
Reusing a Functional Safety Concept in Variable
System Architectures

Markus Oertel1, Michael Schulze2, and Thomas Peikenkamp1

1 OFFIS e.V., Eschwerweg 2, 26121 Oldenburg, Germany,
{peikenkamp,oertel}@offis.de

2 pure-systems GmbH, Agnetenstraße 14, 39106 Magdeburg, Germany,
michael.schulze@pure-systems.com

Abstract. Product line engineering is applied in many engineering do-
mains. It is used to save development time by reusing system compo-
nents in an organized way. While developing safety critical systems this
approach is complicated by the fact, that safety concepts on higher ab-
straction levels need to be fulfilled by the different variants of the system.
This typical leads to the creation of individual safety concepts for each
variant or the analysis of the fulfillment of the safety concepts by all
variants, both very costly efforts. In this paper we present an approach
to enable multiple variants to use one common functional safety con-
cept, while having different technical implementations at the low level.
We specify safety properties such as potential faults and failure propa-
gation as well as independence assumptions on them for the functional
components as well as for technical ones. This information is used to
create constraints for the variability models allowing only to configure
safe variants. We focus on detecting the violation of independence as-
sumption due to allocation decisions that are typically mainly driven
by functional needs, disregarding safety properties. An implementation
based on the tool pure::variants and the SAFE framework is presented
that creates variants based on EAST-ADL and AUTOSAR.

Keywords: Product Line Engineering, Variant Management, Safety Crit-
ical Systems, Model-based Design, Fault Modeling

1 Introduction

Traditional product development creates multiple products with similar charac-
teristics over time, often by using reuse strategies like “Clone and Own”. This
means new projects start by copying/branching most/all of an existing product
and start their development from there by adapting the assets to fit the demands
of the new product. It is cheap in the beginning but eventually cost is not much
lesser (or even usually higher) than for an approach not trying to reuse by copy-
ing. One of the reasons for this reuse inefficiency is that effort for activities like
testing, maintenance, and certification (e.g. safety analysis, function and techni-
cal safety concept) does not reduce significantly by copying the assets, as they
have to be carried out for each of the clones individually.



To tackle the described reuse inefficiency problem many engineering domains
apply a product line engineering approach. Instead of doing “Clone and Own”
the reuse is done in an organized and systematic way thus the time and effort
for the development of new products is significantly reduced [5].

Unfortunately, while developing safety critical systems this approach is com-
plicated by the fact that safety concepts on higher abstraction levels need to
be fulfilled by the different variants of the system. However, a safety concept is
usually bound on a fixed architecture (hardware and software) but if this con-
tains variable parts the safety concept is also affected in either way. Thus, typical
developers tend to create individual safety concepts for each demanded variant,
which is able to be generated from that variable architecture, or an analysis of
the fulfillment of the safety concept for all demanded variants is needed upfront.
Both approaches are very costly, contradict the product line idea at least for
some artifacts because reuse of the safety concept does not happen, and makes
the evolution and development of currently not envisioned variants difficult.

To circumvent the described problems and to go one step further we present
an approach to enable different variants to use one common functional safety
concept, while having different technical implementations at lower levels, mean-
ing the hardware and software architecture is not fixed and contains variable
parts (e.g. additional electronic control units or software components) that are
only available in some variants. For the common functional safety concept we
specify safety properties such as potential faults and failure propagation as well
as independence assumptions for the functional components and by using realiza-
tion relations apply them to the technical components on lower levels too. Those
information is used to create constraints for the variability models allowing to
configure safe variants only, respecting the functional safety concept.

The contribution of the paper is twofold: First, we show that a common func-
tional safety concept can be used for different variants and thus can be a reusable
product line artifact even if the lower level hardware and software architecture
differs from a variant to another. Second, we illustrate on an automotive example
that the fulfillment of the common functional safety concept is checked during
the configuration of variants and only safe variants are valid variants from the
perspective of the variant management. The rest of the paper is structured as
follows. Next we describe the needed background. In Section 3 we present the
basis idea of our approach on an example. Subsequently we explain how the
example is modeled using the SAFE framework in Section 4. Finally, the paper
is summarized in Section 5.

