
A Model-based Ontology of the Software
Interoperability Problem: Preliminary Results.

Vincent Rosener, Thibaud Latour, Eric Dubois

Centre de Recherche Public Henri Tudor 29, avenue J.F. Kennedy L-1855 Luxembourg
vincent.rosener@tudor.lu, thibaud.latour@tudor.lu, eric.dubois@tudor.lu

Abstract. Interoperability usually refers to software system communication.
Although there is no widely accepted definition, and therefore no common
understanding of the context, there are multiple solutions (protocols,
architectures, components) that promise to solve integration issues. The
INTEROP network of excellence aims at proposing a large view of
interoperability issues, and hence requires a unified definition. As an INTEROP
participant, we suggest in this paper, as a first attempt, an ontology of
interoperability. We first present the general software engineering concepts our
work is based on. We then propose the decisional meta-model and the technical
aspects meta-model, as prerequisite to the introduction of the actual
interoperability model. Finally, we discuss the pros and cons, as well as
different ways the model can be used. Keywords: Interoperability, model,
ontology, software development, decision-aid.

1 Introduction.

Today, interoperability is widely recognized as a critical aspect in many businesses. It
is caused by several factors that can less and less be segregated from the business
itself: outsourcing, merge, acquisition and cost cuttings in IT typically let appear an
issue of interoperability.

There are many solutions proposed to tackle this issue, from dedicated
architectures to Commercial Of-The-Shelf (COTS) components. But beside those
technical answers, it seems to us that there is a lack of formalization of the problem
itself. Indeed, interoperability remains a vague concept, leaving many open questions:
What is the nature of the systems that should interoperate? Are they only related to
software, or also maybe to business? Is interoperability only relevant to executable
systems, or also when considering higher level of abstraction? What is the exact scope
of interoperability (is communication typically part of it, or a cause of it)? Is it
possible to ensure interoperability at early stages of the software development? Is
interoperability an independent problem in software development, can it be treated
separately from all other technical issues? In this paper, we shall discuss our
preliminary proposal regarding an ontology of interoperability, which gives a
roadmap to answer these questions.

2 Vincent Rosener, Thibaud Latour, Eric Dubois

This work is a contribution to the work program of the FP6-IST INTEROP
Network of Excellence (NoE) Joint Research Activities [1]. INTEROP scientific
objectives originate from the vision and roadmap for interoperability of enterprise
software established as an outcome of the FP5 Thematic Network IDEAS [2]
(Interoperability Development for Enterprise Application and Software) and from
work done around the UEML (Unified Enterprise Modeling Language) [3].
Far beyond past approaches specifically centered on Information Technologies (IT)
issues, IDEAS developed an interoperability framework integrating both business and
knowledge as the drivers and requirement substratum of integration in addition to
traditional IT-based (and hence solution-centric) view of the problem. From this, it
has been claimed that interoperability aspects pertaining to Enterprise Modeling,
Architecture and Platform, and Ontology, should be considered together in order to
obtain substantial and effective results as well as pragmatic applications in today
business.

With respect to this context and in line with the “Ontology-based integration of
enterprise modeling and architecture & Platform”, we propose a first overview of a
more formal definition of the interoperability general problem and of its possible
solutions. Such an ontology is expected to help reaching a common understanding of
the various contributions in this field, as well as limiting potential ambiguity. For
validation purpose, we have adopted a wide and abstract perspective of the
interoperability problem. Nevertheless we have always kept in mind that the final goal
was the application of this model by software engineers in their activities.

The paper is structured as follows: we first present the general software and
modeling concepts our work is built upon. Then, as a basis for the discussion of the
proposed model-based ontology, Section 3 also introduces two important meta-
models: the decisional meta-model and the technical aspects meta-model. Central in
this paper is Section 4 where is presented our interoperability model. Finally we
conclude with a discussion of the pros and cons, as well as the different ways
according to which this model can be used.

