a transformation language [6], [18]. This in-
formal approach leads to several drawbacks [6], [18], [20], such as inconsistency
between specification and implementation [5] and cost increase [8].

Since MT are software [12], they need to be engineered as software [6], using
a systematic process of:

(i) specifying problems and requirements [5], [6], [7];
(ii) acquiring knowledge about semantic correspondences [19], [20];

18

Silva, Rose and Calinescu

(iii) modelling source and target models to outline a transformation [7], [12], [19];
(iv) creating mappings between meta-models [6], [19], [20];
(v) setting up constraints and rules for model mappings [6], [19], [20];
(vi) defining transformation architecture [6];

(vii) implementing the transformation definition using a transformation language
[5], [6], [12], [20]; and

(vii) validating the transformation definition [5], [6], [12].

Furthermore, analogous to software development, MT can take advantage of
further techniques to support its development, such as transformation patterns
[7], [18]. As Guerra et al. advocate in [6], developing MT “requires systematic
engineering processes, notations, methods and tools”. Although there are several
tools for implementing MT definitions [20], there is: (i) little work addressing
the whole life-cycle of MT [12], [19]; (ii) lack of guidelines for the systematic
development of MT, in particular, to support novice MT developers; and (iii)
different perspectives regarding the best way to develop MT.

The analysis in this paper aims to contribute to the adoption of Model-Driven
Engineering by providing a qualitative analysis of state-of-the-art approaches in
developing model-to-model (M2M) transformations, investigating their strengths
and weaknesses, and highlighting lessons learned for supporting MT developers
starting in this area. Our analysis was prompted by the following research ques-
tion: Which methods and techniques should a novice MT developer use? Unlike
most work in MT, such as that reported in [10], our focus lies in activities of MT
life-cycle other than implementation. In particular, we investigate processes, a
modelling language, and transformation patterns to support MT development.

Note that this is not the only challenge associated with MDE adoption.
However, challenges such as model and meta-model development are outside the
scope of our paper. By a literature review, we identify approaches to support MT
life-cycle. Then, we qualitatively analyse recent approaches according to three
aspects (Section 2): (i) model transformation foundations; (ii) features; and (iii)
applicability. Finally, we summarise lessons learned during our experience with
analysing and adopting MT in the cloud computing domain (Section 3).

2 Analysis

In our investigation of M2M transformation development approaches, we iden-
tified no study, either qualitative or quantitative, comparing approaches to MT
development in phases other than implementation. Furthermore, taking into
consideration approaches we analysed in this paper, apart from the approach
presented in [6], no approach was extensively evaluated, providing only worked
examples to support a feasibility analysis. Moreover, so far, no approach for MT
development has been widely adopted. These three facts make hard to choose a
suitable approach when developing MT, fostering the concept of “ad hoc” MT
development [6]. It becomes even harder when the MT developer has limited
experience in this activity. In order to support novices in the task of selecting an

19

A Qualitative Study of Model Transformation Development Approaches

approach for MT development, we provide in this section a qualitative analysis
of approaches present in the MT literature. Table 1 summarises our analysis.

2.1 Study Design

As Sjoberg, Dyba & Jorgensen define in [16], “qualitative methods collect material
in the form of text, images or sounds drawn from observations, interviews and
documentary evidence, and analyze it using methods that do not rely on precise
measurement to yield their conclusions.” To this end, we used 13 criteria for
analysing the approaches covered in our analysis, classifying the approaches into
three groups: MT foundations, main features, and applicability of each approach.

The first group consists of foundation concepts of MT, as presented in [3]
and [4]. The second group is based on the most relevant features implemented
by approaches. Finally, the last group consists of our evaluation of the applica-
bility of these approaches, taking into consideration the perspective of a novice
MT developer. The evaluation of these approaches was exclusively based on in-
formation presented in their respective papers. As Seaman advocates in [11], by
conducting this qualitative analysis we aim at providing rich and informative
analysis to support novice MT developers. In addition, we aim at increasing the
knowledge on how these approaches can contribute to designing MT.

Investigating model transformation literature, we identified eight research
papers presenting approaches supporting M2M transformation development. As
in our previous investigation [14] the IEEE digital library provided the most
significant set of primary studies for our research, we decided to use this library
as our primary source. Our search identified 121 papers, from which we critically
analysed both title and abstract, resulting in two papers selected for full reading
[7], [8]. In addition, we were supported by an MDE expert, who suggested another
paper [6]. Finally, by analysing references and citations of previously selected
papers, we found five more relevant papers [5], [12], [18], [19], [20].

Based on an analogy with software development, we classified the identified
approaches as:

(i) traditional [6], [12] when they advocate an iterative process of refinements,
from requirements to MT implementation and test;

(ii) by example [18], [19], [20] when they concentrate on simplifying the trans-
formation development, focusing on model mappings [9];

(iii) emergent [5] when based on emergent software development approaches (e.g.,
agile), which proposes innovative ways to develop software; and

(iv) transformation patterns [7], [8] which enable the identification of recurrent
relations in a model transformation, supporting the definition of transfor-
mation rules in a reusable way [8].

20

Silva, Rose and Calinescu

Table 1. Summary of key characteristics of MT approaches

2.2 Model Transformation Foundations

The first group of criteria consists of: multiple source/ target, exogenous/ en-
dogenous MT, mappings, and rules. It is critical to note that the papers we
analysed provided little, or no clear information about the two first criteria. For
those cases, we analysed the examples provided throughout the paper as the
main reference to infer answers for this question. To simplify the reference to
each approach, Table 1 enumerates approaches using numbers from (1) to (8).
These numbers will identify their respective approaches from now on.

Taking into consideration the support for multiple source/ target, only (2)
explicitly stated the support for multiple source and targets by their mapping
diagram. All other approaches suggested support for only single source/ target
models. For example, (3) made clear the decision taken by a set of stated as-
sumptions. Siikarla, (1), suggested his decision in a figure, used to explain his
approach. Analysing the transformation patterns presented, none of them con-
sider multiple source/ targets. For all other approaches, they suggested their
decision by examples presented throughout the paper.

Regarding the type of transformation supported, most of approaches support
only exogenous transformations. The only exception is (5), which presented only
endogenous examples, suggesting that this approach aims at also supporting en-
dogenous transformations. Examples presented by (2) suggested that it supports

21

A Qualitative Study of Model Transformation Development Approaches

both types of transformations. Likewise, the patterns flattening and mapping,
presented by (8), indicated that it supports both types of transformations.

As mappings and rules are core concepts in MT, both concepts are considered
by all analysed approaches. The main difference in this regard lies in how these
concepts are implemented by different approaches. For example, whereas (1)
set up correspondence examples to map models, and transformation patterns to
map meta-model, (6) specified mappings by test cases. Regarding rules, whereas
(2) defined it in their low-level design, (3) proposed their automatic generation.

2.3 Features

The second group of criteria consists of: language independence, phases covered,
focus, artefacts, and tooling support. In the context of this paper, language
independence means that the approach is not specific to a particular language
for the source and target models/meta-models. Apart from (8), that defines its
transformation patterns in the context of QVT, all other approaches are language
independent – though the examples presented are based on a particular language,
such as (1), that adopted UML. To analyse the phases of MT life cycle covered
by approaches, we took into consideration the general process for developing
MT, introduced in Section 1. The set of phases we included in this process is the
result of an analysis of MT literature. Table 2 summarises the phases covered
by each approach, and how each approach covers such phase.

Regarding the focus of each approach, although MT is defined at the meta-
model level, most approaches focus on the model rather than the meta-model
level. As Wimmer et al. explain in [20], meta-models might not define all language
concepts explicitly. Regarding the approaches we analysed, the exception is (7),
which focuses on the meta-model, and both (2) and (8), which address both
model and meta-model. It is important to note that (8) described their patterns
in terms of model, but the definition is made at meta-model level.

Approaches proposed a number of artefacts to support the developer. Table
1 shows the number of artefact types though it is central to note that this in-
formation is unclear in some papers, such as those which present (6), (4), and
(5). Finally, regarding tool support, (1) and (7) do not require a particular tool.
In the context of this analysis, requiring tool support means that the approach
cannot be wholly applied without a particular tool. For example, (7) does not
require a particular tool although it defines several automatic activities. Like-
wise, although (2) defines a family of languages, its MT development process is
language independent. Unlike the other approaches, (2) generates automatically
only test and traceability artefacts. In particular, by-example approaches define
semi-automatic tasks, that require specific tools. Approach (6) also defined the
use of specific tools, such as HUTN, EVL, and an adapted version of JUnit.

