
A Qualitative Study of Model Transformation
Development Approaches: Supporting Novice

Developers

Gabriel Costa Silva, Louis M. Rose, and Radu Calinescu

Department of Computer Science, University of York,
Deramore Lane, York YO10 5GH, UK

gabriel@cs.york.ac.uk,

{louis.rose,radu.calinescu}@york.ac.uk

Abstract. Developing model transformations is not a straightforward
task. It is particularly challenging when the developer has limited or
no experience in this area. This not only impedes the adoption of model
transformations, but also prevents companies from the benefits of Model-
Driven Engineering. We qualitatively analyse eight of the most relevant
approaches to developing model transformations cited in the literature.
Different from most studies in this area, we focus on life-cycle activi-
ties other than implementation. By highlighting the strengths and weak-
nesses of these approaches, we help new developers in selecting an ap-
proach and complement existing studies in this area.

Keywords: Model transformation; Development; Analysis; Comparison

1 Introduction

The use of Model Transformations (MT) in software engineering leads to several
benefits, such as complexity reduction and portability [3], [4]. However, develop-
ing MT is a challenge. As Siikarla et al. state in [12], “An application developer
with proper domain knowledge can manually create a target model based on a
source model. He can probably even come up with some of the most often used
rules of thumb for the transformations. However, defining a complete mapping
from all possible source models to target models is remarkably harder.” The state-
of-the-art for developing MT consists of describing the MT definition informally
in natural language [5], based on an “educated guess” [12], and implementing
the transformation definition using a transformation language [6], [18]. This in-
formal approach leads to several drawbacks [6], [18], [20], such as inconsistency
between specification and implementation [5] and cost increase [8].

Since MT are software [12], they need to be engineered as software [6], using
a systematic process of:

(i) specifying problems and requirements [5], [6], [7];
(ii) acquiring knowledge about semantic correspondences [19], [20];



Silva, Rose and Calinescu

(iii) modelling source and target models to outline a transformation [7], [12], [19];
(iv) creating mappings between meta-models [6], [19], [20];
(v) setting up constraints and rules for model mappings [6], [19], [20];
(vi) defining transformation architecture [6];

(vii) implementing the transformation definition using a transformation language
[5], [6], [12], [20]; and

(vii) validating the transformation definition [5], [6], [12].

Furthermore, analogous to software development, MT can take advantage of
further techniques to support its development, such as transformation patterns
[7], [18]. As Guerra et al. advocate in [6], developing MT “requires systematic
engineering processes, notations, methods and tools”. Although there are several
tools for implementing MT definitions [20], there is: (i) little work addressing
the whole life-cycle of MT [12], [19]; (ii) lack of guidelines for the systematic
development of MT, in particular, to support novice MT developers; and (iii)
different perspectives regarding the best way to develop MT.

The analysis in this paper aims to contribute to the adoption of Model-Driven
Engineering by providing a qualitative analysis of state-of-the-art approaches in
developing model-to-model (M2M) transformations, investigating their strengths
and weaknesses, and highlighting lessons learned for supporting MT developers
starting in this area. Our analysis was prompted by the following research ques-
tion: Which methods and techniques should a novice MT developer use? Unlike
most work in MT, such as that reported in [10], our focus lies in activities of MT
life-cycle other than implementation. In particular, we investigate processes, a
modelling language, and transformation patterns to support MT development.

Note that this is not the only challenge associated with MDE adoption.
However, challenges such as model and meta-model development are outside the
scope of our paper. By a literature review, we identify approaches to support MT
life-cycle. Then, we qualitatively analyse recent approaches according to three
aspects (Section 2): (i) model transformation foundations; (ii) features; and (iii)
applicability. Finally, we summarise lessons learned during our experience with
analysing and adopting MT in the cloud computing domain (Section 3).

2 Analysis

In our investigation of M2M transformation development approaches, we iden-
tified no study, either qualitative or quantitative, comparing approaches to MT
development in phases other than implementation. Furthermore, taking into
consideration approaches we analysed in this paper, apart from the approach
presented in [6], no approach was extensively evaluated, providing only worked
examples to support a feasibility analysis. Moreover, so far, no approach for MT
development has been widely adopted. These three facts make hard to choose a
suitable approach when developing MT, fostering the concept of “ad hoc” MT
development [6]. It becomes even harder when the MT developer has limited
experience in this activity. In order to support novices in the task of selecting an



A Qualitative Study of Model Transformation Development Approaches

approach for MT development, we provide in this section a qualitative analysis
of approaches present in the MT literature. Table 1 summarises our analysis.