2 General software engineering and modeling concepts

As it has already been stated, interoperability is a complex topic. In order to address
the problem of building an ontology to describe the interoperability problem in a
consistent and systematic way, some basic assumptions must be made which position
our work in the context of Software Engineering (SE) and of a systemic approach of
the problem. Figure 1 illustrates the main concepts that define such a context for our
ontology. In our view, an interoperability problem may arise at a certain number of
steps in the SE process. It may happen at a high-level software architecture step or at
a low-level implementation step. In addition, it fundamentally consists in finding a
suitable solution for solving a particular problem, which happens to be of technical
nature1. The identification of the problem as well as its solution will depend on a large
number of elements, among which SE models and meta-models are important ones.

1 Interoperability issues at business level which do not impact IT solutions are not considered

here

A Model-based Ontology of the Software Interoperability Problem: Preliminary Results. 3

Specific meta-models

Instanciation

In
cr

ea
si

ng
 le

ve
l o

f a
bs

tr
ac

tio
n

Decisional
Meta-Model

(Problem, Solution,
Decision, …)

Technical Aspect
Meta-Model

Persistence
Communication
Interoperability

Mobility
…

Related
knowledge

domains

Software
Engineering

F
ro

m
 id

ea
s

to
 s

of
tw

a
re

SOFTWARE
Complex system

Implementation
Model

…

Architecture
Model

Requirement
Model

Business
Model

O
bj

ec
t M

od
el

re
la

tio
na

l M
od

el

pr
oc

es
s

M
od

el
General

meta-models

…

Specific meta-models

Instanciation

In
cr

ea
si

ng
 le

ve
l o

f a
bs

tr
ac

tio
n

Decisional
Meta-Model

(Problem, Solution,
Decision, …)

Technical Aspect
Meta-Model

Persistence
Communication
Interoperability

Mobility
…

Instanciation

In
cr

ea
si

ng
 le

ve
l o

f a
bs

tr
ac

tio
n

In
cr

ea
si

ng
 le

ve
l o

f a
bs

tr
ac

tio
n

Decisional
Meta-Model

(Problem, Solution,
Decision, …)

Technical Aspect
Meta-Model

Persistence
Communication
Interoperability

Mobility
…

Related
knowledge

domains

Related
knowledge

domains

Software
Engineering

F
ro

m
 id

ea
s

to
 s

of
tw

a
re

SOFTWARE
Complex system

Implementation
Model

…

Architecture
Model

Requirement
Model

Business
Model

O
bj

ec
t M

od
el

re
la

tio
na

l M
od

el

pr
oc

es
s

M
od

el
General

meta-models

…

Fig. 1. General overview of Software Engineering and of its interconnections with our systemic
approach

The next two sections will be devoted to the presentation of these elements driving
the instantiation of our interoperability ontology.

2.1 Software development is based on models

Nowadays software products are complex systems. Therefore, the classical approach
to software development that separates the phases in analysis, design, implementation
and testing (even in an iterative process) is probably obsolete. There are now so many
technical issues to be addressed in the development, that design and implementation
are not sufficient to face those problems. Since the OMG standardization of the
Model Driven Architecture [4], it has been largely accepted that software
development is about producing models. In fact, modeling is not new in the
engineering field, and more globally in science: systemic analysis or simulation have
introduced this notion a long time ago, as a way to reduce complexity [5][6][7].

Defining software engineering as producing models is one thing, identifying the
relevant models (i.e. the relevant aspects that need to be considered) is another. This
identification is also complex, and at the moment, there is no consensus for a unified
approach within the software engineering community with the following exception.
Understanding the business (i.e. the so-called “domain”) is recognized as a key

4 Vincent Rosener, Thibaud Latour, Eric Dubois

ingredient for which one or more business models should be produced. But regarding
the technical software aspects, such agreement does not exist and several viewpoints
are available. The MDA view [4] [8] for instance, is based on the Platform
Independent Model (PIM) and the Platform Specific Models (PSM). In this view, the
“platform” is the relevant aspect. There is no common agreement on the definition of
this notion, but as MDA was build in the context of the Middleware war, we can
assume that a platform corresponds more or less to a type of middleware (like an
Object Request Broker (ORB), a Hub, or an Application Server). Another approach
we can refer to is the component-based view [9], which considers the architecture as
the central aspect.

Many other points of view are available, and an ontological unification is probably
needed to face the multiple challenges of the software complexity.

