Towards Automating I nterface Control Documents
Elaboration and Management

Hassna LouaddahRoger Champaghand Yvan Labich®e

'Ecole de technologie supérieure (ETS), Montréal,a@an
hassna. | ouadah. 1@ns. etsntl.ca
roger. chanpagne@tsntl.ca
2 carleton University, Ottawa, Canada
| abi che@ce. carl eton. ca

Abstract. Avionic systems have been migrating from the legieclerated ar-
chitecture towards an integrated modular architec{(MA). The IMA archi-
tecture replaces the equipment principle by a sétteroperable components
(hardware and software). The interoperability betwéhe integrated compo-
nents requires a detailed specification and desanipf their interfaces, which,
in the avionic domain, is usually written in Intecé Control Documents (ICD).
However, ICD creation and usage during the integmaprocess is challenging.
In fact, the two main problems with the usage of $Cide the lack of a com-
monly accepted language to define and use therheorte hand, and the lack
of tool support in their production and consumptibmthis paper, we present
our approach and methodology to overcome theséalimms.

Keywords: Interface, Interface Control Documents, ModeliD&L.

1 I ntroduction

Avionic systems are one of the major parts of aoraft that leads to the growing
increase of its cost (35 to 40% for civil aircradyd over 50% for military aircraft)
[1]. Up to the 90s, avionic systems followed a sieal federated architecture where
each equipment has its own avionic resources. Hewelue to the increasing com-
plexity of such systems, unprecedented technolbgicagress, and economic con-
cerns, an innovative solution, developed and dootedein ARINC-651 "Design
Guidance for Integrated Modular Avionics” [2] haseim proposed.

As the legacy approach has reached its limitsjrtipdementation of avionic sys-
tems for modern aircrafts converges towards thetmio of the Integrated Modular
Avionic (IMA) architecture [1]. Thus, the aerospacglustry is in the middle of a
mutation, abandoning traditional federated archites in favour of Integrated
Modular Avionics. An IMA architecture replaces thguipment principle by a set of
interoperable components (hardware and softwat®. ifiteroperability between the
integrated components requires a detailed spetifitand description of their inter-
faces (e.g. their boundaries and points of inteyagt To this end, the specification of

an interface should include the description, afedint levels of abstraction, of its
physical and electrical characteristics, the conipation protocols it uses as well as
the data exchanged with it. The detailed specificabf an interface in the avionic
domain is usually referred to as an Interface Gdmopcument (ICD).

The Aerospace industry is facing a real problemenbiilding IMA systems using
ICDs. This problem is related to (1) the manuahtiom of ICDs, (2) the manual use
of heterogeneous ICDs by system engineers/intagratacreate an IMA system, and
(3) the manual verification and validation, espkgigerification of appropriate com-
position of components described by ICDs. Thesgelgrmanual activities are tedi-
ous, very expensive, and error-prone. This is myaitole to the lack of a formal and
common language and/or a standardized format dnaddab enable the creation in an
unambiguous, complete, verifiable, consistent, madeable manner of those ICDs,
and their use during integration.

This research work aims to develop reliable and-efiicient mechanisms to cre-
ate and manage ICDs. The ultimate goal of the ptageto provide innovative tools
to system engineers to allow them to efficientliegrate equipments from different
suppliers, described by their ICDs, to provide aidosystems in commercial air-
crafts. To do so, our main idea consists in leviagqghe strengths of model-driven
engineering to the development, use and verifinatilCDs, in order to: help unam-
biguous description and representation of intedaarad ICDs; enable automatic veri-
fication and analysis of interfaces; enable thematic generation of human-readable
ICDs in different formats.

The rest of the paper is structured as folloWssection 2, we provide a snapshot of
recent works dealing with ICDs management. Aftedsamwe present the proposed
approach and methodology to achieve our goalsi¢e8). Finally, conclusions and
future research directions are discussed in sedtion

2 Related Work

Despite the major role of the ICDs in the procedsbuilding avionic systems, only a
few recent research works have addressed the pmehiglated to their manual man-
agement. In this paper, we restrict our discusgidie most significant contributions
which seem to be close to the solution we are hugpkor.