2.4 Applicability

To evaluate the applicability of each approach, we considered four criteria: sound-
ness, evaluation, level of technical detail, and the ability of the analysed approach

22

Silva, Rose and Calinescu

Table 2. MT phases covered by each approach analysed

to support another — like design patterns can support software development
process. We define the soundness of an approach, using the following scale: (i)
minimal — the paper introducing the approach provides very limited informa-
tion about approach theoretical foundations; (ii) good — the paper justifies the
decisions taken and reasons to underpin their decisions, even the information is
limited; and (iii) excellent, meaning that the text not only describes decisions
and their reasons, but also provides empirical evidence and basis from literature.

Taking into consideration this scale, only (2) was classified as having an
excellent soundness whereas (8) was classified as having a good. This result be-
comes worse when analysed along with the next criterion, evaluation. None of
by-example approaches were evaluated in the papers analysed. Apart from (2),
which conducted two case studies, other approaches conducted feasibility analy-
ses, taking into consideration worked examples. These two results highlight the
need for empirical evidence to support future work in this area. This is par-
ticularly important for the industrial adoption of these approaches. However,
note that these results do not invalidate the approaches. In fact, as discussed in
Section 3, many of these ideas are valid and useful.

Aiming at the application of these approaches, we evaluated the level of
technical detail provided in the paper. There are three possible classifications for
this criterion: (i) minimal, when the text does not provide enough information
to support the application of this approach; (ii) good, when the text provides
enough information to support the application of this approach, though detailed
information might be missing; and (iii) excellent, when the text not only provide

23

A Qualitative Study of Model Transformation Development Approaches

enough information, but also further details about activities, such as examples.
In this regard, (7) and (6) were classed as minimal. Approaches (2), (4), and
(5) provide excellent information, supported by examples that complement the
understanding. However, it is critical to point out that these three approaches
rely on tooling support, and the knowledge regarding the tools might be not
enough. The other three approaches were classified as good.

Finally, we analysed whether these approaches could support other approach.
For example, a traditional software development process might be supported by
several approaches, such as design patterns and graphical modelling languages.
Apart from transformation patterns and the MT language (approach (2)), which
by definition could be applied to support other approaches, all other approaches
defined their particular, non-extendable, life-cycle. In some cases, such as that
of (5), the need for tooling support creates additional dependency.

3 Lessons Learned

In this section, we summarise lessons learned while transforming a cloud model
[13], defined as part of our approach to support cloud portability [15], into a
TOSCA definition. Cloud computing is a computing model in which resources,
such as computing, are provided as services through the Internet [1]. Topology
and Orchestration Specification for Cloud Applications (TOSCA) is a standard
specification supported by OASIS to enable cloud portability [2]. This section
is based on our attempt to systematically apply the approaches previously pre-
sented. Lessons reported in this section complement the analysis in Section 2.

Developing model transformations is as complex as traditional
software development

Comparing the generic MT process introduced in Section 1 with the traditional
software development (TSD) life-cycle, such as waterfall [17], we can conclude
that both processes are similar. A developer needs requirements to define the
objectives, artefacts to guide the development, and tests to check for errors. Like
the TSD, the code is the main artefact, which represents the MT definition.
However, a number of questions arise when starting the requirement definition
for a MT. In contrast to TSD, in which one defines several requirements, in MT,
inicially, there is one single requirement: transform model A into model B.

In MT, the single requirement proposed must be broken down into several
others, specifying that the entity X, in the meta-model A, will become the entity
Z, in the meta-model B. To this end, the requirements diagram presented in
[6] is a relevant contribution since it enables requirement decomposition and
the creation of links between requirements to set up dependencies. However, to
define such a mapping, it is necessary to have a clear understanding of semantic
correspondences between the meta-models involved. Furthermore, unless these
semantic correspondences have been tested before, establishing the requirements
would be an error-prone task. For example, when we defined the requirements

24

Silva, Rose and Calinescu

for our cloud-to-TOSCA MT, we did not know which TOSCA entity a cloud
entity will become – though we knew very well both domains.

Thus, we had to analyse semantic correspondences of both meta-models be-
fore defining the requirements. In addition, we had to test if these correspon-
dences made sense. In this regard, the test-driven approach proposed in [5] was
useful. A test-case is an artefact which outlines these semantic correspondences.
Then, by implementing the transformation, this initial assumption is confirmed
or refuted. However, from a novice MT developer, the complexity involved in
defining requirements for MT is far harder than in TSD. In addition, require-
ment definition and mapping definition are two close activities. Finally, M2M
transformations might involve model-to-text transformations as well, making
the process even more complex. Thus, despite the similarity with TSD, in our
perspective, MT development requires extra artefacts and activities.

Models work well as examples, but not as the main transformation
drivers

By-example approaches, in particular, advocate the use of models rather than
meta-models as the main driver of a MT. Indeed, having two models, one repre-
senting a domain A, and another representing a domain B, aids the design of an
A-to-B MT. However, creating these models is not trivial. Although it might be
an intuitive process when creating a transformation from a UML class diagram
to an E-R diagram – a common example used in the literature, other domains re-
quire a huge effort. In our case, we found it to be impossible to devise a TOSCA
model based on our cloud model without an in-depth preliminary analysis of se-
mantic correspondences. The reason for that is quite simple: a model conforms
to a meta-model. Therefore, one cannot create a representation of model A,
which conforms to meta-model A, in conformance with meta-model B unless the
semantic correspondences between meta-models A and B are known beforehand.

For example, the by-example approaches proposed in [19] and [20], define in
their first activities the creation of source and target models, and the mapping
of entities between these models. In our case, we already had the cloud model,
however, we expected to follow a well-defined MT process in deriving the TOSCA
model (target). At that moment, we could infer that a cloud Service is similar to
a TOSCA TNodeType, but we did not know correspondences for other entities,
such as a cloud Region, and User. Thus, a process advocating the mapping
of models to achieve meta-models correspondences was not applicable because
without the meta-model correspondences it was impossible to derive the models.

In this regard, we learned that by-example approaches could be useful when
meta-model correspondences are already known, and two well-known meta-models
are given. Thus, models can be mapped and meta-model correspondences can be
automatically generated using these approaches. On the other hand, the creation
of two models is quite useful when designing MT as a way to validate meta-model
mappings. For example, after identifying that a cloud Resource is equivalent to
a TOSCA TNodeType, we created a TOSCA model representing this mapping.
Then, we could validate the model in two ways: checking in the general context

25

A Qualitative Study of Model Transformation Development Approaches

of TOSCA whether this transformation makes sense, and submitting the gener-
ated model to a TOSCA runtime environment. If the environment could process
the specification, it meant that the transformation succeeded.

Other lessons

– Although not yet addressing all MT development concerns, the analysed
approaches provide very useful contributions. Overall, we concluded that, like
MT area, the identified approaches are still maturing. As shown by Table 1,
most of them were neither extensively evaluated nor sound enough. However,
they provide several insights about performing MT, such as correspondence
examples [12], requirements diagram [6], and test-cases [5];

– Testing is critical in MT as it is in TSD. It is important to carry out several
tests when developing MT. In our experience, we identified problems with
different datatypes (e.g., conversion of String to xs:string), names (space
between nouns versus no space), and one entity in the source meta-model
being mapped to several others in the target meta-model;

– Capturing trace links between source and target model elements is a good
practice for MT, particularly if a MT becomes complex. In our experi-
ence, one single entity in the cloud meta-model became three entities in
the TOSCA meta-model, which in turn gave rise to several others. At the
end, the set of dependencies created was so complex, that it was hard to
validate them. Inspecting the trace model can help considerably in cases like
this, as it enables to identify source and target entities.

4 Conclusion

In our investigation of M2M transformation development, we identified no study,
either qualitative or quantitative, comparing approaches for MT development in
phases other than implementation. This complicates the selection process of
a suitable approach when developing MT, fostering the concept of “ad hoc”
MT development. It becomes even harder when the MT developer has limited
experience in this activity. To support the selection of an approach for MT
development, we provided in this paper a qualitative analysis of eight state-of-
the-art approaches for MT development. This analysis took into consideration
13 criteria, classified in three groups: model transformation foundations, features
and applicability. We complemented this analysis presenting the lessons learned
from our own experience with developing a MT for cloud domain.

