Canonical model development techniques aimed
at semantic interoperability in the
heterogeneous world of information modeling

L.A .Kalinichenko

Institute of Informatics Problems
Russian Academy of Science
leonidk@synth.ipi.ac.ru

Abstract. This paper is addressed the context of enterprise modeling
aiming at a methodology showing how a unified model intended for the
information integration and interoperability in heterogeneous world can
be systematically synthesized. We can observe an explosion of diverse in-
formation modeling facilities and respective platforms around the world.
Various attempts to reach technical interoperability among the platforms
are well known. Diverse middleware frameworks have been developed
emphasizing different basic artifacts (objects, messaging, services, etc.).
Taking into consideration information modeling semantics in such frame-
works is rarely attempted. The approach considered here is based on the
following idea. To provide semantic information integration and inter-
operability in a heterogeneous environment including different modeling
facilities an eztensible canonical model is required. A core of the canon-
ical model is fixed. Then for each specific information model M;, taken
from the environment, an extension of the canonical model core is built
so that this core together with such extension is refined by M;. Such
refinement-based model transformation should be provable. The canon-
ical model for the environment is synthesized as a union of ertensions
created for all the models M; in the environment.

Techniques for such approach are considered separately for structured
data models with behaviors, for object models and for process models.
The paper has a form of a short overview of basic results related to these
techniques and obtained in IPT RAS in different periods during more
than 20 years. Experience reached, lessons learnt and perspectives of the
approach for the Interop project (enterprise modeling) are discussed.

1 Introduction

Enterprise modelling provides the means to structure and decompose the enter-
prise system into less complex parts and to describe functionality and behaviour
of any part of the system. Enterprise models support various requirements of
enterprise inter- and intra-organizational engineering and integration. Diverse
forms of enterprise modeling were developed (such as, wvirtual corporation, ex-
tended enterprise). A common feature for these forms is that they imply crossing-
boundary business activities. Virtual enterprises should unite forces and jointly

behave as one producer towards the customers. Modeling of such distributed
business activities, their collaboration constitutes a problem. A basic issue is
that there are many types of elements to be modeled in an enterprise, and many
perspectives and contexts in which those definitions would be viewed. Enterprise
integration combines partial definitions and their uses for multiple purposes in
such a way that the whole system can be seen coherently. All enterprise model-
ing approaches share the fundamental strategy of integrating at the model level
- taking fragments of information within the enterprise and placing them in a
larger uniform context.

Current situation in enterprise modelling is characterised by a large number
of modelling languages and tools leading to heterogeneous and unintegrated defi-
nitions of the enterprise and by absence of communication among tools. Common
representation of enterprise definitions is required. One of the possible solutions is
to develop a UEML (Unified Enterprise Modelling Language) [23] as a means to
mediate between different Enterprise Modelling tools, as an inter-lingua among
such tools.

Technically, interoperability of business processes and enterprise models can
provide for heterogeneous models collaboration. Interoperability requires the
timely and meaningful exchange of information among the models. It requires
reliable transfer of information, a clear agreement on its syntax, and shared
well-defined understanding of its semantics. The benefits of information shar-
ing between collaborators can only be exploited if interoperability on the data,
behavior and process models can be assured. Information from many indepen-
dent sources and with different semantics should be associated, organized, and
merged.

Various middleware frameworks facilitate technical interoperability of enter-
prise models. Data-level interoperability deals with moving data between mul-
tiple data-stores, message-level interoperability assumes message exchange be-
tween the integrated information systems or services, process-level interoperabil-
ity is responsible for handling message flows, implementing rules and defining the
overall process execution. At the same time taking into account the information
modeling semantics in such frameworks is rarely attempted.

This paper is focused on inter-model interoperability based on the semantics
of heterogeneous modeling facilities. For uniform representation of various mod-
eling facilities in one paradigm a canonical model is needed that should provide
for semantically equivalent representations at the canonical level of definitions
expressed heterogeneously. To reason that a definition in one language can be
substituted by a definition in another one, a formal specification framework and
a commutative model mapping method are provided. According to this method,
to provide semantic information integration and interoperability in a heteroge-
neous environment including different modeling facilities an eztensible canonical
model is required. A core of the canonical model is fixed. Then for each specific
information model M; taken from the environment an extension of the canonical
model core is built so that this core together with such extension are refined by
M;. Such refinement-based model transformation should be provable. The canon-

ical model for the environment is synthesized as a union of extensions created
for all the models M; in the environment.