2.1 Study Design

As Sjoberg, Dyba & Jorgensen define in [16], “qualitative methods collect material
in the form of text, images or sounds drawn from observations, interviews and
documentary evidence, and analyze it using methods that do not rely on precise
measurement to yield their conclusions.” To this end, we used 13 criteria for
analysing the approaches covered in our analysis, classifying the approaches into
three groups: MT foundations, main features, and applicability of each approach.

The first group consists of foundation concepts of MT, as presented in [3]
and [4]. The second group is based on the most relevant features implemented
by approaches. Finally, the last group consists of our evaluation of the applica-
bility of these approaches, taking into consideration the perspective of a novice
MT developer. The evaluation of these approaches was exclusively based on in-
formation presented in their respective papers. As Seaman advocates in [11], by
conducting this qualitative analysis we aim at providing rich and informative
analysis to support novice MT developers. In addition, we aim at increasing the
knowledge on how these approaches can contribute to designing MT.

Investigating model transformation literature, we identified eight research
papers presenting approaches supporting M2M transformation development. As
in our previous investigation [14] the IEEE digital library provided the most
significant set of primary studies for our research, we decided to use this library
as our primary source. Our search identified 121 papers, from which we critically
analysed both title and abstract, resulting in two papers selected for full reading
[7], [8]. In addition, we were supported by an MDE expert, who suggested another
paper [6]. Finally, by analysing references and citations of previously selected
papers, we found five more relevant papers [5], [12], [18], [19], [20].

Based on an analogy with software development, we classified the identified
approaches as:

(i) traditional [6], [12] when they advocate an iterative process of refinements,
from requirements to MT implementation and test;

(ii) by example [18], [19], [20] when they concentrate on simplifying the trans-
formation development, focusing on model mappings [9];

(iii) emergent [5] when based on emergent software development approaches (e.g.,
agile), which proposes innovative ways to develop software; and

(iv) transformation patterns [7], [8] which enable the identification of recurrent
relations in a model transformation, supporting the definition of transfor-
mation rules in a reusable way [8].



Silva, Rose and Calinescu

Table 1. Summary of key characteristics of MT approaches

2.2 Model Transformation Foundations

The first group of criteria consists of: multiple source/ target, exogenous/ en-
dogenous MT, mappings, and rules. It is critical to note that the papers we
analysed provided little, or no clear information about the two first criteria. For
those cases, we analysed the examples provided throughout the paper as the
main reference to infer answers for this question. To simplify the reference to
each approach, Table 1 enumerates approaches using numbers from (1) to (8).
These numbers will identify their respective approaches from now on.

Taking into consideration the support for multiple source/ target, only (2)
explicitly stated the support for multiple source and targets by their mapping
diagram. All other approaches suggested support for only single source/ target
models. For example, (3) made clear the decision taken by a set of stated as-
sumptions. Siikarla, (1), suggested his decision in a figure, used to explain his
approach. Analysing the transformation patterns presented, none of them con-
sider multiple source/ targets. For all other approaches, they suggested their
decision by examples presented throughout the paper.

Regarding the type of transformation supported, most of approaches support
only exogenous transformations. The only exception is (5), which presented only
endogenous examples, suggesting that this approach aims at also supporting en-
dogenous transformations. Examples presented by (2) suggested that it supports



A Qualitative Study of Model Transformation Development Approaches

both types of transformations. Likewise, the patterns flattening and mapping,
presented by (8), indicated that it supports both types of transformations.

As mappings and rules are core concepts in MT, both concepts are considered
by all analysed approaches. The main difference in this regard lies in how these
concepts are implemented by different approaches. For example, whereas (1)
set up correspondence examples to map models, and transformation patterns to
map meta-model, (6) specified mappings by test cases. Regarding rules, whereas
(2) defined it in their low-level design, (3) proposed their automatic generation.

2.3 Features

The second group of criteria consists of: language independence, phases covered,
focus, artefacts, and tooling support. In the context of this paper, language
independence means that the approach is not specific to a particular language
for the source and target models/meta-models. Apart from (8), that defines its
transformation patterns in the context of QVT, all other approaches are language
independent – though the examples presented are based on a particular language,
such as (1), that adopted UML. To analyse the phases of MT life cycle covered
by approaches, we took into consideration the general process for developing
MT, introduced in Section 1. The set of phases we included in this process is the
result of an analysis of MT literature. Table 2 summarises the phases covered
by each approach, and how each approach covers such phase.