Acknowledgments. This work was funded in part by CNPq - Brazil.

References

1. Armbrust, M., Stoica, I., Zaharia, M., Fox, A., Griffith, R., Joseph, A.D., Katz,
R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.: A view of cloud computing.
Communications of the ACM 53(4), 50–58 (Apr 2010)

26

Silva, Rose and Calinescu

2. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: Portable Automated
Deployment and Management of Cloud Applications. In: Advanced Web Services,
chap. TOSCA}: Po, pp. 527–549. Springer, New York (2014)

3. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in
Practice. Morgan & Claypool Publishers (2012)

4. France, R., Rumpe, B.: Model-driven Development of Complex Software: A Re-
search Roadmap. In: Future of Software Engineering (FOSE ’07). pp. 37–54. IEEE,
Minneapolis, MN (May 2007)

5. Giner, P., Pelechano, V.: Test-Driven Development of Model Transformations. In:
MDE Languages and Systems, pp. 748–752. Springer, Berlin (2009)

6. Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F., dos Santos, O.M.: Engineering
model transformations with transML. Software & Systems Modeling 12(3), 555–
577 (2013)

7. Iacob, M.E., Steen, M.W.A., Heerink, L.: Reusable Model Transformation Pat-
terns. In: 2008 12th Enterprise Distributed Object Computing Conference Work-
shops. pp. 1–10. IEEE, Munich (Sep 2008)

8. Jin, L., Guisheng, Y.: Method of constructing model transformation rule based on
reusable pattern. In: 2010 International Conference on Computer Application and
System Modeling (ICCASM 2010). pp. 519–524. IEEE, Taiyuan (Oct 2010)

9. Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., Wimmer, M.: Model
Transformation By-Example: A Survey of the First Wave. In: Düsterhöft, A., Klet-
tke, M., Schewe, K.D. (eds.) Conceptual Modelling and Its Theoretical Founda-
tions, pp. 197–215. Springer Berlin Heidelberg, Berlin (2012)

10. Lano, K., Kolahdouz-Rahimi, S., Poernomo, I.: Comparative Evaluation of Model
Transformation Specification Approaches. International Journal of Software and
Informatics 6(2), 233–269 (2012)

11. Seaman, C.B.: Qualitative Methods. In: Guide to Advanced Empirical Software
Engineering, pp. 35–62. Springer London, London (2008)

12. Siikarla, M., Laitkorpi, M., Selonen, P., Systä, T.: Transformations Have to be
Developed ReST Assured. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) Theory
and Practice of Model Transformations, pp. 1–15. Springer, Berlin (2008)

13. Silva, G.C., Rose, L., Calinescu, R.: Cloud DSL: A Language for Supporting Cloud
Portability by Describing Cloud Entities. In: 2014 CloudMDE Workshop. p. To be
published. Valencia (2014)

14. Silva, G.C., Rose, L.M., Calinescu, R.: A Systematic Review of Cloud Lock-In
Solutions. In: 2013 IEEE CloudCom. pp. 363–368. IEEE, Bristol (Dec 2013)

15. Silva, G.C., Rose, L.M., Calinescu, R.: Towards a Model-Driven Solution to the
Vendor Lock-In Problem in Cloud Computing. In: 2013 IEEE CloudCom. pp. 711–
716. IEEE, Bristol, UK (Dec 2013)

16. Sjoberg, D.I.K., Dyba, T., Jorgensen, M.: The Future of Empirical Methods in
Software Engineering Research. In: FOSE ’07. pp. 358–378. IEEE, Minneapolis,
MN (May 2007)

17. Sommerville, I.: Software Engineering. Addison Wesley, Harlow, 8 edn. (2007)
18. Sun, Y., White, J., Gray, J.: Model Transformation by Demonstration. In: Model

Driven Engineering Languages and Systems, pp. 712–726. Springer, Berlin (2009)
19. Varró, D.: Model Transformation by Example. In: Model Driven Engineering Lan-

guages and Systems, pp. 410–424. Springer, Berlin (2006)
20. Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards Model Transforma-

tion Generation By-Example. In: HICSS’07. pp. 285–294. IEEE, Waikoloa (2007)

27

Model-Driven Software Development of
Safety-Critical Avionics Systems: an Experience

Report

Aram Hovsepyan1, Dimitri Van Landuyt1, Steven Op de beeck1, Sam
Michiels1, Wouter Joosen1, Gustavo Rangel2, Javier Fernandez Briones2, Jan

Depauw2,

1 iMinds-DistriNet, KULeuven
first.last@cs.kuleuven.be

2 Space Applications Services N.V./S.A.
gustavoenriquerangel@spaceapplications.com, jfb@spaceapplications.com,

jan.depauw@spaceapplications.com

Keywords: dependability and safety, model-driven development process, early
verification and validation

Abstract. The model-driven software development (MDSD) vision has
booked significant advances in the past decades. MDSD is said to be
very promising in tackling the “wicked” problems of software engineering
including development of safety-critical software. However, MDSD tech-
nologies are fragmented as these are typically limited to a single phase in
the software development lifecycle. It seems unclear how to practically
combine the various approaches into an integrated model-driven software
development process.

In this experience report, we present an end-to-end MDSD process that
supports safety-critical software development from the point of view of
Space Applications Services, an industrial aerospace company. The pro-
posed development process is a bottom-up solution based on the state
of the practice and the needs of Space Applications Services. The pro-
cess integrates every software development activity starting from require-
ments definition all the way to the verification and validation activities.
Furthermore, we have created an integrated toolchain that supports the
presented MDSD process. We have performed an initial evaluation of
both the process and the toolset on a case study of an On-Board Control
Procedure Engine.

1 Introduction

Given the advances in the hardware technologies software development in gen-
eral is becoming an increasingly complex activity. Building software for avionics
systems is posing an even bigger challenge as dependability and safety are con-
cerns of paramount importance. Dependability refers to how software failures

28

can result in a degradation of the system performance or even in loss of mis-
sion or material. Safety, on the other hand, is defined as a system property that
is concerned with failures that can result in hazards to people or systems. For
safety-critical systems it is often compulsory to perform various safety-related
analyses as part of the software development lifecycle.

The model-driven software development (MDSD) vision seems very promis-
ing in efficiently tackling the essential complexities (including safety concerns)
of the software development process [1]. The MDSD vision, primarily focused on
the vertical separation of concerns, aims at reducing the gap between problem
and software implementation domains through the use of models that describe
complex systems at different abstraction levels and from a variety of perspec-
tives. Various standards, tools and techniques that are well-aligned with the
MDSD vision are currently becoming widely accepted by the industry. The Ar-
chitecture Analysis & Design Language (AADL) is a de-facto standard in the
domain of avionics and automotive software systems. The use of AADL enables
various types of analyses that link to dependability and safety aspects (e.g.,
schedulability analysis). SysML is a standard general-purpose language for sys-
tems engineering. SysML could be used to plug-in certain safety-related analyses,
such as Software Failure Mode, Effects & Criticality Analysis (SFMECA) and
Software Fault Tree Analysis (SFTA) [2]. While these techniques contribute to
the aspect of safety, they are all focused on a specific phase of the software
development lifecycle. As a consequence, these tools and approaches are frag-
mented and it remains unclear how these approaches can be chained together to
form a complete MDSD development process and toolchain. There is a lack of a
pragmatic model-based software development process that provides a complete
software lifecycle and transparently integrates the various building blocks. The
required process should enable model-based software development starting from
requirements analysis all the way to the verification and validation activities
of the final implementation. Finally, the transitions and traceability links be-
tween the different phases in the development lifecycle should be automatically
managed.