The paper defines techniques experienced for such approach separately for
structured data models with behaviors, for object models and for process mod-
els. The paper has a form of a short overview of basic results related to these
techniques and obtained in IPI RAS in different periods during more than 20
years. The cited bibliography reflects this period. Analysis of related works can
be found in [10, 11,13, 22].

Though heterogeneous model mapping and canonical model construction
techniques are considered in specific contexts (data base integration and me-
diation, object type specification re-use and compositions, compositional devel-
opment of processes), they can be easily generalized for many other applications.
Enterprise modeling and model driven architecture of OMG (MDA) [15] are two
examples of contexts showing the range of possible applications of the approach.
The relations between the UEML development and data base integration issues
have already been discussed in [19].

The paper is structured as follows. Section 2 provides an overview of the
results on extensible canonical model development and commutative data model
techniques experienced in the beginning of 80ies for structured data models.
Section 3 extends approaches of Section 2 with the refinement technique that
has been applied to object models in 90ies. Section 4 overviews the recent at-
tempts to apply the extensible canonical model development techniques to the
process models. Experienced reached and perspectives of their use in various
environments are summarized in conclusion.

2 Structured data models mapping and canonization

2.1 Principles of canonical model construction

An approach for rigorous definition of data models and for handling them as for-
mal objects in the process of construction of data model (DM) mappings [10, 11]
is considered in context of heterogeneous database integration. In each database
management system a data model is completely defined by data description lan-
guage (DDL) and data manipulation language (DML) semantics. In transition
from a specific (source) DM to the canonical (target) one it is required to preserve
information and operations. To reach that a source DM should be equivalently
represented in the canonical one in the process of DM mapping. A notion of data
model equivalence is introduced in the following manner. Database states in a
source and a target DM are equivalent if they are mapped into the same state
in the abstract data metamodel. Tt is assumed that equivalent database states
represent one and the same collection of facts. Database schemas are equiva-
lent if they produce sets of database states of equal power related by bijective
dependency in such a way that the states being in one-to-one correspondence
are equivalent. Two data models are equivalent if each database schema in one
model can be put into a one-to-one correspondence with the equivalent schema

in the other model (and vice versa), while providing completeness of the DML
operator set in each data model.
The following are the basic principles of a canonical model construction:

The data model axiomatic extension principle. Canonical data model should
be extensible while new data models are involved into considerations. Such ex-
tension is implemented axiomatically. An extension of target DM is formed by
adding to its DDL of a system of axioms determining (in terms of the target
model) logical data dependencies of the source data model. The result of the
extension should be equivalent to the source data model.

The data model commutative mapping principle. In the process of mapping
a source DM into the canonical one it is necessary to preserve information and
operators. This requirement is satisfied if DM mapping is commutative.

The set of all schemas expressible in DDL of M; is denoted by .S;, set of data
manipulation statements of M; DML is denoted by O;. A space of admissible
states expressible in M; is denoted as B;.

Ms; : S; — B; is a semantic function of AM; DDL

Mo; : O; = [B; — B;] is a semantic function of M; DML.

Mapping f =< 0,8,8 > of data model M; into an extension M;; of data
model M; is commutative if the following conditions hold:

— schema mapping diagram is commutative:

MSZ"
S; X {Qi]’}“ J " Bij
o O
MS]'
Sj > B

— DML operators mapping diagram is commutative:

Oij Moy > [Bij = Bij]
B T
Mp;
P ’ » [Bj = Bj]

— 6 mapping is bijective.

Here (2;; denotes a set of axiom schemas expressing the data dependencies
of M; in terms of M;; P; denotes sequences of M; DML operators (procedures).

The unifying canonical data model synthesis principle. Canonical data model
synthesis is a process of construction of canonical data model core extensions
equivalent to various data models included into the environment and a process of

merging of such extensions in the canonical data model. Following this process,
the unifying canonical data model is formed in which various source data models
have homogeneous equivalent representations.