2 Background

2.1 Variant Management

The main difference from “normal”, one-of-a-kind product development and
product development with product lines, is a logical separation between the
development of core, reusable artifacts (the platform), and the actual product.
During product development, platform artifacts are selected and configured to
meet the specific needs of the product.



Fig. 1. pure::variants’ terminology

The Product Line’s commonalities and variabilities are described in the Prob-
lem Space, which reflects the desired range of applications (“product variants”)
in the Product Line (the “domain”) and their inter-dependencies. Thus, when
producing a product variant, the developer uses the problem space definition
to describe the desired combination of problem variabilities to implement the
product variant.

A related Solution Space describes the Product Line’s artifacts and their
relation to the Problem Space, i.e. rules for how platform elements are selected
when certain values in the Problem Space are selected as part of a product
variant.

The used variant management tool pure::variants [8] captures the information
required to manage variability and variants in several model types (see Figure 1).
Feature models play a key role in this [2]. They allow a uniform representation
of the Product Line’s variabilities and commonalities. Solution artifacts are de-
scribed by family models, which enable the mapping of the Problem Space to
different realizations. The variant model is used to describe an individual prod-
uct. It describes the product’s features and values associated with those features,
and it is used to derive the final product variant assets from the family models.

2.2 Safety Contracts

To express parts of the safety concept we are using a notation called safety
patterns, which we would like to introduce here shortly:

Safety contracts[7] are a technique for specifying fault propagation. The as-
sumption and the promise of a contract[1] are expressed using safety pattern
which are textual building bricks, with user filled attributes. The most com-
monly used pattern describes, that a combination of faults and failures does not
occur in a run of the system. These expression sets may contain one or more
faults and failures.

none of {expr-set1, expr-set2,...} occurs the LTL semantics of this pattern

are defined as:
(G!e1 ∨G!e2) ∧ (G!e3 ∨G!e4),

with expr set1 = {e1, e2} and expr set2 = {e3, e4}. I.e., that in every expr-set
one fault occurs at most. The fault are generally assumed to be independent,



but dependence between them can be separately specified. There exists an ab-
breviated pattern which just considers a single expression-set, with identical
semantics as described above:

{expr-set} does not occur

In a top-down approach the faults are typically expected defects in functions
selected by experts. If they are refined to a particular level it needs to be shown
that the selected hardware and software component match the expectations. In
a bottom-up approach, the potential malfunctions of a component can be found
in the safety manual or identified by techniques like FMEA (Failure Mode and
Effect Analysis).

Patterns are formally defined on traces, i.e. system runs with an evolution
over its variables [4]. Hence, a requirement pattern restricts the possible runs
of a system. Pattern 1 and its derived Pattern 2 state that only system runs in
which the combination of malfunctions (stated in the expression sets) is absent
are accepted.

Oertel et.al [7] presented several contract templates that can be used to
describe typical safety concepts. In this work we focus on the most commonly
used template that is depicted in contract C1 and describes the propagation of
input and internal faults (mf in the assumption) to a failure at the level of one
of the component’s outputs.

C1

A: none of {{mf 11 ...,mf 1n},..., {mf n1 ...,mf nm}}
occurs.

P: {output mf} does not occur.

The refinement of safety contracts can be checked automatically (see [3] and
[1]). Furthermore, analyzes exist, that allow to check the satisfaction relation of
a contract and a component [6].

3 Basic Idea

We demonstrate the basic idea on the example of an automotive light manager
system. This gets redundant analog inputs from light sensors and calculates a
lights on/off recommendation. Figure 2 depicts the functional safety concept
(FSC) for the automatic light feature AutoLight, which should be used by multi-
ple variants. The FSC is using a command which calculates the light recommen-
dation and a monitor, which does the same, and compares the internal result
with the light recommendation from the command. If the results differ, the valid
signal will be set to false. Hence the systems requirement, to be robust against
single point faults by detecting them with the valid signal can be formalized as
a safety contract:

C2
A: {more than 1 malfunction} does not occur.

P: {light fail, valid fail} does not occur.