Qian Chen defined a taxonomy of interfaces underfdhm of an inheritance hier-
archy [3]. The different dimensions that are act¢edrfor in this taxonomy can be
interesting for multilevel abstraction represemtatand complexity handling.

Rahmani and Thomson proposed a systematic methmdédo modeling interfac-
es [4,5]. They have reused the principle of inwefa categorization and
hierarchization to provide a unique interface asatiure topology for two interacting
subsystems. Thus, they defined a standard modéCids based on class diagrams.
Based on this standard, the ICDs of the interfasulg-systems can be defined sepa-
rately, and then the consistency can be checkedyube assembling rules defined
manually for this purpose. Furthermore, the auth@ge proposed a conflict detec-
tion approach which enables the verification okifdce definitions correctness and

consistency [6]. However, interface requirementscijzation, which constitute one

of the main challenges of interfaces modeling arahagement, are not taken into

account in their work. In fact, an interface spieaifion should include the set of as-
sumptions provided by the interfaced componentsragdired for an efficient func-
tioning of the component, and the set of guarantlkeasthe component promises to
other components via this interface.

The same authors proposed a computer aided metigyd@dr defining and con-
trolling subsystem interfaces [7], enabling a fofrm=pression of interface require-
ments and mating rules of two subsystems. Howeherinterface is considered as a
connection between two ports, and thus, could exilt by having knowledge about
the two ends of such a connection. To overcomeidhige, the authors have defined a
domain ontology, however it is more suitable fordweare systems interconnections
rather than software ones. Moreover, in avionidesys, we need to specify both
hardware and software interfaces.

Pajares et al. [10] proposed a tool for ICD Manageinfor embedded avionic sys-
tems. They defined a set of meta-models (data itiefin data coding and communi-
cation architecture) for defining and managing 1@Da formal way, capturing only a
subset of the information that one typically regsaiin an ICD. In a similar way, Tapp
defined a language to describe system interfaceégtenvarious aspects surrounding
their data exchanges [11], though without mechasifmspecify constraints on the
interfaces. Luca de Alfaro et al. [12] on the othand, focused only on constraints,
defining sets of assumptions and guarantees ontarfdce’s inputs and outputs vari-
ables respectively. In fact, the authors propossthi@less interface language dubbed
assume/guarantee and particularly, the notion &frfilces composability, formally
verifiable, to check the interfaces compatibilifyt@o components designed separate-
ly. Other works such as [9], [13] advocate the assome tools but don’t bring sig-
nificant help to integrators in the ICD managenm@ocess. Other authors proposed to
use SysML (Systems Modeling Language) in the cdragéinterfaces modeling, but,
their approaches and consideration of interfacesiatomeet our needs [14, 15]. In
fact, they are useful for defining interfaces ofaready specified sub-system's inter-
actions and certification concerns, respectively.

In summary, existing works propose interestingtiphsolutions to our problem
but fail to provide a complete adequate solutioa tuone or more of the following
reasons:

— Partial consideration. Some authors either oveddathe expression of interface
requirements and constraints or restrict theirrdédin of these requirements ne-
glecting the interface characteristics and propsrti

— Partial definition of the interfaces domain aspectsh as hardware interconnection
and/or data concepts only.

— Pairwise definition of interfaces. An interfacedsnsidered as a connection be-
tween two interacting components, whereas, in oojept, we need to define each
component interface separately to be able to vémigrfaces compatibility when
integrating these components.

Our solution will provide the following:

— Include hardware and software aspects of interfaeggirements (as assumptions
and guarantees) and all characteristics (physiwdledectrical) and constraints of
both IMA and federated architecture's interfacéscesthe aerospace industry is
progressively migrating from federated to IMA atebiures.