Axiomatic extension of the target model means that its DML operator se-
mantics should be adequately modified to preserve the axioms of the extension.

2.2 Denotational semantics as the data metamodel

Main reason for formal definition of the data models is to obtain their compact
and precise descriptions, making possible manipulation by different data models
as by mathematical objects. The metalanguage used for the formal definition of
the data models is called the data metamodel (DMM). DMM should be general
(i. e. independent of particular data model concepts), allowing precise expression
of semantic properties of different data models, of their similarity or difference on
the basis of one and the same language. Formal DM definitions provide for strict
discipline for design of data model mappings, according to which construction
of the mapping and proof of its correctness should be done simultaneously.

Denotational semantics [20] has been experienced as a formal DMM for struc-
tural data model mapping [11]. The cornerstone of the denotational semantics
consists in the introduction of the class of ”data types” — domains of func-
tions — as partially-ordered sets and of a class of functions (generally recursive)
for creation of a natural and precisely defined computational model. Relation
C ("less defined or equal”) is a partial order on domain D such that for all d
belonging to D the relationships L C d and d C d holds. Data type (domain) in
the data metamodel is a set partially ordered by relation C.

Abstract data metamodel consists of:

— a set of elementary domains Dy, Ds, ... corresponding to primary sets of
objects;

— operations allowing construction of complex domains (data types) from sim-
pler ones and facilities for data type formal definition;

— set of data types defined on the basis of elementary domains by means of
data type constructing operations;

— a set of primitive functions and predicates, defined on the data types;

— a set of functional forms, used for new function definition and facilities for
formal definition of functions;

— a set of function definitions;

— a set of rules of equivalent function transformations.

Any data type (domain) T is constructed recursively from data types (do-

mains) D;(1 < i < n) using domain constructing operations OP = +| x | —
(domain of sum, product and functional domain respectively) according to the
following rules:
T = D; (any domain is a data type), T = T* (list domain), T = T", T =
T OP T. In domain constructing expressions parentheses may be used: T =
(T OP T). For readability the functional domain is inserted into square brackets:
T =T —T].

A functional form (conditional form, functional substitution, composition) in

a data metamodel is an expression denoting function.

Equivalent function transformation is used to demonstrate the commuta-

tivity of the operator mapping diagrams in DM mappings. Examples of basic
transformations [4] are shown below. Here f,g,h denote arbitrary functions, p,q
denote any predicates.

Lof=fol=1 (1)

(p— f.g)oh=poh— foh,goh (2)
ho(p— f,g9)=p—>hofhog (3)
p— ®— f.9),h=p— fh (4)

Complete specification of DMM can be found in [10, 11].

2.3 Structure of formal definition of a data model

The definition of DDL of data model M; consists of the following:

1.

w

Abstract DDL syntax as a domain of all schemas expressible in the data
model;

. DDL semantic domains as data types representable in the data model;
. Schemas of DDL semantic functions;
. Functions of DDL construct interpretations in semantic domains.

The definition of DML semantics of M; consists of the following partitions:

. Abstract DML syntax as a domain of all DML operators expressible in M; ;
. DML semantic domains containing DDL semantic domains and data types

characterizing state of a DML program;

. Schemas of DML semantic functions;
. DML statement interpretation functions interpreting changes of database

enforced by DML statements execution.

2.4 Process of commutative data model mapping construction

The generic process of commutative structural data model mapping construction
is shown on Fig. 1. This process solves two problems: 1) construction of canonical
model core extensions equivalent to source data models; 2) development and
verification of canonical DML interpretation by the source DML. This process
was used intensively in the beginning of 80ies. Details of the process application
and respective examples can be found in [10].

Formal definition of the target (M) and the source
(Ms) DM by DMM tools (semantics functions construction
for DDL Ms : Sch — B and DML Mo — [B — B])

Construction of DDL, mapping into DDL; (definition
of o : Schy — Schy,0 : B; — By, O is injective

Axiomatic extension of M; to M;s: axiom schemas
£2;5 selection,construction of o : Schs — Schy X {24},
definition of operational interpretation of axioms,
checking of bijectivity of @ : Bs — By,

DML semantics definition of M;s : Moy : O — [Bis — Bys].
The expression of axioms operational semantics
in terms of functions in Mo:s. Checking of the fact of consistency
of operational axioms interpretation with their semantics in Mo

DML statements interpretation function construction :
Mois : Ps — [Bs — Bs]

Verification of commutativity of DML statement
mapping diagram (transformation of
Moi,(ot) into Mos(0t))

2.5 Canonical model for the structural source data models

On the basis of systematic application of the commutative data model mapping
method and of the method of canonical model synthesis the following results
were obtained [10, 11].