In this paper, we present our experiences with designing a complete MDSD
process in collaboration with Space Applications Services (an independent Bel-
gian space technology company). Our contributions are twofold. Firstly, we have
created an end-to-end MDSD process that covers all phases of software de-
velopment lifecycle and focuses explicitly on safety and dependability aspects.
The proposed end-to-end process is conform with a set of guidelines for embed-
ded and real-time software development prescribed by European Space Agency
(ESA) [3]. The end-to-end development process leverages the V-model and the
DSDM Atern agile framework [4]. We use design models for incremental skele-
ton code generation. Moreover, the proposed integrated process provides the
necessary mechanisms to perform several critical architectural analyses, i.e.,
SFMECA/SFTA and various analyses enabled by the use of AADL. Secondly, we
have successfully integrated a number of tools that enable the proposed MDSD
process. The presented approach is currently being validated by Space Applica-

29

tions Services in the development of a spacecraft On-Board Control Procedure
Engine (OBCP) [5].

The remainder of the paper is structured as follows. In section 2, we provide
background information on relevant dependability- and safety-related standards
and techniques. We also describe the problem statement in detail. In section
3, we present our solution in detail and discuss its advantages and drawbacks.
Section 4 presents a number of related works. Finally, section 5 concludes this
paper.

2 Background

To develop software in the avionics domain, software engineers must not only
develop complex real-time software, but also place the safety and dependability
qualities in the driver seat. Furthermore, certification plays an essential role in
avionics software otherwise not present in many other domains. The dependabil-
ity, safety and certification concerns pose a significant challenge as they affect
each phase of the software development lifecycle. In this section, we provide an
overview of these concepts. Then we briefly outline a number of methodologies
and techniques that focus on specific aspects related to dependability and safety.
In addition, we summarise how these activities are typically performed within
Space Applications Services. Finally, we present the problem statement in detail.

2.1 Dependability and Safety

Dependability and safety are key concerns in the development and operations
of avionics systems. The contribution of software to system dependability and
safety is a key factor given the growing complexity and applicability of software in
avionics applications. Dependability is concerned with software reliability, avail-
ability and maintainability. Software reliability is the property of software of
being “free from faults” [6]. A fault can be a result of human mistake made in
requirements specification, design specification, coding or even, mistakes made
while executing the software development process. In general, faults can lead
to errors that can lead to failures, i.e., an unexpected/unintended behaviour of
the system. Software maintainability relates to the ease with which the software
can be modified and put back into operation. Finally, software availability is the
capability of the software to perform a required function at a given instant of
time (or time interval). Safety is concerned with those failures that can result
in actual system hazards (as opposed to software reliability that is concerned
with all software failures). Safety is a system property. Nonetheless, software is a
main component of a system, and therefore contributes to its safety. As opposed
to typical software development, avionics software must undergo a certification
process before its utilisation. Safety certification assures that deployment of a
given system does not pose an unacceptable risk of harm. Furthermore, safety
certification is also concerned with the quality of the development process and
all its intermediary artifacts, such as requirements, architecture, etc.

30

2.2 Safety Analysis Activities

A number of tools and techniques exist that focus on dependability and safety.
These techniques are typically applied in very different stages of the software
development process. This section briefly describes three methodologies that are
highly relevant within the domain of applications developed by Space Applica-
tions Services. It is not our intention to be exhaustive in listing the relevant
approaches.

Software Failure Modes, Effects and Criticality Analysis (SFMECA)
is an iterative activity, intended to analyse the effects and criticality of failure
modes of the software within a system [7]. The analysis provides an essential
contribution to the development of the product architecture and to the definition
of the test and operation procedure. The result of the SFMECA analysis is a
table that contains the failure, function, failure mode, effect, criticality, impact,
action and mitigation. This analysis method can reveal failures not detected
by system level analysis. Furthermore, SFMECA analysis can identify critical
components, support design and verification decisions. It is essential that such
decisions are easily traced back from the latter software development phases to
their original artifacts.

Software Fault Tree Analysis (SFTA) is a deductive, top down method for
analysing system design and performance [7]. It involves specifying a top event
(also referred to as ”feared event”) to analyse, followed by identifying all of the
associated elements in the system that could cause that top event to occur.
SFTA is a logical and structured process that helps identify potential causes of
system failure before the failure actually occurs. The resulting output of SFTA
is a fault tree, describing the potential faults in the software.

2.3 Problem Statement

From the Space Applications Services point of view the current state of practice
in MDSD suffers from three drawbacks that play a significant role in MDSD
adoption.

Lack of an Integrated Process/Toolchain. Despite the clear advances in
the state-of-the-art, MDSD research methodologies and techniques typically stay
focused on a specific phase in the software development lifecycle. It remains quite
unclear how to produce a software system starting from customer requirements
all the way to a validated and verified implementation. While a one-size-fits-all
approach is unlikely to provide a systematic solution, we believe that a collection
of pragmatic bottom-up solutions is essential for the mainstream adoption of
MDSD. This problem relates to both an end-to-end process as well as a toolchain
that supports this process in a MDSD context.

31

Lack of Safety Engineering Methodology Integration. Even if a UML-
centric end-to-end process seems feasible given the MDSD tools, avionics soft-
ware systems must adhere to stringent safety standards. In the previous section,
we have briefly described a number of safety analyses and methodologies that
tackle a specific dependability and/or safety related aspect of the system. Space
Applications Services currently performs both SFMECA/SFTA analyses manu-
ally by leveraging Office-like (e.g., Powerpoint/Excel) applications. Ideally, ar-
chitecture and design models (with some additional annotation for feared events
and causing/contributing factors) could be used to run SFMECA/SFTA analy-
ses. Real-time performance analyses, such as schedulability analysis, end-to-end
flow latency analysis, are automated, but performed only at the implementation
level. The use of architecture-level analyses enabled by AADL could allow Space
Applications Services to early verify and validate all design decisions. The inte-
gration of all these activities in a hypothesised UML-centric end-to-end MDSD
process is not obvious.

Lack of End-to-End Process Traceability. Traceability plays an essential
role in the domain of avionics systems especially in the context of the certifi-
cation process. Indeed, it is crucial to have the necessary abstractions to trace
each code-level entity back to a set of requirements. An end-to-end MDSD pro-
cess introduces additional challenges as traces should ideally provide complete
information regarding the code, model and requirements interrelations.

3 Space Applications Services Development Process

In this section, we present a prototype end-to-end development process that
provides a pragmatic answer to the challenges outlined in the previous section.
The proposed approach is inspired by the engineering process proposed by the
European Space Agency (ESA) for the development of embedded and real-time
on-board software. We also briefly mention a number of tools that provide the
backbone of the proposed process.

3.1 Software Development Process

ESA has introduced a standard engineering process relevant to all space ele-
ments of a space system [3]. The phases covered by the standard are as follows.
Requirements Baseline corresponds to the complete specification provided
by the end-user regarding the software product expectations. Technical Re-
quirements correspond to all technical aspects that the software shall fulfil
with respect to the end-user requirements. Software Architecture Design
corresponds to the overall architecture that is created and refined based on
the technical requirements. Software Component Design corresponds to a
more detailed description of the elements described by the software architec-
ture. Implementation corresponds to the development of the various software
components described in the software component design phase. Verification

32

corresponds to the testing of produced implementation in order to verify the
correctness of the product performance. Validation corresponds to the testing
of the software components as well as the complete software in order to validate
the correctness of product performance.

We have created an integrated development process that is based on the no-
tion of the V-Model and the Agile Dynamic System Development Method Atern
framework. Figure 1 illustrates a structural view of the development process
that presents each development activity along with their structural connections
to other activities. This process is in line with the V-Model. Our contribution is
represented in grey by the two additional activities, i.e., SFMECA/SFTA and
AADL analyses, that cut across multiple development phases. The lines between
each activity schematically represent not only the process flow, but also the
artifact exchange between activities. For instance, technical requirements anal-
ysis is preceded by the software architecture design. Ideally, each requirement
is known and accessible at the architectural level. This enables the creation of
traces (or the traceability information) that link architectural elements to their
corresponding requirements. The traceability information between different de-
velopment phases is essential as it enables early requirements validation. Note
that the process is inherently iterative and one can always go back to an earlier
activity. This information was dropped from figure 1 for readability purposes.

Artefact or process
flow

Traceability
information

Requirements
Baseline

Rational DOORS

Technical
Requirements

Rational DOORS

Verification
(Integration Tests)

VectorCAST

Verification
(Unit Tests)

VectorCAST

Implementation
 Eclipse (C++

editor, compiler)

Software Architecture
Design

MagicDraw

Software Component
Design

MagicDraw

Verification
(Test Cases)

Rational DOORS

Validation
(Acceptance)

Rational DOORS

SFMECA/SFTA
Safety Architect

Architectural
Dependability Analysis

AADL - OSATE

Fig. 1. Space Apps V-Model Software Development Process

For the dynamics of this process we leverage the Dynamic System Develop-
ment Method (DSDM) Atern agile project delivery framework used for software
development. The idea behind DSDM is to develop a solution iteratively starting
from global view of the product. For a detailed description of DSDM Atern, we
refer the interested readers to [4].