On our side, we think that identifying the core technical aspects is particularly
relevant in software modeling. These aspects are part of the problem domain, and
most of them are shared among different software development. Examples of those
recurrent technical aspects are: the persistence, the communication between resources,
the security, the mobility or the interoperability. Having a formal description of these
aspects would help to define their scope, and to understand and organize their
possible associated solutions.

2.2 Software development is based on meta-models

Even if central aspects of the software have been identified, the next issue is about
how to represent the knowledge associated with them. As the production of models is
a key concept in the SE approach, the knowledge besides this production of models is
at the best captured in terms of meta-models. As an example, we can refer to UML
where models need to be elaborated in terms of concepts like classes, objects,
relationships, etc. Knowledge about these concepts is captured in terms of the UML
meta-model. A meta-model is thus a model of the model. Hence the main relation
between a model and its meta-models is the instantiation relation. Theoretically, there
is no limitation in this approach: meta-meta-models are themselves describing meta-
models (the UML meta-model is itself expressed in the Meta Object Facilities
(MOF)), and so on. It is up to each discipline to define their appropriate meta-models,
and where it is necessary to stop the description. It is a trade-off between genericity
and usability. All these meta-layers of models form the body of knowledge for the
domain, including what should be known from a more abstract point of view to
understand the less abstract concepts.

The body of knowledge corresponds to an ontology as it results in a shared
conceptualization of things that exist and make up the world or a subset of it, i.e. the
domain of interest [10], [11]. An inherent characteristic of ontologies is that they bear
intrinsically the semantics of the concepts they describe [12]. This constitutes the
necessary condition for an ontology to provide the semantics of something. In the IT
field, an ontology is explicitly capturing the structural part of a knowledge domain.

All the different approaches discussed in 2.1 (MDA, component-based) are

therefore based on meta-models. Some high-level meta-models can be considered
common to these approaches as: the object model, the relational model, and some

A Model-based Ontology of the Software Interoperability Problem: Preliminary Results. 5

other formalism, which are used for knowledge description. In a similar fashion, the
process model deals with management and project issues. There are obviously many
others.

On top of these high-level models, one can find specific meta-models, depending
on the modeling view. For instance in the MDA view, a major concept is the Model
Transformation: models are transformed all along the software development. One of
the most representative transformations is the PIM-to-PSM one, which produced a
PSM (e.g. an Enterprise Java Bean-based accounting model) from a PIM (an
accounting specification model). To describe this transformation, a meta-model called
the Platform Description Model (PDM) is introduced. In the component-based
approach, a specific meta-model is needed to describe the relevant architectural
concepts, like “component”, “connector”, “architectural styles”, “pattern” or
“framework”.

We would like to stress the attention of the reader that the terms “model” and
“meta-model” are indifferently used in this paper. Indeed, a meta-model is
intrinsically a model, and it’s only by considering a given level of abstraction (e.g. the
software), that the term “meta-model” should be used. As such, the Object model acts
as a meta-model for the software.

We have shown in the previous section the importance of the recurrent technical

aspects. Those aspects need to be understood, but also solved. Therefore, as
introduced in Figure 1, we present in the next chapter two meta-models to take this
last point into account.

3 The decisional and technical aspects meta-model

Regarding the syntax, our models are written in the Unified Modeling Language
(UML). Class diagrams are used for the structural part, and collaboration diagrams for
the behavioral part. Only the structural view is proposed in this paper.

The decisional model

Decision-making is recurrent in software engineering, and more globally in
engineering. We therefore propose at the meta-level a decisional model. As shown in
Figure 2, a particular focus is put on:
- Separating the problem from the solution, and as a consequence analyzing the

problem before any suggestion of solutions [13],
- Modeling problems as independently as possible, to reduce the decision complexity,
- Acknowledging that a solution of any kind will be the source of new problems,

which recursively have to be solved.

6 Vincent Rosener, Thibaud Latour, Eric Dubois

Manage solution/pb cycleseparate problem from solution

find independant problems

Decision rule

problemsolution
solves

creates

Decision model
applies

understands

proposes

Fig. 2. The decisional model

The technical aspects model

The technical aspects model aims at referencing the recurrent technical problems of
software like persistence, communication, interoperability, mobility, security,
performance and, in general all the technical aspects that are recurrent and relevant
for a given class of software.