Axiomatic extensions of relational DM equivalent to various source struc-
tural DM (network, hierarchical, binary, descriptor) were constructed. An
example of axiomatic extension of relational DM equivalent to CODASYL
network data model [6] is given in fig. 2. Compound axioms reflect CODASYL
sets semantics with MANDATORY and OPTIONAL membership as total and
partial functional dependencies.

Simple axioms (for relation R;; A;, A;, Ax- collections of
attributes of R;)
1.Axiom of uniqueness
UNIQUE A4;
2.Axiom of constancy
CONSTANT 4;
3.Axiom of definiteness
OBLIGATORY A4;
4.Axiom of conditional uniqueness
UNIQUE NONNULL 4;
5.Axiom of order
R;[RESTRICTED BY 4;] IS ORDERED|[<order>]
[BY <« direction > A;{, < direction > Ay }]

Compound axioms (for relations R;, R;)

6.Axiom of total functional dependency(f.d.)
R;j(4;) = Ri(Ai)

7.Axiom of partial functional dependency(p.f.d.)
R;j(A;) = Ri(A;)

8.Axiom of partial strong functional dependency
Ri(A;) = S = Ri(4;)

9.Axiom of partial functional dependency with
initial connection
R]’(Aj) =L= RZ(Al)

Fig.2

A set of canonical model facilities obtained as a result of canonical data
model synthesis is shown in fig. 3. Application of the structural model mapping
technique was demonstrated for the case when a combination of relational and
semi-structured models was used as a canonical model core. For the source mod-
els, twelve of widely used diverse structural data models of the beginning of 80ies
were used (fig. 3). Among them are network data models (including CODASYL

DM), hierarchical data models (including IMS), binary relational data models,
semi-structured data models (BASIS). The required data model mappings were
constructed and the canonical data model has been synthesized.

An important property of the process of synthesis consists in relatively fast
saturation of the canonical data model when consideration of new source data
model brings no new axioms on the target DM level. The resulting data model
with respect to the known (at the beginning of 80ies) DM is a saturated one.
This circumstance allows to consider the resulting model to be a canonical one.

It is important to note that for the denotational semantics as DMM no
tools providing for justification of commutativity of DDL and DML mapping
diagrams existed. Proof of the commutativity of DDL mapping diagrams was
based on the method of structural induction. Proof of commutativity of operator
mapping diagrams was based on the rules of equivalent function transformation
of the metamodel. Due to absence of any specific tools, construction of a model
mapping according to this approach was a hard work.

Generally, for the relatively small number of the source models in the envi-
ronment, the approach based on manual construction of data model mappings
and justification of their commutativity has been practically applicable, though
labor consuming.

The results obtained for the structural data model mapping keep their method-
ological value today. Similar approaches can be applied for other purposes (e.g.,
common representation of enterprise models, model mapping in MDA).

More advanced technique providing for automatic proof of correctness of
model mappings is considered in the next section.

3 Object model commutative mapping technique

The period of 90s can be characterized by active development and use of object
models and middleware frameworks intended for the interoperable information
systems development (e.g., [18]) , when alongside with new object models (being
inherently extensible) new formal languages and program development methods
(based on refinement calculus and step-wise refinement technique) appeared.
Taking advantage of that, the model mapping and canonical model development
methods defined in the previous section have been modified in the following way.
As a formal data metamodel instead of denotational semantics the Abstract Ma-
chine Notation (AMN) has been applied. AMN provided for manipulation with
model-theoretic specifications in the first-order logic and proof of specification
refinement [2, 3]. Refinement technique allowed to expand basic definitions of re-
lationships between data types, schemas, data models so that instead of equiv-
alence of the respective specifications it would be possible to reason of their
refinement [3]. Specific tools (B-technology [2]) provided for the proof of model
mapping diagrams commutativity in a semi-automatic way: proof obligations
required for justification of model refinement are generated by B automatically,
their proof may require human assistance.