33

3.2 Integrated Toolchain

We further briefly outline the tools currently utilised within Space Applications
Services that support the presented structural process. We also provide infor-
mation how software development artifacts are interchanged between the tools.
Figure 2 presents the tools for each activity. Note that some Space Applications
Services’ customers require the use of Rational DOORS during the software
development. However, all other tools can be freely replaced by alternatives.

Artefact flow

Requirements Baseline
Technical Requirements

Validation
Rational DOORS

Verification
(Unit Tests, Integration Tests)

VectorCAST

Architectural Dependability Analysis
Code Generation
Implementation

 MERgE Platform
(OSATE, MOFScript, CDT)

Software Architecture Design
Software Component Design
MagicDraw/Cameo DataHub

SFMECA/SFTA
Safety Architect

traces

Fig. 2. Structural Software Development Process Toolchain

IBM Rational DOORS tool is used for the the Requirement Baseline,
Technical Requirements and Validation Activities.
MagicDraw tool is used for the Software Architecture Design and Software
Component Design phases. The data interchange between Rational DOORS and
MagicDraw is realised by the Cameo DataHub tool that features a complete syn-
chronisation of requirements as well as traceability links between the tools. Note
that MagicDraw features a built-in functionality to both export and import all
modelling artifacts to the Eclipse Modelling Framework (EMF). EMF [8] pro-
vides the common infrastructure and a de facto UML standard implementation
for the model interchange between various tools.
Safety Architect is used for the SFMECA/SFTA Analyses activities [2]. Eclipse
EMF is used as a common language to interchange models.
MERgE Platform is an Eclipse-based toolset that provides an integrated col-
lection of plug-ins. We leverage the MOFscript [9] plug-in for transforming
the UML models into their AADL representation. We use the UML MARTE
profile for annotating the UML model elements with real-time and embedded
properties [10]. The AADL model is used by the OSATE tool for performing
Architectural Dependability Analysis. We also use MOFScript to generate skele-
ton C code that is further incrementally refined into a working implementation.
Eclipse CDT plug-in provides the necessary tools for the C code implementa-

34

tion. VectorCAST is used for the three Verification phases it automates unit
and integration testing activities.

3.3 Evaluation

In collaboration with Space Applications Services, we have performed an ini-
tial evaluation of the proposed process and toolchain on the case study of an
On-Board Control Procedure Engine. The MDSD process is considered to be
complete in the sense that it covers all phases from a software development life-
cycle required from the Space Applications Services point of view. The software
artefacts integration throughout the various phases is either provided by the tool
(e.g., Requirements and Technical requirements in Rational DOORS, or Software
Architecture and Software component Design in MagicDraw) or automatically
transformed by additional tools (e.g., MOFScript). Moreover, all the transitions
support the incremental nature of the complete process. This is essential as exist-
ing artefacts shall not break by subsequent iterations (e.g., manual refinements
to the AADL models or the generated code must be preserved). We have success-
fully integrated a number of AADL analyses by implementing ideas presented
in [10]. The integration of safety-related analyses (i.e., SFMECA and SFTA) are
currently work in progress. Finally, we have provided an initial implementation
towards tackling the traceability challenge. The traceability of various elements
between Rational DOORS and MagicDraw are actually provided by the tools.
The traceability between MagicDraw and the MERgE Platform is implemented
by incorporating references to the MagicDraw modelling elements as comments
both in the generated AADL model as well as in the generated code.

While the proposed approach seems pragmatic and effective in tackling the
challenges described in section 2.3 we still face a number of challenges that are
work in progress. At the toolchain level, we are still working towards integrating
the SFMECA/SFTA analyses in the Safety Architect tool. At the process level,
we are facing the challenge of having a process that contains many implicit con-
straints. If these constraints are not correctly followed the process may become
completely useless. For instance, source code should not be manually refined
without encoding that information into the detailed design as subsequent iter-
ations may break the manual code. This problem can be efficiently tackled by
using a Process Modelling Language (PML), such as OMG SPEM [11]. However,
even if such constraints are made explicit it is impossible to capture all possi-
ble situations. Furthermore, developers always deviate from the process model
either because of lack of experience or the imperfections of the proposed pro-
cess. Da Silva et al [12] present a systematic approach agnostic to a particular
PML selection to deal with such deviations. Our end-to-end MDSD approach
could substantially benefit from an integration with such a systematic frame-
work. Finally, a challenge both at the process and at the toolchain level remains
the management of the traceability information between various entities across
different abstraction levels, which is currently somewhat implicit. Ideally, a sys-
tematic approach should allow the transparent management of all traces within
a separate view.

35

4 Related Work

A number of research efforts focused on architecture optimisation are comple-
mentary to our work as they would enhance the Software Architecture Design
and Architectural Dependability Analysis phases. Etemaadi et al have presented
an approach with a supporting toolkit named AQOSA to support architecture
optimisation with respect to quality attributes [13]. Meedeniya et al have ad-
dressed the problem of evaluating reliability based on software architectures in
the presence of uncertainty [14]. Brosch et al have introduced a reliability mod-
eling and prediction technique that considers the relevant architectural factors
of software systems by explicitly modeling the system usage profile and execu-
tion environment and automatically deriving component usage profiles [15]. As
opposed to these research initiatives our approach is focused more on the overall
development process rather than a specific development phase.
Several research initiatives are focused on providing a systematic methodology
for tool integration. Balogh et al have proposed a workflow-driven tool integra-
tion framework using model transformations that allows one to formally specify
contracts for each transition between tools in the tool chain [16]. Klar et al have
created a meta-model-driven environment that allows to integrate tools by focus-
ing on traceability links between dependent tool artifacts [17]. The approach we
have proposed in this work could be seen as a case study for the tool integration
frameworks.

5 Conclusion

Developing software for the avionics domain is an extremely challenging task
given the strict dependability and safety requirements. The advent of Model-
Driven Software Development (MDSD) standards and tools has substantially
improved the current state-of-the-art by introducing a number of systematic
disciplines throughout various stages of the software development lifecycle. Un-
fortunately, these techniques are currently fragmented and it remains unclear
how these could be combined into an integrated end-to-end software develop-
ment process. In this experience paper, we have proposed a complete MDSD
process inspired by the V-model that integrates the various standards and tools
into a single integrated software development process. The proposed process
is based on the needs and experiences within Space Applications Services, an
industrial aerospace company. The MDSD process integrates transparently a
number of standards from the aeronautics domain, such as architectural analy-
sis and design language (AADL), software failure modes, effects and criticality
analysis (SFMECA) and software fault tree analysis (SFTA). Finally, the end-
to-end MDSD provides an initial answer to the traceability requirements within
Space Applications Services. In the future we plan to integrate the MDSD pro-
cess with a systematic process modelling and deviation detection and resolution
framework. We are also looking to improve the integration of traceability infor-
mation. Finally, we plan to further validate the proposed process on the case
study of an On-Board Control Procedure Engine.

36

Acknowledgements

The presented research is partially funded by the Research Fund KU Leuven and
the Flemish agency for Innovation by Science and Technology (IWT 120085).
The research activities were conducted in the context of ITEA2-MERgE (Multi-
Concerns Interactions System Engineering, ITEA2 11011), a European collabo-
rative project with a focus on safety and security [18].

References

1. France, R., Rumpe, B.: Model-driven development of complex software: A re-
search roadmap. In: Proceedings of the 29th International Conference on Software
Engineering, IEEE Computer Society (2007) 37–54

2. All4Tec: Safety architect. (http://all4tec.net/index.php/en/model-based-safety-
analysis)

3. ECSS Space Engineering: Safety. ECSS-E-ST-40C. Misc (2009)
4. Consortium, D.: The DSDM Atern Handbook. DSDM Consortium (2008)
5. ECSS Space Engineering: Spacecraft on-board control procedures. ECSS-E-ST-70-

01C. Misc (2010)
6. ECSS Space Engineering: Software dependability and safety. ECSS-Q-HB-80-03A.