— Separate and independent definition of componetdrfaces to enable semi-
automatic compatibility verification when integiragi components.

— The interface specification will include the deption, at different levels of ab-
straction, of its characteristics, the communicatgrotocols used as well as the
data exchanged through it.

3 Our Research Vision

Avionic systems and their hardware and softwarepmmants interfaces must be well
defined and have good specifications (i.e. unanthigucomplete, verifiable, consis-

tent, and traceable). Interface specificationsudel different levels of abstraction,

from different perspectives: e.g., physical andteleal, data messaging, and commu-
nication protocols. Capturing these various charétics can be done by defining a
Domain Specific Language (DSL).

A promising approach to address these concerriseisise of the Model-Driven
Engineering (MDE) approach. In this context, theQRATDO-331 standard [16] pro-
vides guidance for using model-based developmeatvanification when designing
avionic software (and systems). In fact, MDE proesothe definition of DSLs de-
scribed using meta-models and enables model tramafmn which can be useful for
verification and simulation [8]. The project wilefine a Domain Specific Language
(DSL) for modeling interfaces and ICDs, and devetnethods and tools enabling
automatic verification and analysis of interfaces.

The first scientific challenge involves the undangting of what is needed when
modeling components with ICDs. This can be perfafrre collaboration with our
industrial partner which has extensive experienith the various types and formats
of ICDs. Moreover, a domain analysis enables uiléntify the relevant concepts
(properties and meta-properties of ICDs) that sthdnd considered in the context of
ICD modeling. Based on the acquired knowledge, wkebe& able to create a meta-
model, which is the most important ingredient failéing a DSL, and define the
relationship between the domain defined concepish & meta-model will describe
the abstract syntax of the DSL under construct®nThe second scientific challenge
is to build the DSL by reusing/combining existingaeling languages based on their
closest concepts to DSL domain concepts. This shioeldone while following good
meta-modeling practices while providing sufficieetpressiveness, taking into ac-
count the possibility for future extensions. Thérdhchallenge consists in defin-
ing/selecting an appropriate concrete syntax fer@$L. As the concrete syntax ex-
presses the user’'s perception of the DSL, its difimshould enable end users to
easily read, write and understand the models [8F Tourth challenge consists in
building the DSL in such a way that allows us t@iement and apply control mecha-

nisms on the interface and ICD models and so, esad#mi-automatic control and
verification of the interfaces.

In order to achieve our project objectives and oware the challenges raised, we
propose the methodology illustrated in Fig. 1. lg.A (a), we present our approach
and planned methodology to achieve our researdegirgoals, while Fig. 1 (b) de-
picts the DSL construction steps using the planmethodology. Our approach in-
tends to enable the specification of an interfatbaut any knowledge of how it will
be used by other interfaces.

1. Domain analysis: to define concepts of "aspects of interest" eglatb the ICDs
and interfaces. Considering a separate and independeéfinition of component in-
terfaces, the domain concepts will include the waré/software aspects of inter-
faces, the communication protocols used, the dathamged through it as well as
the requirements and all physical/electrical ofhbt¥A and federated architec-
ture's interfaces.

2. Modeling languages study: to select a set of candidate languages able teelmod
the DSL domain concepts defined in the first st€pe set of the studied languages
includes, so far, AADL [17], SysML [18], EAST-ADL1P], HRC (Heterogeneous
Rich Components) of SPEEDS project [20] and AUT®IA1].

3. Case study modeling: a feasibility study to check the possibility of stng or ex-
tending existing modeling languages to build the.DEhe case study will be con-
structed in collaboration with our industrial pats and will include all relevant
domain concepts defined in the domain analysiseahas

4. Define a meta-model for the DSL: by defining the DSL abstract syntax and its
well-formedness rules. Based on results of theipusvstep, we will decide to ei-
ther reuse or combine the existing modeling langeag define our DSL abstract
syntax, and select the most appropriate ones twbsidered. The definition of the
DSL meta-model in the case of combination can fopwaed by transforming
each modeling language's meta-model to the chasenTdis will be restricted to
the relevant meta-models' parts only.