Canonical model facilities

Data models

718(9|10]11{12

Canonical data model core

Normalized relations
Hierarchical relations
Positional aggregates

Core extension

Axiom of uniqueness

Axiom of constancy

Axiom of definiteness

Axiom of conditional uniqueness
Axiom of conditional constancy
Axiom-function

Axiom-partial function

Axiom of order

Axiom-predicate

Axiom of total f.d.

Axiom of partial f.d.

Axiom of strong p.f.d.

Axiom of p.f.d.with initial
connection

Axiom of total f.d. with backward
connection

Axiom of p.f.d. with backward
connection

Axiom of stable total f.d.(s.t.f.d.)
Axiom of s.t.f.d. with backward
connection

Axiom of of duplex dependency

*[x|%| * | *
x| | *
* |

EE I

Data models denotation

1.Codd relational DM (1970)
2.CODASYL network DM
3.IMS Hierarchical DM
4.IDS Network DM

5.DM of DBMS PALMA

6. ADABAS DM

Fig. 3

7.Descriptor DM of DBMS BASIS
8.DM of DBMS POISK

9.TOTAL network DM
10.Hierarchical DM of DBMS INES
11.Binary relational DM

12.Codd relational DM (1979)

3.1 AMN as an object metamodel

AMN as a model-theoretic notation makes possible to integrate the specification
of the state space and behavior (specified by operations on the states). Specifi-
cation of the machine state consists in providing of state variables together with
invariants - constraints that always should be satisfied. Operations are defined
using an extension of Dijkstra’s formalism of guarded commands.

The state specification notation is based on a set theory and a typed first-
order language with the built-in types and type (sort) constructors. The collec-
tion of complex sort constructors includes: cartesian product (x), powerset (g),
set comprehension ({z|z € s A P}), relational sort constructors (s < t), func-
tional sort constructors (s — t.) Here s,t denote sets, P denotes a predicate.
Predicates in the notation are defined using the first-order language. The set of
well-formed formulae for that can be defined using the logical connectors and
quantifiers. The interpretation of a state of an abstract machine is given by the
machine variables assigning to each variable an element in a certain domain.

The operations of the abstract machines are based on the generalized substi-
tutions. Every generalized substitution S defines a predicate transformer binding
with some postcondition R its weakest precondition [S]R that guarantees the in-
variance of R after an operation execution. If it is so, one says that S establishes
R. ”Weakest” precondition means that the ”initial state” predicate associated
with some given ”final state” predicate should allow as many states as possible.

A machine N is said to refine a machine M if a user can use N instead of
M without noticing it. Applying algorithmic and data refinement the refinement
machine can be constructed [2]. In AMN it is possible to prove formally that
a machine is a refinement of another one using specialized tool. Modeling type
and subtype in object environment by an abstract machine and its refinement,
we can formally establish the subtyping conditions.

More details on the B AMN can be found in [3].

3.2 Redefinition of data model mapping principles

A notion of data model equivalence is redefined as a notion of data model refine-
ment introduced in the following manner. Two database states - one in a source
model and another one in a target model - are in a refinement order if they are
mapped into two states in the abstract data metamodel so that an image of a
source model state becomes a refinement of an image of a target model state. A
type t, bijectively data refines a type t; iff the types produce sets of database
states of equal power related by bijective dependency in such a way that the
states being in one-to-one correspondence are in a refinement order. A schema
Ss refines a schema St iff for each type ts of Ss there is a type ¢; in St (St does
not contain other types) such that ¢s is a refinement of ¢;. A data model Ms
refines a data model Mt iff for each admissible schema S's of M s there exists an
admissible schema St of Mt such that Ss is a refinement of St.

Data model axiomatic extension principle is redefined as a data type ax-
iomatic extension so that one-to-one mapping € in the commutative data type

state mapping diagram (that replaces schema mapping diagram) becomes data
refinement instead of data equivalence. Instead of DML operator mapping dia-
gram, a commutative diagram of data type behavior is used in which 7 becomes
an algorithmic refinement.