Misc (2012)
7. Jet Propulsion Laboratory: Software Fault Analysis Handbook. (2005)
8. Eclipse: Eclipse modeling framework (EMF). (http://www.eclipse.org/emf/)
9. SINTEF: MOFScript. (http://modelbased.net/mofscript/)

10. Faugére, M., Bourbeau, T., de Simone, R., Gérard, S.: MARTE: Also an uml profile
for modeling AADL applications. In: ICECCS, IEEE Computer Society (2007)

11. OMG: Software Process Engineering Metamodell SPEM 2.0. Technical report,
OMG (2006)

12. da Silva, M.A.A., Bendraou, R., Blanc, X., Gervais, M.P.: Early deviation detection
in modeling activities of mde processes. In: MoDELS. (2010) 303–317

13. Etemaadi, R., Lind, K., Heldal, R., Chaudron, M.R.V.: Quality-driven optimiza-
tion of system architecture: Industrial case study on an automotive sub-system.
Journal of Systems and Software (2013) 2559–2573

14. Meedeniya, I., Moser, I., Aleti, A., Grunske, L.: Architecture-based reliability eval-
uation under uncertainty. In: Proceedings of the Joint ACM SIGSOFT Conference.
QoSA-ISARCS ’11, New York, NY, USA, ACM (2011) 85–94

15. Brosch, F., Koziolek, H., Buhnova, B., Reussner, R.: Architecture-based relia-
bility prediction with the palladio component model. Transactions on Software
Engineering (2011)

16. Balogh, A., Bergmann, G., Csertán, G., Gönczy, L., Horváth, Á., Majzik, I., Patar-
icza, A., Polgár, B., Ráth, I., Varró, D., Varró, G.: Workflow-driven tool integration
using model transformations. In: Graph Transformations and Model-Driven Engi-
neering. Lecture Notes in Computer Science, Springer (2010) 224–248

17. Klar, F., Rose, S., Schürr, A.: TiE - a tool integration environment. In: Proceedings
of the 5th ECMDA Traceability Workshop. Volume WP09-09 of CTIT Workshop
Proceedings. (2009) 39–48

18. MERgE Consortium: MERgE: Multi-concerns interactions system engineering.
(http://www.merge-project.eu)

37

Towards Enabling Cross-Organizational
Modeling in Automotive Ecosystems

Eric Knauss1 and Daniela Damian2

1 Department of Computer Science and Engineering
Chalmers | University of Gothenburg, Sweden

eric.knauss@cse.gu.se
2 Department of Computer Science

University of Victoria, Victoria BC, Canada
danielad@uvic.ca

Abstract. Automotive engineering is characterized by relying heavily
on complex supplier networks as well as by strong dependence from hard-
ware and software component development. OEMs (original equipment
manufacturers) coordinate and integrate the work of hardware and soft-
ware component suppliers and to an increasing amount develop appli-
cation software themselves (component suppliers can be internal). For
OEMs the transition to model-driven development promises potential re-
duction in the development lead-time of complex in-vehicle automotive
features, such as semi-autonomous driving, but it is not without chal-
lenges. For example, the verification of such features is still performed
using mainly physical properties such as hardware benches and mule ve-
hicles. While this step is necessary, it is not sufficient, because it does
not allow early verification of design decisions to the required extent. In
addition, the development speed of hardware and software components is
(a) limited by hardware development cycles as well as (b) slowed down
by unsynchronized software development cycles of key suppliers. This
prevents detailed information from being available early and potentially
resulting in expensive and late changes. Understanding this situation as
an ecosystem of cross-organizational collaborations allows us to reason
about challenges and opportunities of the interaction between the OEM
and different component- as well as tool-providers. In this paper, we re-
port first results from an exploratory study that involved interviews with
one of our industrial partners, General Motors (GM). First, we describe
our understanding of the automotive ecosystem. Second, we explore in-
teractions and roles of different ecosystem actors based on workshops
and interviews with engineers at GM.

Keywords: automotive, cross-organizational modelling, software ecosystem

1 Introduction

Automotive engineering is characterized by the complexity of the system under
construction as well as the required supply chain. In this environment, develop-
ment is market driven. If the market motivates development of a new feature,

38

the automaker (OEM, original equipment manufacturer) starts with high level
design of the feature, maps it to the overall system architecture, and derives
hardware and software requirements, which are most often given to suppliers for
implementation. Once the suppliers deliver hardware and software components,
the OEM starts integrating them into a final product. The complexity of design
artifacts and supplier networks lead to the need to coordinate and verify design
decisions across organizational borders.

With few exceptions, OEMs address feature development in a way that resem-
bles the waterfall process, characterized by upfront requirements analysis, early
design decisions with limited knowledge, and by being able to verify the success
of the development only later in the process after integration of the components
into a mule vehicle (a complete, often drivable vehicle with experimental and
prototype components). This situation can lead to sub-optimal decisions, which
often result in late changes and rework. Lean software development considers
this to be waste and suggests to change the process in a way that allows to make
design decisions later, based on knowledge about the performance of a number of
candidate solutions [14]. In the automotive domain, this would require the abil-
ity to verify non-functional properties (e.g. task performance) of such candidate
solutions very early.

In this paper, we report first results from an exploratory study in which we
aim at understanding coordination needs between actors in the automotive value
chain by interpreting it as an ecosystem. Our contributions are (i) a characteriza-
tion of the automotive ecosystem based on related work in software ecosystems,
(ii) a first sketch of crucial interactions and roles of different ecosystem actors
based on workshops and interviews with engineers at GM, and (iii) a discussion
of challenges and opportunities of changing the ecosystem in a way that supports
to make binding decisions (decisions that would be expensive to reverse such as
contractual or architectural decisions, e.g. about a certain microcontroller) later
and to do early non-functional verification across organizational borders earlier.

2 Research Questions and Method

This paper provides a first step towards describing automotive engineering as
an automotive ecosystem of interacting organizations and is based on our col-
laboration with engineers and technical leaders at GM based on the following
research questions:

RQ1: Who are the actors and what relationships exist among actors in the
automotive ecosystem?

RQ2: What are examples of challenges and opportunities that currently exist
in the automotive ecosystem?

To answer our research questions, we start by characterizing and defining the
scope of the automotive ecosystem based on related work in the field of software
ecosystems. We then follow up with a qualitative case study based upon worked
done at GM R&D to further our understanding of such an ecosystem. At this

39

stage, our research is exploratory in nature and the preliminary results we present
here are based on aggregating discussions during workshops and unstructured
interviews. In future research, we want to engage with representatives of potential
internal and external actors in the automotive ecosystem in semi-structured
interviews, with the goal to elicit a clear understanding of actor relationships
and their coordination needs as well as measurable objectives to measure and
continuously monitor success, health, and gains of the automotive ecosystem.

3 Roles and Relationships of Automotive Ecosystem
Actors

In this section, we explore relationships and interactions of actors in the auto-
motive ecosystem based on literature on software ecosystem and interviews as
well as workshops. We start with an example of how actors collaborate in auto-
motive supplier networks and characterize this ecosystem based on related work
in software ecosystems, before we report preliminary results from our ongoing
interviews with practitioners on how these actors interact to create value. This
is a first step towards a more formal assessment of the automotive ecosystem
(e.g. based on [9]).

3.1 Characterization of the Automotive Ecosystem

In understanding ecosystems, one would draw on three fields in software en-
gineering: open source software [15], modelling and architecture (e.g. software
evolution, architecture, and product lines [2]), and managerial perspectives (e.g.
business aspects and co-innovation [6]). Different strategies exist in software
ecosystems, varying from widely proprietary ecosystems based on a semi-open
partnership program to pure open source ecosystems [1,5] and literature discusses
almost as many proprietary ecosystems as free-and-open-source ecosystems [12].

Previous research proposed [2] to characterize ecosystems based on their cat-
egory (end-user programming, application, or operating system) and the scope
of the ecosystem’s operating environment (Desktop, Web, or Mobile). While we
see application software and operating systems for embedded systems in the
automotive ecosystem, it does not clearly fit into one of the suggested scope
categories. Instead, we propose to see automotive components as cyber-physical
systems to emphasize the increasing degree of connectivity between components.