Regarding the focus of each approach, although MT is defined at the meta-
model level, most approaches focus on the model rather than the meta-model
level. As Wimmer et al. explain in [20], meta-models might not define all language
concepts explicitly. Regarding the approaches we analysed, the exception is (7),
which focuses on the meta-model, and both (2) and (8), which address both
model and meta-model. It is important to note that (8) described their patterns
in terms of model, but the definition is made at meta-model level.

Approaches proposed a number of artefacts to support the developer. Table
1 shows the number of artefact types though it is central to note that this in-
formation is unclear in some papers, such as those which present (6), (4), and
(5). Finally, regarding tool support, (1) and (7) do not require a particular tool.
In the context of this analysis, requiring tool support means that the approach
cannot be wholly applied without a particular tool. For example, (7) does not
require a particular tool although it defines several automatic activities. Like-
wise, although (2) defines a family of languages, its MT development process is
language independent. Unlike the other approaches, (2) generates automatically
only test and traceability artefacts. In particular, by-example approaches define
semi-automatic tasks, that require specific tools. Approach (6) also defined the
use of specific tools, such as HUTN, EVL, and an adapted version of JUnit.

2.4 Applicability

To evaluate the applicability of each approach, we considered four criteria: sound-
ness, evaluation, level of technical detail, and the ability of the analysed approach



Silva, Rose and Calinescu

Table 2. MT phases covered by each approach analysed

to support another — like design patterns can support software development
process. We define the soundness of an approach, using the following scale: (i)
minimal — the paper introducing the approach provides very limited informa-
tion about approach theoretical foundations; (ii) good — the paper justifies the
decisions taken and reasons to underpin their decisions, even the information is
limited; and (iii) excellent, meaning that the text not only describes decisions
and their reasons, but also provides empirical evidence and basis from literature.

Taking into consideration this scale, only (2) was classified as having an
excellent soundness whereas (8) was classified as having a good. This result be-
comes worse when analysed along with the next criterion, evaluation. None of
by-example approaches were evaluated in the papers analysed. Apart from (2),
which conducted two case studies, other approaches conducted feasibility analy-
ses, taking into consideration worked examples. These two results highlight the
need for empirical evidence to support future work in this area. This is par-
ticularly important for the industrial adoption of these approaches. However,
note that these results do not invalidate the approaches. In fact, as discussed in
Section 3, many of these ideas are valid and useful.

Aiming at the application of these approaches, we evaluated the level of
technical detail provided in the paper. There are three possible classifications for
this criterion: (i) minimal, when the text does not provide enough information
to support the application of this approach; (ii) good, when the text provides
enough information to support the application of this approach, though detailed
information might be missing; and (iii) excellent, when the text not only provide



A Qualitative Study of Model Transformation Development Approaches

enough information, but also further details about activities, such as examples.
In this regard, (7) and (6) were classed as minimal. Approaches (2), (4), and
(5) provide excellent information, supported by examples that complement the
understanding. However, it is critical to point out that these three approaches
rely on tooling support, and the knowledge regarding the tools might be not
enough. The other three approaches were classified as good.

Finally, we analysed whether these approaches could support other approach.
For example, a traditional software development process might be supported by
several approaches, such as design patterns and graphical modelling languages.
Apart from transformation patterns and the MT language (approach (2)), which
by definition could be applied to support other approaches, all other approaches
defined their particular, non-extendable, life-cycle. In some cases, such as that
of (5), the need for tooling support creates additional dependency.

3 Lessons Learned

In this section, we summarise lessons learned while transforming a cloud model
[13], defined as part of our approach to support cloud portability [15], into a
TOSCA definition. Cloud computing is a computing model in which resources,
such as computing, are provided as services through the Internet [1]. Topology
and Orchestration Specification for Cloud Applications (TOSCA) is a standard
specification supported by OASIS to enable cloud portability [2]. This section
is based on our attempt to systematically apply the approaches previously pre-
sented. Lessons reported in this section complement the analysis in Section 2.

Developing model transformations is as complex as traditional
software development

Comparing the generic MT process introduced in Section 1 with the traditional
software development (TSD) life-cycle, such as waterfall [17], we can conclude
that both processes are similar. A developer needs requirements to define the
objectives, artefacts to guide the development, and tests to check for errors. Like
the TSD, the code is the main artefact, which represents the MT definition.
However, a number of questions arise when starting the requirement definition
for a MT. In contrast to TSD, in which one defines several requirements, in MT,
inicially, there is one single requirement: transform model A into model B.