On top of this taxonomy, a model that describes each of the identified problems is
needed. Several benefits result from those models. First of all, they help to define
clearly the technical problem, i.e. what it is and what is it not. Secondly they propose
different solutions to address these technical issues. In that respect, they are instances
of the decisional model.

For instance, a security meta-model would hold important entities like: software
resource, access integrity, and modification integrity. It will also list possible
solutions: access control for application integrity, encryption to ensure document
confidentiality, or digital signature to check the possible modification of documents.

In a similar way, Section 4 is developing and proposing an interoperability meta-

model based on the decisional meta-model.

4 The interoperability model

The notion of interoperability is not restricted to computer science. As a consequence,
plethora of definitions have been introduced by different players. The study of some
representative definitions is thus interesting to start our model-based ontology.

The IEEE [14] defines the interoperability as “the ability of two or more systems or
components to exchange information and to use the information that has been
exchanged”2. The hyperdictionary is maybe more business oriented: “The ability of
software and hardware on multiple machines from multiple vendors to

2 http://www.sei.cmu.edu/str/indexes/glossary/interoperability.html

A Model-based Ontology of the Software Interoperability Problem: Preliminary Results. 7

communicate.”3. The US Department of Defense proposes itself multiple definitions,
mainly focused on weapons systems, while including some generalization effort4. The
full definitions are available on [15].

From the IDEAS [2] viewpoint, interoperability is “the ability of a system (as a
weapons system) to use the parts or equipment of another system” 5. INTEROP [1]
extends this definition in a more general fashion as “the ability of a system or a
product to work with other systems or products without special effort of the part of
the customer”.

Finally, the Object Management Group (OMG) identifies interoperability as one of
the major objectives within its Model Driven Architecture (MDA): “the tree primary
goals of MDA are portability, interoperability and reusability through architectural
separation of concerns” [4].

There are some relevant commonalities between all those definitions: the concepts

of system, communication, legacy reuse, and heterogeneity. Those concepts are the
basis of our model. In order to consider the different solutions that can be applied to
those problems, through the instantiation of the decisional model, we produce an
interoperability model, which on one hand introduces the definition of interoperability
as problems, and on the other hand proposes a taxonomy of solutions to those
problems.

It is of primary importance to note that heterogeneity is not only considered as a
runtime issue, but that it has been introduced as a high-level concept (as it appears in
the different definitions). In that respect, heterogeneity exists for resources such as
artifacts or models.

Typically, high-level heterogeneity (at the level of the business model) can lead to
low-level heterogeneity (at runtime at the data level). Therefore it is important to
identify and solve the interoperability as soon as possible (i.e. as soon as the problem
is introduced).

The simplified model

We propose a model for defining interoperability as a heterogeneity problem induced
by a communication problem (Fig. 3). On the solution side, two major alternatives are
introduced: the homogenization and the bridging solution. The notion of software
resource is generic: it could be an object, a procedure, a table, a global model, or any
kind of entities that constitute the software.

3 http://www.hyperdictionary.com/computing/interoperability
4 http://www.atis.org/tg2k/_interoperability.html
5 http://www.ideas-roadmap.net

8 Vincent Rosener, Thibaud Latour, Eric Dubois

interoperabilitycommunicationcommunication solution interoperability solution

homogenization bridging

solution software resourceproblem
solves

creates

acts on

resource heterogeneity

legacy resource

Fig. 3. The simplified interoperability model

The next section will detail the solution part: the communication solution, and

obviously the homogenization and the bridging.

The detailed model

The communication meta-model
As stated above, the interoperability problem is induced from a communication
problem. As a consequence, the heterogeneity problem has also to be solved only if
the resources need to communicate.

It is therefore important to first understand what communication means, and
separate it from interoperability. Communication and interoperability are part of the
technical aspects model introduced in the previous section. In Figure 4, a
communication meta-model is proposed, which introduces the general solution
concepts to the communication problem. We can see here that most of the inducted
problems (concurrence, performance, integrity) are directly dependant on
communication problems. This means that even without any heterogeneity issue, we
shall have to tackle theses problems.