The Command subcomponent does not have any safety mechanisms itself, it just
produces a wrong output if an internal fault occurs:



Command

Monitor

aIn1

aIn2

light

valid

cmd_light

ECU1

Task_CMD

ECU2

Task_MON

Alloc(ECU1,Task_CMD)

Alloc(ECU2,Task_MON)

Variant A: {AutoLight. AutoDim}

ECU1

Task_CMD Task_MON

Alloc(ECU1,Task_CMD)

Alloc(ECU1,Task_MON)

Variant B: {AutoLight}

M1

M2

TM1

TM2

TM3

TM4

TM1

TM2 TM4

Fu
n

ct
io

n
al

 S
af

et
y 

C
o

n
ce

p
t

Te
ch

n
ic

al
 S

af
et

y 
C

o
n

ce
p

t

{AutoDim}

{AutoLight}

{AutoLight,
AutoDim}

Fig. 2. One functional safety concept used by two variants

C3
A: {command fail} does not occur.

P: {light fail} does not occur.

The Monitor subcomponent does only fail to produce a correct valid signal if
the light input from the Command and the monitor both fail:

C4
A: {light fail, monitor fail} does not occur.

P: {valid fail} does not occur.

The safety concept assumes that faults of both subcomponents are independent:

C5
A: TRUE

P: independence{command fail,monitor fail}

The automatic light manager feature AutoLight shall be used within multiple
variants. In the example we are considering only one additional feature called
AutoDim, which darkens the central mirror in case of a directly preceding car.

In Figure 2 two variants are displayed. Variant A uses the features AutoLight
and AutoDim, variant B uses only AutoLight. The colors indicate the relation of
the design element to the features in the family model. ECU2 (Electronic Control
Unit) is optional and just available if feature AutoDim is selected while ECU1 is
always part of the system. Also the allocations from the functional safety concept
to the technical one are managed by features. In both variants the Command is
mapped to ECU1, but the Monitor is mapped either to ECU1 or ECU2, depending
on the availability of ECU2.

From a functional viewpoint, both variants are correct (assuming that ECU2

has the possibility to host the monitor function) but are the variants still correct
w.r.t. to the safety viewpoint? In the functional safety concept the malfunctions
M1 and M2 are assumed to be independent. If there is a common cause, that
leads to an occurrence of both malfunctions, the safety concept is incorrect. The



same assumptions on independence apply to the technical malfunctions TM1
- TM4. The mapping of the functional safety concept to the technical creates
a relation between the functional malfunctions and the technical ones. If the
function Command is mapped to ECU1 and the software task Task CMD a fault in
either of them leads to the functional malfunction M1. If we are now mapping
also the monitor task to ECU1 (and Task MON) a malfunction in ECU1 will damage
the Monitor functionality and the Command functionality together, violating the
safety requirement, that the system shall be robust against one fault. Hence,
the created functional variant B is not correct in terms of the safety properties.
That means in turn that the feature AutoLight can only be chosen in variants if
also the AutoDim feature or another feature that places an additional suitable
ECU is selected.

We want to support the engineer to detect such problems directly while con-
figuring variants, that’s why we create constraints for the variability models to
prevent such configurations. We are considering independence violations caused
by allocations. An allocation of a function f to a tuple of hardware and soft-
ware components (H,S) is considered to be functionally correct if the behavior
[[H]] ∩ [[S]] is a refinement of the functional specification [[f ]]. A violation is
considered as a design fault in the system. In the following we assume that the
functional correctness of an allocation has been successfully validated.

Faults occurring during the execution of a component that lead to a viola-
tion of safety relevant functional requirements are represented as cut-sets in the
safety contracts. The cut-sets do not contain any timing information regarding
the occurrences of the faults in a trace. There exists a non-trivial relation be-
tween the cut-sets of the target components and the cut-sets of the functions.
In the easiest case all target cut-sets immediately cause the functional fault.
But there are cases in which the software may compensate hardware faults and
vice versa. For instance, bit faults in memory can be detected by software that
hold copies of relevant variables. An allocation is therefore correct with respect
to independence, if there exists no part relation between any of the cut-sets of
the allocation targets that were assumed to be independent in the functional
safety concept. These rules can be integrated in the variability models to forbid
variants that are not safe.

4 Modeling and Analysis using the SAFE Framework

We modeled the example, described in Section 3, by applying the SAFE tool
platform provided by the SAFE Project 3. We created the functional archi-
tecture using EAST-ADL, the corresponding technical hardware and software
architecture using AUTOSAR, the safety extension for both of these models us-
ing SAFE. With pure::variants, also integrable into the SAFE tool platform, the
variant management part was realized.