In MT, the single requirement proposed must be broken down into several
others, specifying that the entity X, in the meta-model A, will become the entity
Z, in the meta-model B. To this end, the requirements diagram presented in
[6] is a relevant contribution since it enables requirement decomposition and
the creation of links between requirements to set up dependencies. However, to
define such a mapping, it is necessary to have a clear understanding of semantic
correspondences between the meta-models involved. Furthermore, unless these
semantic correspondences have been tested before, establishing the requirements
would be an error-prone task. For example, when we defined the requirements



Silva, Rose and Calinescu

for our cloud-to-TOSCA MT, we did not know which TOSCA entity a cloud
entity will become – though we knew very well both domains.

Thus, we had to analyse semantic correspondences of both meta-models be-
fore defining the requirements. In addition, we had to test if these correspon-
dences made sense. In this regard, the test-driven approach proposed in [5] was
useful. A test-case is an artefact which outlines these semantic correspondences.
Then, by implementing the transformation, this initial assumption is confirmed
or refuted. However, from a novice MT developer, the complexity involved in
defining requirements for MT is far harder than in TSD. In addition, require-
ment definition and mapping definition are two close activities. Finally, M2M
transformations might involve model-to-text transformations as well, making
the process even more complex. Thus, despite the similarity with TSD, in our
perspective, MT development requires extra artefacts and activities.

Models work well as examples, but not as the main transformation
drivers

By-example approaches, in particular, advocate the use of models rather than
meta-models as the main driver of a MT. Indeed, having two models, one repre-
senting a domain A, and another representing a domain B, aids the design of an
A-to-B MT. However, creating these models is not trivial. Although it might be
an intuitive process when creating a transformation from a UML class diagram
to an E-R diagram – a common example used in the literature, other domains re-
quire a huge effort. In our case, we found it to be impossible to devise a TOSCA
model based on our cloud model without an in-depth preliminary analysis of se-
mantic correspondences. The reason for that is quite simple: a model conforms
to a meta-model. Therefore, one cannot create a representation of model A,
which conforms to meta-model A, in conformance with meta-model B unless the
semantic correspondences between meta-models A and B are known beforehand.

For example, the by-example approaches proposed in [19] and [20], define in
their first activities the creation of source and target models, and the mapping
of entities between these models. In our case, we already had the cloud model,
however, we expected to follow a well-defined MT process in deriving the TOSCA
model (target). At that moment, we could infer that a cloud Service is similar to
a TOSCA TNodeType, but we did not know correspondences for other entities,
such as a cloud Region, and User. Thus, a process advocating the mapping
of models to achieve meta-models correspondences was not applicable because
without the meta-model correspondences it was impossible to derive the models.

In this regard, we learned that by-example approaches could be useful when
meta-model correspondences are already known, and two well-known meta-models
are given. Thus, models can be mapped and meta-model correspondences can be
automatically generated using these approaches. On the other hand, the creation
of two models is quite useful when designing MT as a way to validate meta-model
mappings. For example, after identifying that a cloud Resource is equivalent to
a TOSCA TNodeType, we created a TOSCA model representing this mapping.
Then, we could validate the model in two ways: checking in the general context



A Qualitative Study of Model Transformation Development Approaches

of TOSCA whether this transformation makes sense, and submitting the gener-
ated model to a TOSCA runtime environment. If the environment could process
the specification, it meant that the transformation succeeded.

Other lessons

– Although not yet addressing all MT development concerns, the analysed
approaches provide very useful contributions. Overall, we concluded that, like
MT area, the identified approaches are still maturing. As shown by Table 1,
most of them were neither extensively evaluated nor sound enough. However,
they provide several insights about performing MT, such as correspondence
examples [12], requirements diagram [6], and test-cases [5];

– Testing is critical in MT as it is in TSD. It is important to carry out several
tests when developing MT. In our experience, we identified problems with
different datatypes (e.g., conversion of String to xs:string), names (space
between nouns versus no space), and one entity in the source meta-model
being mapped to several others in the target meta-model;

– Capturing trace links between source and target model elements is a good
practice for MT, particularly if a MT becomes complex. In our experi-
ence, one single entity in the cloud meta-model became three entities in
the TOSCA meta-model, which in turn gave rise to several others. At the
end, the set of dependencies created was so complex, that it was hard to
validate them. Inspecting the trace model can help considerably in cases like
this, as it enables to identify source and target entities.