A Model-based Ontology of the Software Interoperability Problem: Preliminary Results. 9

sender receiver
request reply asynchronous communication protocol

synchronous communication protocol

acknowledgement

concurrence performance integrity

scalability availabil ity

interfacesoftware resource

uses

problem

acts on

communication protocol

respects

communication message

sends

Role
plays

communication solution
creates

Fig. 4. The communication meta-model

The homogenization model
Homogenization is one possible way of solving interoperability. Figure 5 presents the
detailed view of it. The unification of language, or of concepts may significantly
reduce the heterogeneity problem. UML, or UEML [3] (dealing with enterprise
modeling) are examples of unified languages.

Early use of unified models avoids heterogeneity. Unfortunately, we are facing
integration issues, i.e. that legacy software is involved. Thus, besides unified models,
the concept of transformation becomes again relevant: homogenization means that a
given software resource, available in an initial format, should be translated in another
one. A difference is made between heterogeneous syntax, and heterogeneous
semantic. Indeed, the translation from a UML class diagram to an OMT static
diagram is a simple syntaxic transformation, when transforming a UML class diagram
in a relational diagram is more difficult due to semantics aspects. An important future
research activity will be to define the most relevant translations.

As part of the decisional model, the homogenization solution creates new
problems. The major issue is the resource modification. Indeed, having the
opportunity to modify existing resources (models, artifacts, code) is not always
something possible. On the other hand, the homogenization solution will guarantee
the general validity and correctness of the software. The other problems are related to
the validation of the unified models, which are introducing new complexity.

10 Vincent Rosener, Thibaud Latour, Eric Dubois

unified language Unified metamodel

Unified ontology

unified interface

unified modeltransformation
uses

syntax translation sematic translation

resource modification

unified model verification

unified model standardisation

problemhomogenization
creates

perfomance, due to uniqueness of resource

Fig. 5. The homogenization solution

The bridging model
Bridging is the last solution. When no information about the software system is
available, when no resource modification is possible, then the only way to solve
interoperability issues is to bridge and to adapt at runtime (Fig. 6). This is typically
what message oriented middleware (MOM), Hub’s, and more globally Enterprise
Application Integration (EAI) are doing. On top of the communication solution, they
define adapters between the heterogeneous resources, which are using a translation
mechanism.

The inducted problems are mostly related to performance and integrity.
Performance problem arise because most of the time it is necessary to translate
messages from a given format to another one. This is resource consuming and all
performance and availability requirements (like the response time) should be verified
again. Adapters and translation methods may also introduce new vulnerabilities, i.e.
possible ways to access or modify the data. In a general way, as something “external”
to the software is plugged in, the global correctness of the system may be affected.

General heterogeneity solution, across hardware architecture like the XDR protocol
is also typically a bridging solution.

communication solution

translation protocol

bridging
uses

performance validity integrity

problem

creates

adapter

software resource

acts on

Fig. 6. The bridging solution

A Model-based Ontology of the Software Interoperability Problem: Preliminary Results. 11

5 Conclusion and perspectives

In this paper, we have presented our preliminary results regarding a model-based
ontology of the interoperability problem in software development. The first advantage
of the model is that interoperability is considered as a global problem along the
software development: business models, technical models, documents, code and more
globally software resources can be integrated. As such, several SE actors (developer,
architect, manager) can potentially take benefit from the use of the model.

Secondly, our model is based on a decisional model, which is probably one of the
fundamental meta-models for software engineering (as shown for example in [16]).
Effectively, we know that software development is a trade-off between multiple
factors: business requirements, technical requirements, quality criteria,
project/management issues, and many others. Consequently, interoperability should
not be considered as an isolated problem within the development. Each
interoperability solution may possibly have a huge impact on other issues. The added
value of the decisional meta-model is to centralize the decision, and to enforce a
global view of the problems. As a consequence, the model could be used for
decision–aid, as for instance in COTS selection. Indeed, as stated before, there are
many available integrated solutions, and justifying one of them is not obvious.
Practical questions are typically: “Do I choose a Hub or a MOM to integrate my
business?”, “Am I sure that this solution will really allow me to integrate my future
systems ?”. Moreover, all those solutions are not only supposed to solve
interoperability problems. Some of them are also able to guarantee a distributed
transaction; most of them propose core communication protocols. As we already
claimed, software engineering is a trade-off between multiple and contradictory
aspects, and any kind of solution will introduce new problems. In this sense, being
able to know as precisely as possible all purposes and impacts of integrated solutions
is therefore a key issue in making the appropriate decision.