Generally for data model mapping we should construct 1)M; into an ex-
tension of M; mapping; 2) AMN semantics of M; ; 3) AMN semantics of the
extended M;. After that we can apply B technology to prove a) the state-based
properties of the mapping (commutativity of the data type state diagrams); b)
the behavioral properties of the mapping for all type models defined for a par-
ticular internal data model. This leads to a proof that M is a refinement of the
extension of M;.

Note that data model mapping based on AMN and on a refinement technique
is applicable to structured data models as well as to the object data models.

An example of mapping of the ODMG’93 [17] relationship type into the SYN-
THESIS association metatype [12] applying refinement technique can be found in
[13]. The SYNTHESIS association metatype is a loose, unconstrained type that
should be properly extended so that it could be refined by the ODL relationship
type (a concrete, built-in type). Data refinement of the data type state diagram
has been reached by introducing for the association metatype of the adequate
axioms (axiom of partial functional dependency and axiom of order). Mapping
of operations has been provided by specification of the relationship operations
create, delete, add_one_to_one, remove_one_to_one and traverse in the associa-
tion metatype. Abstract interpretation of the extended SYNTHESIS association
metatype in AMN and a machine corresponding to the ODMG relationship type
as a refinement of the association metatype machine were defined and the re-
finement association has been proved.

3.3 Generic features of the commutative data model mapping
approach

The data model axiomatic extension principle, the data model commutative
mapping principle, the unifying canonical data model synthesis principle based
on the notion of data model refinement are exploited to create the necessary
ground for the design of semantically interoperable heterogeneous data modeling
environment. According to the approach for commutative data model mapping
construction, the basic steps of the mapping design should:

— construct the mapping of a source data model type specifications into type
specifications of an extension of the canonical data model (including state
and behavior mapping);

— provide an interpretation of source data model types in abstract machine
notation;

— provide an interpretation in abstract machine notation of the types resulted
in mapping of the source data model types into an extension of the canonical
data model types;

— justify the state-based and behavioral properties of the type mappings prov-
ing that a source data type is a refinement of its mapping to the canonical
data model.

It is important to note that the process of design of the canonical data model
core axiomatic extensions (state mapping diagram construction) and the process
of design of behavior of types in the extended target data model refined by means
of the source one (behavior mapping diagram construction) can be separated.
Thus, it is allowed to separate and treat independently the process of the canon-
ical unifying data model synthesis from the process of the definition of the types
behavior.

The spectrum of data models included into a heterogeneous environment may
include object-oriented as well as structured data models. A unifying canonical
data model may be synthesized integrating data models of various DBMSs on
the basis of the data model refinement conception. This approach can be easily
extended to any area where heterogeneous information models are extensively
applied.

4 Towards extensible canonical process model

Extensible canonical model development and commutative model mapping tech-
niques were considered so far for the structured and object-oriented models.
Very important class of models in the context of enterprise modeling consti-
tutes a class of process models. Enterprises are modeled through their activities
defined as concurrent processes. Virtual enterprise specifications are based on
the integrated processes of actual enterprises involved into the integrated activ-
ities. Processes are implemented as workflows. Workflow technology continues
to be developed for its traditional applications of enterprise process modeling
and coordination, as well as for component frameworks and inter-workflow in-
teraction. A large number of workflow products (workflow management systems
(WFMS)) are commercially available. They apply a large variety of languages
and concepts based on different paradigms. Workflow specification is a complex
construct highly integrated (correlated) with specifications of other types. De-
signing a workflow, we should consider semantics of workflow objects and objects
involved in them in an integrated way. Here we consider workflows in the process
perspective.

In the previous sections we studied how to preserve information and opera-
tions while mapping a source model into the target one. Mapping process models,
concurrent behavior is to be preserved.

Processes are related to the class of interactive computations [24,25]. The
concept of interactive computations is characterized by non-determinism (the
choice of the exhibited behavior is influenced by the computation environment),
concurrency (viewed as compositions of communicating concurrent processes),
communication between components and the outside world, constraints imposed
by an environment on computations.