4 Conclusion

In our investigation of M2M transformation development, we identified no study,
either qualitative or quantitative, comparing approaches for MT development in
phases other than implementation. This complicates the selection process of
a suitable approach when developing MT, fostering the concept of “ad hoc”
MT development. It becomes even harder when the MT developer has limited
experience in this activity. To support the selection of an approach for MT
development, we provided in this paper a qualitative analysis of eight state-of-
the-art approaches for MT development. This analysis took into consideration
13 criteria, classified in three groups: model transformation foundations, features
and applicability. We complemented this analysis presenting the lessons learned
from our own experience with developing a MT for cloud domain.

Acknowledgments. This work was funded in part by CNPq - Brazil.

References

1. Armbrust, M., Stoica, I., Zaharia, M., Fox, A., Griffith, R., Joseph, A.D., Katz,
R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.: A view of cloud computing.
Communications of the ACM 53(4), 50–58 (Apr 2010)



Silva, Rose and Calinescu

2. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: Portable Automated
Deployment and Management of Cloud Applications. In: Advanced Web Services,
chap. TOSCA}: Po, pp. 527–549. Springer, New York (2014)

3. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in
Practice. Morgan & Claypool Publishers (2012)

4. France, R., Rumpe, B.: Model-driven Development of Complex Software: A Re-
search Roadmap. In: Future of Software Engineering (FOSE ’07). pp. 37–54. IEEE,
Minneapolis, MN (May 2007)

5. Giner, P., Pelechano, V.: Test-Driven Development of Model Transformations. In:
MDE Languages and Systems, pp. 748–752. Springer, Berlin (2009)

6. Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F., dos Santos, O.M.: Engineering
model transformations with transML. Software & Systems Modeling 12(3), 555–
577 (2013)

7. Iacob, M.E., Steen, M.W.A., Heerink, L.: Reusable Model Transformation Pat-
terns. In: 2008 12th Enterprise Distributed Object Computing Conference Work-
shops. pp. 1–10. IEEE, Munich (Sep 2008)

8. Jin, L., Guisheng, Y.: Method of constructing model transformation rule based on
reusable pattern. In: 2010 International Conference on Computer Application and
System Modeling (ICCASM 2010). pp. 519–524. IEEE, Taiyuan (Oct 2010)

9. Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., Wimmer, M.: Model
Transformation By-Example: A Survey of the First Wave. In: Düsterhöft, A., Klet-
tke, M., Schewe, K.D. (eds.) Conceptual Modelling and Its Theoretical Founda-
tions, pp. 197–215. Springer Berlin Heidelberg, Berlin (2012)

10. Lano, K., Kolahdouz-Rahimi, S., Poernomo, I.: Comparative Evaluation of Model
Transformation Specification Approaches. International Journal of Software and
Informatics 6(2), 233–269 (2012)

11. Seaman, C.B.: Qualitative Methods. In: Guide to Advanced Empirical Software
Engineering, pp. 35–62. Springer London, London (2008)

12. Siikarla, M., Laitkorpi, M., Selonen, P., Systä, T.: Transformations Have to be
Developed ReST Assured. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) Theory
and Practice of Model Transformations, pp. 1–15. Springer, Berlin (2008)

13. Silva, G.C., Rose, L., Calinescu, R.: Cloud DSL: A Language for Supporting Cloud
Portability by Describing Cloud Entities. In: 2014 CloudMDE Workshop. p. To be
published. Valencia (2014)

14. Silva, G.C., Rose, L.M., Calinescu, R.: A Systematic Review of Cloud Lock-In
Solutions. In: 2013 IEEE CloudCom. pp. 363–368. IEEE, Bristol (Dec 2013)

15. Silva, G.C., Rose, L.M., Calinescu, R.: Towards a Model-Driven Solution to the
Vendor Lock-In Problem in Cloud Computing. In: 2013 IEEE CloudCom. pp. 711–
716. IEEE, Bristol, UK (Dec 2013)

16. Sjoberg, D.I.K., Dyba, T., Jorgensen, M.: The Future of Empirical Methods in
Software Engineering Research. In: FOSE ’07. pp. 358–378. IEEE, Minneapolis,
MN (May 2007)

17. Sommerville, I.: Software Engineering. Addison Wesley, Harlow, 8 edn. (2007)
18. Sun, Y., White, J., Gray, J.: Model Transformation by Demonstration. In: Model

Driven Engineering Languages and Systems, pp. 712–726. Springer, Berlin (2009)
19. Varró, D.: Model Transformation by Example. In: Model Driven Engineering Lan-

guages and Systems, pp. 410–424. Springer, Berlin (2006)
20. Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards Model Transforma-

tion Generation By-Example. In: HICSS’07. pp. 285–294. IEEE, Waikoloa (2007)