The model we present can be a starting point to a decision-aid method.
Nevertheless, the real benefit will only be available when the models will be fully
validated and enriched, in particular with integrated solutions (COTS, architecture).
Moreover, as the model is part of a global decisional model, its applicability is
directly dependant on the modeling of all other important aspects. We are currently
working on meta-models for persistence and security in line with research projects on
these topics.

Finally, we would like to stress the attention of the reader on the fundamental
hypothesis we adopted concerning the driving force of the integration problem this
work is based on. Indeed, we assumed in this paper that business integration is a pre-
requisite for technical integration. This means that the fundamental heterogeneities
that trigger the need for integration always occur at the business level. Technical
integration is thus a consequence of a business integration need. In other words, when
willing to solve a business heterogeneity problem, one may observe subsequent
technical heterogeneities that need to be solved as well. Therefore, we assume that
solving a technical heterogeneity problem without considering business integration
issues probably pertains more to a migration problem than to an integration problem.

12 Vincent Rosener, Thibaud Latour, Eric Dubois

From the perspectives point of view, the actual model is not finalized: an important
missing part lies in defining homogenization transformations (Fig. 5).

Another issue concerns the formalism: as UML is semi-formal, switching to a
more appropriate language would possibly be beneficial to ensure rigor and future
automation.

Acknowledgement

The authors would like to thanks Eric Grandry for his reviewing efforts and helpful
comments.

References

1. INTEROP, European network of excellence (2004)
2. Interoperability Development for Enterprise Application and Software (IDEAS, European

project) (2002). http://www.ideas-roadmap.net/
3. Unified Enterprise Modeling Language. http://www.ueml.org
4. Object Management Group: The Model Driven Architecture. http://www.omg.org/mda
5. Le Moigne, J.L. : La théorie du système général : théorie de la modélisation . Presses

universitaires de France (1977)
6. Von Bertalanffy, L. : General system theory. Foundations, Development, Applications. New

York (1968)
7. Dahl, O.J., Nygaard, K.: Simula – an Algol based simulation language, Vol 9 N°9.

Communication of the ACM (1966) 671-678
8. Bezivin, J., Blanc, X. : Promesses et interrogations de l’approche MDA . In Developpeur

Reference, (2002). http://www.devreference.net.
9. Garlan, D., Shaw, M.: An Introduction to Software Architecture. Advances in Software

Engineering and Knowledge Engineering Volume 2. New York, NY. World Scientific Press
(1993) 1-39

10.Sowa, J.F.: Knowledge Representation: Logical, philosophical, and Computational
Foundations. Brooks-Cole, Pacific Grove, CA, USA (2000)

11.Grubber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, 5 (1993) 199-220

12.Grubber, T.R.: The Role of Common Ontology in Achieving Sharable, Reusable Knowledge
Bases. In Proceedings of the Second International Conference on Principles of Knowledge
Representation and Reasoning, Cambridge, Massachusetts, USA. Morgan Kaufmann
Publishers (1991) 601-602

13.Jackson, M.: Problem Frames: analysing and structuring software development problems.
Addison-Wesley (2001)

14. Institute of Electrical and Electronics Engineers: IEEE Standard Computer Dictionary: A
Compilation of IEEE Standard Computer Glossaries. New York (1990)

15.Joint Chiefs of Staff Publication: Department of Defense Dictionary of Military and
Associated Terms, No. 1-02 (1999). http://huachuca-dcd.army.mil/nsto/lexicon/lexicon.htm

16. Subramanian, N, Chung, L.: Software Architecture Adaptability: An NFR Approach. Proc.,
Int. Workshop on Principles of Software Evolution (IWPSE`01), Vienna, Austria. ACM
Press, (September 2001) 52-61.