Classical ”effective computability” (in frame of which we were in the previous
sections) is purely algorithmic, while interaction paradigm deals with concurrent
and distributed computations coordinated by protocols. Well known nondeter-
ministic concurrent systems are based on CCS of R. Milner [16], process algebras
[5] and other formalisms which were designed to study communication and inter-
action in concurrent processes. At the same time, none of existing model cannot
serve as an extensible core of the process canonical model due to the lack of the
unifying model of concurrency. In the rest of this section we shall report on some
steps made for understanding how such model could be created.

In [14] we attempted to show how to apply the compositional approach of ob-
ject type specification design to the workflow design with reuse. For that we rely
on a script-based process specification framework [12]. The script model com-
bined features of the canonical object model with the coloured Petri nets [9].
Notions of types, functions and predicates defined in object calculus are basic
constituents of the canonical model for the process definition. It was shown how
such process model can be applied to the homogeneous definition of industrially
supported workflows. FlowMark and Staffware [8,21] were used as examples.
The script refinement concept attempted in [14] merges conventional algorith-
mic specification refinement technique considered previously with detecting of
process bisimulation equivalence. For the latter, admissible patterns of activities
of a script were modeled as process algebra expressions [5] implied by a script
model. Basic process algebra with iteration was used for experiments. Complete
axiomatization of process algebras [5] provides for equivalent transformation of
process algebra expressions and their partial ordering making possible to reason
that a concurrent behavior given by a pre-existing workflow specification can be
considered as a refinement of the required process behavior.

This analysis showed that coloured Petri net due to its power might be a
good choice for the canonical process model, but it is too complicated for the
refinement reasoning. Only very simple process patterns of Petri nets can be
modeled as process algebra expressions.

Another approach that would provide for rigorous process model mapping is
based on a combination of the process specification facilities with the facilities
formalizing the refinement concept and providing for proof of specification refine-
ment. Abstract Machine Notation (AMN) and B-technology [3,2] provide such
capabilities. AMN has been considered as a formal model for the object language
[12] intended as the canonical model core for the integrated information systems
development. In this context creating a combination of a process model with the
refinement capabilities of B-technology was considered as a basis for commuta-
tive process model mapping. An expression in AMN of the comprehensive CSP
[7] capabilities (sequential processes, parallel composition on the arbitrary level,
hiding, nondeterministic choice including general choice, assignment operator,
main timing primitives of Timed CSP (delay, timeout and time prefixing)) has
been defined. Algorithms mapping such process specifications into B-machines
have been developed [22]. Such way of process interpretation allowed to construct
refinements of process specifications and to prove correctness of refinement us-

ing B-technology. This is a necessary prerequisite for commutative process model
mappings as well as for compositional virtual enterprise processes development
involving workflow processes as pre-existing components (a refinement of the pro-
cess specification of requirements by a composition of the pre-existing workflows
can be formally justified). The extended AMN notation allows to model reactive
concurrent systems operating with complex data types. It is important to note
that to justify correctness of process model mapping into the AMN model, the
third model, Label Transition System (LTS) has been used. Process specification
and the result of its mapping into AMN have been mapped into LTS. Then an
equivalence of the resulting specifications in LTS has been demonstrated.
These investigations showed possible approach to the process model mapping
development preserving process behavior. Simultaneously, a variety of workflow
process modeling facilities currently understood has been systematically defined
in [1] as workflow patterns. We can imagine a course of the extensible canon-
ical process model formation as a systematic definition of the canonical model
core extensions corresponding to the groups of such workflow patterns so that
the canonical model core together with each extension could be refined by a
respective group of patterns. Serious investigations are still required to develop
a suitable canonical process modeling framework that could cope with strong
demand of [1] and combine extensibility with rigorous refinement facilities.

5 Conclusion

Current situation in enterprise modelling is characterised by a large number of
enterprise modelling languages and tools leading to heterogeneous and uninte-
grated definitions of the enterprise and by absence of communication among
tools. Various middleware frameworks facilitate technical interoperability of en-
terprise models. At the same time, taking into account the information modeling
semantics in such frameworks is rarely attempted. This paper is focused on inter-
model interoperability based on the semantics of heterogeneous modeling facili-
ties. For uniform representation of various modeling facilities in one paradigm a
canonical model is needed that should provide for semantically equivalent rep-
resentations at the canonical level of definitions expressed heterogeneously. To
reason that a definition in one language can be substituted by a definition in an-
other one a formal specification framework and a commutative model mapping
method are provided. The paper gives a short overview of techniques experienced
for such approach separately for structureddata models with behaviors, for 0b-
ject models and for process models. Though heterogeneous model mapping and
canonical model construction techniques are considered in specific contexts (data
base integration, service type re-use and compositions, compositional develop-
ment of processes), they can be easily generalized for the enterprise modeling
environment. Refining model mappings and extensible canonical model construc-
tion techniques are necessary pre-requisite for re-use (substitutability), integra-
tion and compositionality of information and services in the interoperation and
mediation infrastructures.