The functional architecture in EAST-ADL is depicted in Figure 3 (middle).
The logical structure of figure 2 is identically transferred. The LightManager

FunctionType consists of two FunctionPrototypes, namely the Command and the

3 http://www.safe-project.eu/



Fig. 3. The functional architecture in EAST-ADL (middle), the corresponding safety
extension in a SAFE model (right) and the technical architectures represented in an
AUTOSAR model (right). Links modeled in attributes are represented as arrows.

Monitor function. Those functions are realized by the AUTOSAR SWCs with the
identical names (see arrows attached to the realization links). The AUTOSAR
model contains further elements for the whole light system of a car, like light-
sensors, front light and even a front camera. For the safety case those elements
need to be assumed interference free to the LightManager component Further-
more, the ECUs are modeled.

Note, that we are following the commonly used paradigm to allocate func-
tions first to software, and allocate the software to ECUs in a second step. The
first allocation step is visible in Figure 3 but the second one is not since the part
where these allocation relations are modeled in the AUTOSAR model is not
displayed. Nevertheless, to analyze the correct realization of an functional safety
concept by an technical one, also the hardware target needs to be known. The
safety properties are stated in a SAFE model. For each functional component a
safety extension is created which allows to capture the malfunctions of that com-
ponent and a set of safety requirements. The malfunctions can be freely typed,
in this case random faults are assumed in the component, i.e. that the result
cannot be trusted. Typical other types are stuck-at, too late, or ommission. The
FailurePropagation requirements and the MalfunctionIndependenceRequirement
capture the safety contracts presented in section 3 (C1 − C4).

The realization relations, the failure propagation requirements, the variable
architecture and the resulting allocations are used as input for the variability
models and for creating constraints for the variant management to ensure that
only safe variants can be configured. Figure 4 shows the family model of the
functional safety concept. It contains just the needed information from the vari-
ant management perspective to ensure the independence of the malfunctions M1
and M2. The constraint is also visible and it is read as compare the allocations
of the Command and the Monitor and if they are distinct the constraint is sat-



isfied. It is continuously checked while configuring variants and if it evaluates
to true, the variant complies to the functional safety concept. However, if the
constraint evaluates to false, the common functional safety concept is violated
by the technical realization of that currently configured variant.

In order to show how this works in a tool environment, we present a sce-
nario where a variant called Compact is stepwise configured until it complies to
the common functional safety concept. The first configuration, depicted in Fig-
ure 5, shows the selection of the feature AutoLight and because of the fact that
AutoLight demands a functional safety concept the constraint gets activated.
Unfortunately, the variant has only ECU1 available on the technical architecture
thus the tasks Tast CMD and Task MON can only be allocated to ECU1 why we
have a single point of failure, contradicting the functional safety concept. The
marker in Figure 5 on the right side shows that the constraint was evaluated to
false. Furthermore, the marker’s tool-tip gives the related error message, saying
M1 and M2 may have a common cause of failure. Note, from the functional
point of view the variant is correct, but not from the safety point of view.

If the configuration of variant Compact is continued and an additional feature
like AutoDim is selected the following will happen (see Figure 6). The AutoDim
selection causes beside the selection of the required software and other artifacts
also the selection of the ECU2. Having ECU2 available allows for the allocation
of Tast CMD and Task MON to distinct ECUs. Hence, the single point of failure
disappears and the common functional safety concept gets respected.

There are also other configurations possible with features like AutoLight and
Automatic High/Low Beam, which lead also to the selection of an additional ECU.
That means, as long as an additional ECU is available due to the selection of an
additional feature, the feature AutoLight can be part of a valid configuration of
a variant. In order to respect the common functional safety concept in any case,
the developers should think about whether the selection of AutoLight requires
ECU2 directly. Adding this information into the variability models would ensure
that a variant having just the feature AutoLight would be also safe.

5 Conclusion & Outlook

In this paper we presented an approach to transfer the advantages of product
line engineering in the context of safety critical systems. A functional safety
concept can be realized on different technical implementations. We focused on

Fig. 4. Family model containing the necessary information and the constraint, which
ensures that only variants can be configured, respecting the functional safety concept.