Automotive engineering depends to a large degree on collaboration across
a large supplier network, which generates a significant coordination need. It
is characterized by the integration of different hardware and software compo-
nents, thus it is touching on various levels in the ecosystem stack [4], including
hardware, systems software, middleware, and application software. In a given
electronic control unit (ECU) at least three components can be distinguished:
(i) The hardware component, e.g. the microcontroller and peripherals, (ii) the
middleware component, providing drivers, communication facilities, and other

40

enabling routines, and (iii) the application software component, which provides
(parts) of functionality for user-facing features (e.g. semi-autonomous driving).

All of these components can be provided by different suppliers or be devel-
oped in house at the OEM, who is also responsible for integrating the different
inputs. We would thus see the OEM in the role of an ecosystem coordinator and
characterize it in terms of Jansen et al. [5] as privately owned and participation
to be based on a list of screened actors. Actors of the ecosystem can be keystones
(which have a huge impact on the ecosystem and provide room for niche players),
niche players offering complementary services to what keystone players already
provide, and the orchestrator/coordinator who is coordinating the ecosystem [6].
Those actors have various relationships among each other, including selling soft-
ware, providing services, providing software and assets, endorse software, train
consultants, and contribute to the artifacts produced by the ecosystem [13].

This integration requires to make binding decisions which typically, in auto-
motive engineering, need to be made before the application problem is completely
understood. Making such early binding decisions can lead to late changes (e.g. if
the hardware is too weak to support a given algorithm), or to waste (e.g. if the
hardware is more powerful and more expensive than required). Both problems
can only be discovered late, during non-functional verification and validation
through testing. Based on Farbey et al.’s classification of inter-organizational re-
lationships, we classify the automotive ecosystem to operate on Rung 1 (market
relationships with dominant focal firm) or, in some cases, where embryonic net-
working among actors occurs, as Rung 2 [3]. Other works by Manikas et al. and
Schultis et al. about characterizing actor relationships in internal or non-FOSS
(Free and Open Source Software) ecosystems [10,16] will allow a comparison
of our data in future work. We assume that network analyzis as proposed by
Manikas et al. [10] will reveal more dependencies and interrelations of actors
than in their case study because of the integrated development efforts.

Consider for example a case, where the OEM is developing the application
software component in house. R&D Engineers would develop a new control al-
gorithm, using Simulink for model-driven development and simulation to allow
functional testing, before hardware is in place. System designers would then
decompose the Simulink models and generate software from Simulink blocks.
By using for example software-in-the-loop based functional verification, this de-
velopment is independent from the ECU hardware development, which can be
started in parallel as soon as the hardware requirements are sufficiently under-
stood. However, non-functional verification on the integration or system level
can only be done once the hardware is developed and the execution time of the
application tasks on the target hardware can be measured.

3.2 Actors and their Relationships in the Automotive Ecosystem.

To identify and discuss the coordination needs of the ecosystem actors, we an-
alyze one typical scenario in the automotive domain that uses MDD (Model-
Driven Development) to provide a situation where software can be developed

41

Fig. 1: Actors and relationships in a typical engineering example in the automo-
tive ecosystem [17].

prior to the availability of MCU (Micro-Control Unit, part of the ECU) hard-
ware. The same target code compiled for the actual MCU can be run on the
simulated MCU at close to real time speeds and high degree of timing fidelity.
Fig. 1 shows the actors and their relationships, as provided by one of our GM
interviewees [17]. The figure emphasizes the strong coordination needs among
actors and shows artifacts as well as services these actors exchange. The Fig-
ure shows logical roles of the actors, i.e. one organization could choose to fulfil
several of the roles, e.g. both the model provider or the OEM user could also
become the Model Qualifier for a given development project. We discuss these
roles in the following.

The 3rd Party Tool Provider contributes a model of the rest of the system,
the plant model, which typically includes both a simulated controlled plant (e.g.
an engine) or at least a simulation of the digital interface to it, as well as the
simulated incoming messages from other MCUs in the system. This model allows
the target code to interact with other parts of the system before these have been
finished. Such models are usually exchanged using a third part tool format. For
example, for an engine model in Simulink, a MDL file is exchanged, while for
the network message model as Vector DBC file is included.

42

The Tool Provider contributes a standardised simulation environment (e.g.
based on SystemC, a set of C++ classes that provide event-driven simulation)
to (1) run the simulated MCU (2) execute the target code for the actual MCU
on the simulated MCU.

The Tool Integrator combines both tools into the Rest-Bus Tool Integrated
Environment, which allows OEM users to do Rest-Bus Simulation. Rest-Bus
Simulation is a technique used to validate ECU functionality by simulating parts
of an in-vehicle bus like the controller area network (CAN).

The Core Processor IP Model Provider provides a core processor model of
the intended hardware (usually an MCU). The Peripheral IP Model Provider
provides a model of the peripherals in which the core processor is embedded.
The MCU Provider will provide the hardware (typically, this is done by an
automotive Tier 2 supplier).

The MCU Model Qualifier ensures the requested level of accuracy of the
model in representing the MCU hardware. Currently there is no formal definition
of this role or default processes to qualify or certify the accuracy of models, yet
this would be crucial to overcome challenges as discussed later in this paper.

The MCU Model Integrator uses Core Processor and Periphery Models to
create a MCU Model. The Solution integrator integrates all models and tools
into an integrated simulation environment.

The OEM user develops the application software component, which relies on
the MCU hardware. It is important, that the development can start before the
availability of hardware, but also that design decisions can be non-functionally
verified early in the process. As development proceeds, uncertainty is reduced and
more knowledge about constraints becomes available. Also, a higher accuracy of
verification becomes necessary. While for later verification, a hardware board
is crucial, the availability of a virtual board early can be an asset, if adequate
accuracy is provided.

4 Opportunities and Challenges of GM’s Automotive
Ecosystem

Based upon the work done in GM R&D, our GM interviewees have stated that
one of the biggest opportunities of the automotive ecosystem is to enable its
actors to share accurate models of hardware, periphery, and middleware software
early and continuously in order to facilitate later binding decisions and early
non-functional verification. These models could then be partly refined as more
knowledge becomes available. For this, development partners (e.g. OEM, Tier
1 and 2 suppliers) need synchronization points where they share their current
level of knowledge. Examples of these include:

– OEM shares current version of Simulink prototypes and models with other
actors in the ecosystem.

– Tier 1 regularly shares information about the task composition and the char-
acterization of task execution time as it becomes available. This allows the
OEM early simulation and non-functionally verification.

43

OEM	

Tool	
 provider	

Model	
 qualifier	

Integrated tool chain

HW
Basic SW

Accurate model

Certify model
accuracy HW Design

Tier	
 2	
 supplier	

Tier	
 1	
 supplier	

Model	
 provider	

Fig. 2: Schematic view of abstract roles and their relationship in the automotive
ecosystem. Actors to the left provide services and artifacts to actors on the right.

– Tier 2 shares information about the microcontroller design and its capabili-
ties. This allows the Tier 1 supplier to estimate task execution times.

To increase the efficiency of this information exchange, our interviewees sug-
gested to consider tool providers as part of the ecosystem, as they enable interop-
erability and exchange of relevant models. Also, while Tier 1 and 2 suppliers can
be model providers, it could be preferable for some to rely on external modeling
experts to create accurate models of their hardware in development.

From these observations, we extracted a more generic view on the automotive
ecosystem (see Fig. 2). Basically, our study so far revealed two value chains
relevant to automotive ecosystems. First, we identified the classic automotive
value chains, where the OEM relies on delivery of HW and SW components
by Tier 1 and 2 suppliers. Secondly, in order to support early non-functional
testing (and consequently late design decisions based on accurate knowledge),
a second value chain needs to be introduced to provide and certify accurate
models of the HW in parallel to the main development stream (gray actors in
Fig. 2). A Tier 2 Supplier might provide such models themselves or rely on an
external Model Provider. Further, the accuracy of the models with respect of
non-functional properties needs to be certified to create reliable models that
allow testing target-code-in-the-loop (TCIL, a new simulation paradigm where
application code compiled for the actual MCU runs on a simulated MCU).