References

1.

2.
3.
4. Backus J. Can programming be liberated from the von Neumann style ? A function

© ®

10.

11.

12.

13.

14.

15.
16.
17.
18.
19.
20.

21.
22.

23.

24.

25.

W.M.P. van der Aalst, et al Workflow Patterns, Distributed and Parallel Databases,
14(3):5-51, 2003.

Abrial J.-R. B-Technology. Technical overview. BP International Ltd., 1992, 73 p.
J. -R. Abrial. The B-Book. Cambridge University Press, 1996.

style and its algebra of programs. - CACM, 1978, v.21, N8.

J. Bergstra, I. Bethke, A. Ponse, Process Algebra with Iteration and Nesting,
Computer Journal, V. 37, N 4, 1994.

CODASYL Data Description Language Committee Journal of Development. Jan-
uary 1978.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

IBM FlowMark, Modeling Workflow, IBM Corporation. September 1994

K. Jensen. Coloured Petri Nets: a High Level Language for System Design and
Analysis”, High level Petri Nets. Theory and Application. Springer Verlag, 1991.
Kalinichenko L.A. Methods and Tools for Integration of Heterogeneous Databases.-
Moscow, Science Publ., 1983, 423p. (in Russian).

Kalinichenko L.A. Methods and tools for equivalent data model mapping construc-
tion. Proc. of the EDBT’90 Conference, 1990, Springer Verlag,p.92-119.
Kalinichenko L.A. SYNTHESIS: the language for desription, design and program-
ming of the heterogeneous interoperable information resource environment.- Insti-
tute of Informatics Problems, Russian Academy of Sciences, Moscow, 1995.
Kalinichenko L.A. Method for Data Models Integration in the Common Paradigm.
Proceedings of the First East-European Conference, ADBIS’97, St.Petersburg,
September 1997.

Kalinichenko L.A. Workflow Reuse and Semantic Interoperation Issues. In
Advances in workflow management systems and interoperability, A.Dogac,
L.Kalinichenko, M.T. Ozsu, A.Sheth (Eds.). NATO Advanced Study Institute,
Istanbul, August 1997.

MDA Guide Version 1.0.1, OMG, document number: omg/2003-06-01, June 2003.
Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

The Object Database Standard: ODMG-93. Ed. by R.G.G. Cattell, Morgan Kauf-
mann Publ.; 1994, p. 169.

Object Management Group, ”The Common Object Request Broker: Architecture
and Specification”, OMG Document Number 91.12.1, December 1991.

Petit M. Methodological clues for the design of a standard enterprise modelling lan-
guage. EI3-IC workshop on Common Representation of Enterprise Models, 2002.
Tennent R.D. The denotational semantics of programming languages.- CACM,
1976, v. 19, N8, p.437-453.

Staffware for Windows Graphical Workflow Definer, Staffware plc., 1995.
Stupnikov S.A., Kalinichenko L.A.; Jin Song DONG Applying CSP-like Workflow
Process Specifications for their Refinement in AMN by Pre-existing Workflows. In
Proceedings of the Sixth East-European Conference on Advances in Databases and
Information Systems ADBIS’2002, September 8-11, 2002, Bratislava, Slovakia.
Vernadat F. B. UEML - towards a Unified Enterprise Modelling Language. Pro-
ceedings of MOSIM’01, Troyes, France, 2001-04-25/27.

Peter Wegner. Interaction as a Basis for Empirical Computer Science. ACM Com-
puting Surveys, 27(1), March 1995.

Peter Wegner. Why interaction is more powerful than algorithms. CACM, 40(5),
May 1997.