Fig. 5. A configuration of the variant called Compact which is invalid as it violates the
functional safety concept as visualized by the marker showing the error message “M1
and M2 common cause.”

violations of safety requirements due to allocations of software to hardware, that
is mainly driven by functional needs. While configuring a system, variants that
do not respect the safety requirements cannot be configured. We applied this
approach to the pure::variants tool, the leading PLE tools in the industry [2].
The safety extensions used for storing malfunctions and their propagation have
been developed in the European project SAFE and are subject to be integrated
within the EAST-ADL specification language.

Although we sketched the approach based on an allocation example, it is
capable to deal with arbitrary failure definitions and propagation. To do this, a
generalization of the correctness definition of the realization of functional safety
concepts by technical ones is planned. Furthermore, the approach shall be for-
mally integrated in the domain of trace semantics, allowing to reason also about
timed safety properties. This would require a step from pure cut-sets to cut-
sequences, but drastically increase the preciseness of the safety specification.

ACKNOWLEDGEMENTS

This document is based on the SAFE and SAFE-E projects. SAFE is in the
framework of the ITEA2, EUREKA cluster program Σ! 3674. The work has
been funded by the German Ministry for Education and Research (BMBF) un-
der the funding ID 01IS11019, and by the French Ministry of the Economy and
Finance (DGCIS). SAFE-E is part of the Eurostars program, which is powered

Fig. 6. A valid configuration of the variant called Compact respecting the functional
safety concept. Due to the selection of the AutoDim feature the Command and the
Monitor are allocated to different ECUs.



by EUREKA and the European Community (ID 01—S1101). The work has been
funded by the German Ministry of Education and Research (BMBF) and the
Austrian research association (FFG) under the funding ID E!6095. The respon-
sibility for the content rests with the authors.

References

1. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., baptiste Raclet, J., Reinke-
meier, P., Sangiovanni-vincentelli, A., Damm, W., Henzinger, T., Larsen, K.: Con-
tracts for systems design. Tech. rep., Research Centre Rennes Bretagne Atlantique
(2012)

2. Berger, T., Rublack, R., Nair, D., Atlee, J.M., Becker, M., Czarnecki, K., Wsowski,
A.: A survey of variability modeling in industrial practice. In: Proceedings of the
Seventh International Workshop on Variability Modelling of Software-intensive Sys-
tems. p. 1. ACM Press New York, NY, USA, Italy (2013), http://dl.acm.org/

citation.cfm?doid=2430502.2430513

3. Damm, W., Hungar, H., Josko, B., Peikenkamp, T., Stierand, I.: Using contract-
based component specifications for virtual integration testing and architecture de-
sign. In: Design, Automation Test in Europe Conference Exhibition (DATE), 2011.
pp. 1 –6 (march 2011)

4. H. Hungar: Compositionality with strong assumptions. In: Nordic Workshop on Pro-
gramming Theory. pp. 11–13. Mälardalen Real–Time Research Center (November
2011)

5. Linden, F.J.v.d., Schmid, K., Rommes, E.: Software Product Lines in Action: The
Best Industrial Practice in Product Line Engineering. Springer-Verlag New York,
Inc., Secaucus, NJ, USA (2007)

6. Oertel, M., Kacimi, O., Böde, E.: Proving compliance of implementation models to
safety specifications. In: Proceedings of the ERCIM/EWICS/ARTEMIS Workshop
on Dependable Embedded and Cyber-physical Systems and Systems-of-Systems
(DECSoS14) (to be published 2014)

7. Oertel, M., Mahdi, A., Böde, E., Rettberg, A.: Contract-based safety: Specification
and application guidelines. In: Proceedings of the 1st International Workshop on
Emerging Ideas and Trends in Engineering of Cyber-Physical Systems (2014)

8. pure-systems GmbH: pure::variants eclipse plugin user guide (2014),
http://www.pure-systems.com/fileadmin/downloads/pure-variants/doc/

pv-user-manual.pdf

http://dl.acm.org/citation.cfm?doid=2430502.2430513
http://dl.acm.org/citation.cfm?doid=2430502.2430513
http://www.pure-systems.com/fileadmin/downloads/pure-variants/doc/pv-user-manual.pdf
http://www.pure-systems.com/fileadmin/downloads/pure-variants/doc/pv-user-manual.pdf

	Reusing a Functional Safety Concept in Variable System Architectures