Opportunities in the Automotive Ecosystem. The envisioned automotive
ecosystem as sketched in Fig. 2 provides opportunities for win-win sscenarios,
because actors are not competitors. Tier 2 suppliers for example would gain a
competitive advantage if they can more easily integrate into such an ecosystem,
e.g. by collaborating with model providers (or by taking that role themselves)
in order to provide models of their hardware early and update them regularly so
that their accuracy continuously grows until the hardware is completely devel-
oped. Tool providers will benefit from a larger market of their integrated tools,
which enable the TCIL cycle. Tier 1 suppliers would benefit from the ability to
run regression tests on virtual boards quickly.

44

Challenges in the Automotive Ecosystem. As of today, OEM users may
decide against sophisticated models of hardware as they can be more expensive
than a hardware evaluation board, especially when considering that currently
there is no formal and independent certification of the accuracy of models. Poten-
tial time-saving opportunities are typically not exploited because non-functional
verification can only start when the evaluation board becomes available.

Acceptance of modeling can depend on availability of certification processes. Our
interviews identify the lack of certification as one of the main technical chal-
lenges. A clear process for the qualification of models needs to be in place and
best practices as well as standard collaboration models need to be defined. By
this, the MCU Model Qualifier actor in Fig. 1 appears as one of the key roles in
the ecosystem to allow for transparent and reliable assessment of model accuracy.

Introduction of MDD might impact ecosystem health. To enable a healthy ecosys-
tem, it should be avoided that a keystone player becomes a dominator [11]. This
could e.g. happen, if a specific Tier 2 supplier would be the only supplier that
offers models with sufficient quality, thus becoming a monopolist in the example.

Effective cross-organizational modeling depends on new solutions for legal con-
cerns. Providing accurate HW models to other ecosystem partners early may
require Tier 2 suppliers to define provisions to protect against potential disclo-
sure of their intellectual property. While such openness is required to leverage
the opportunities our interviewees see in the automotive ecosystem, adequate
licenses and contract models need to be introduced to offer sufficient protection.

Cross-organizational modeling impacts local processes. To decrease development
lead-time by offering early non-functional testing as well as later binding deci-
sions, actors may need to adjust their internal processes, such as those in sales
and purchasing to include provisions that cover models of IPs in the contracts.

5 Discussion and Outlook on Future Work

In this paper, we analyzed the automotive value chain and supplier network as an
ecosystem and explored the extent to which this allows us understanding actor
relationships (e.g. information flows), challenges (e.g. coordination needs) and
potential for optimization. An accurate charting of the automotive ecosystem
landscape requires more interviews with technical leaders at OEMs, Tier 1 and
Tier 2 suppliers, tool providers, and potential model providers and qualifiers. We
report now on this ongoing work to gather feedback on our intended approach
to understand the automotive ecosystem.

The ecosystem perspective offers a unique chance to analyze actors and their
relationships in the ecosystem and to uncover challenges as well as opportuni-
ties, as shown in the example of the TCIL case. In previous work, we found that
navigating the tradeoffs between protecting intellectual properties ←→ openness

45

Act globally: strategic VD&I

Act openly,
transparent VD&I

Act proprietarily,
confidential VD&I

Act locally: ‘just-in-time’ VD&I

tradeoff

Fig. 3: Tradeoffs in software ecosystems, here with respect to VD&I (Virtual
Development and Integration).

as well as between global top-down approach ←→ Responsive bottom-up approach
generates opportunities for shared understanding of requirements between actors
in an ecosystem [8]. In Fig. 3 we represent such tradeoffs with respect to the Vir-
tual Development and Integration process and challenges and impediments for
leveraging the true potential of the automotive ecosystem. For example, an in-
creased information exchange among actors in the ecosystem benefits the overall
ecosystem, but requires that the intellectual property of partners is protected.
Enabling actors to make their own design decisions and to share them with
relevant other actors increases the responsiveness of the ecosystem as well as
the potential to allocate resources where they are needed most, but still a co-
ordinator needs to guarantee that such engineering efforts lead to the intended
performance of the integrated system and its user-facing features.

Future research should engage in a more systematic analysis of the actors’
information and coordination needs as well as of how to optimize the information
flow between them. This is a unique chance for the modeling community, which
is called to provide mechanisms for efficient exchange of requirements, design
decisions, and models between different organizations. We plan on furthering
our discussions with more industrial partners in the automotive industry and
broaden as well as validate our understanding of their ecosystem and its chal-
lenges, e.g. in the context of Autosar (www.autosar.org). Our long term research
goal is propose and develop, in collaboration with industrial partners, solutions
towards these challenges.

Acknowledgements

This work was sponsored by NECSIS and Software Center (an industry-academia
partnership, hosted by Dept. of Computer Science and Engineering, Chalmers |
University of Gothenburg). We would like to express our special gratitude and
thanks to our contacts and interview partners at GM – this work would not have
been possible without you!

46

References

1. van Angeren, J., Kabbedijk, J., Popp, K.M., Jansen, S.: Software Ecosystems:
Analyzing and Managing Business Networks in the Software Industry, chap. 5:
Managing software ecosystems through partnering, 85–102. In: [7] (2012)

2. Bosch, J.: From Software Product Lines to Software Ecosystems. In: Proc. of Int’l
Conf. on Softw. Product Lines (2009)

3. Farbey, B., Finkelstein, A.: Software acquisition: a business strategy analysis. In:
Proceedings of Requirements Engineering (RE ’01). pp. 76–83 (2001)

4. Gao, L.S., Iyer, B.: Analyzing complementarities using software stacks for software
industry acquisitions. Journal of Management Information Systems 23(2), 119–147
(2006)

5. Jansen, S., Cusumano, M.: Defining software ecosystems: A survey of software
platforms and business network governance. In: Int’l WS on SW Ecos. (2012)

6. Jansen, S., Brinkkemper, S., Finkelstein, A.: Software Ecosystems: Analyzing and
Managing Business Networks in the Software Industry, chap. 2: Business Network
Management as a Survival Strategy, pp. 29–42. In: Jansen et al. [7] (2012)

7. Jansen, S., Cusumano, M.A., Brinkkemper, S. (eds.): Software Ecosystems: Ana-
lyzing and Managing Business Networks in the Software Industry. Edward Elgar,
Cheltenham, UK (2012)

8. Knauss, E., Damian, D., Knauss, A., Borici, A.: Openness and Requirements: Op-
portunities and Tradeoffs in Software Ecosystems. In: Proc. of 22nd Int’l Require-
ments Engineering Conf. (RE ’14). Karlskrona, Sweden (2014)

9. Knauss, E., Hammouda, I.: EAM: Ecosystemability Assessment Method. In: Proc.
of 22nd Int’l Requirements Engineering Conf. (RE ’14). Karlskrona, Sweden (2014)

10. Manikas, K., Hansen, K.M.: Characterizing the danish telemedicine ecosystem:
Making sense of actor relationships. In: Proc. of MEDES’13. pp. 211–218. Neumn-
ster Abbey, Luxembourg (2013)

11. Manikas, K., Hansen, K.M.: Reviewing the Health of Software Ecosystems - A
Conceptual Framework Proposal. In: Proc. of Int’l Wksp on Softw. Ecosys. pp.
33–44. Potsdam, Germany (2013)

12. Manikas, K., Hansen, K.M.: Software ecosystems: A systematic literature review.
Systems and Software 86, 1294–1306 (2013)

13. Popp, K.M.: Definition of supplier relationships in software ecosystems as a basis
for future research. Tech. rep. (2010), http://www.drkarlpopp.com/resources/

ICSOBSubmission2.pdf

14. Poppendieck, M., Poppendieck, T.: Lean Software Development. Addison Wesley
(2003)

15. Scacchi, W.: Understanding requirements for open source software. In: Proc. of
Design Reqts. Wksp. pp. 467–494. Springer LNBIP 14 (2009)

16. Schultis, K.B., Elsner, C., Lohmann, D.: Architecture Challenges for Internal Soft-
ware Ecosystems: A Large-Scale Industry Case Study. In: Proc. of 22nd ACM SIG-
SOFT Int’l Symp. on the Foundations of Software Engineering (FSE ’14) (2014)

17. Yantchev, J., Serughetti, M., Lapides, L., Giusto, P.: Session ID #6P17I(Panel)
- Intermediate, Simulation: Expert Insights Into Modelling Microcontrollers.
Panel, Renesas DevCon (2012), http://renesasdevcon.com/archives/course.

html, meet the expert, Session ID #6P17I

47

	Article 1