5. Concrete syntax: define/select an appropriate concrete syntaxdfedSL and its
semantics, which allows defining the meaning of Bl elements and therefore
enables automatic transformations [8].

6. Verification and validation: on the one hand, to continuously validate the meta-
model with the domain experts, to validate modegkirsst their meta-model's pre-
scribed constraints and rules via automated chexidg, on the other hand, to es-
tablish interface control and verification mechamssto provide a semi-automatic
control and verification of interfaces. The lattitl be based on the separate and
independent definition of component interfaces.sill provide an efficient way
to detect any incompatibility between componengrifatces during the integration
process.

Domain
analysis

D .
omain Abstract

concepts Syntax

Meta-model
(4)

Concrete

Modeling
@ languages study
(2)
Concrete syntax
definition
Syntax
:J“’ .
definition
Verification and
4
validation (@
) (5)

(@) (b)

Case study
modeling

Meta-
model rules

ouls
4
i

Fig. 1. (a) Methodolog phases, (b) DSL constructiapplying our methodolog

We are currentlystartingstep 3. V@ have studied a set of modeling langus
based on their meta@odel and domain concepts, and then performed la lbiggl
selection of the potential candidates. Our studywshthat the closest languages
our domain concepts are EA-ADL and HRC, because of thdwardware/softwar
ports anddata descriptics as well agequirements specification abilities. We .
preparingthe case study to verify the feasibility of reugamgnbining the selecte
modeling languages. This case study will be conttdiin such a way that all dome
concepts (or at least the most important ones)beilfaken into accou

4 Conclusion and Future Work

In this paper, we highlighted the main problemsthby the aerospace industryr-
ing the components integration process, basedinterface Control Documen
(ICDs), to build avionic systen using anintegrated Modular Avionic (IMA) ard-
tecture. Thesg@roblems are mainly related to the elaborationGid$ and interface
in the form ofdocuments and their manual use and management.aweaiso ot-
lined the drawbacksf the actual solutions and practices. Moreover,hage into-
duced our proposedpproach which addresses these issues by usingDite tech-
nology to efficiently crea' and manage the ICDs. Our solution promises to aatie
the elaboration and use ICDs, and to provide mechanisms to verify, in a i-
automatic manner, thcompatibility of the interfaces of the equipments to bee-
grated. Our future work will foci on the realisation and validation of the propc
approach.

Acknowledgements

This work was performed under the umbrella of a R6-CRD grant. The authol
would like to thank NSERC, CRIAQ, and CMC Electronics, floeir financial sp-
port.

10.

11.

12.
13.

14.

15.

16.

17.

18.

References

Bieber, P., Boniol, F., Boyer, M., Noulard, E., P#geC.: New Challenges for Future
Avionic Architectures, AerospaceLab journal, (2Q12http://www.aerospacelab-
journal.org/sites/www.aerospacelab-journal.orggfild_04-11.pdf, last accessed (Septem-
ber 2014).

. AEEC: ARINC-651: Design Guidance for Integrated MaduAvionic, Aeronautical Ra-

dio, (1997)

. Chen, Q.: An Object Model Framework for Interfacendgement in Building Information

Models, (2007). http://scholar.lib.vt.edu/theseaitable/etd-07262007-
145650/unrestricted/Dissertation_Qian_Chen.pdf,dasessed (September 2014).

. Rahmani, K., Thomson, V.: New interface managemeolstand strategies for complex

products, International Conference on Product Lidéézy Management, (2009).
http://www.mcgill.ca/plm2-criag/files/plm2-criagienani_thomson_plmQ09-final.pdf, last
accessed (September 2014).

. Rahmani, K., Thomson, V.: Managing subsystem inteaof complex products, Interna-

tional Journal of Product Lifecycle Management; B3, 1743-5110, (2011)

. Onur, H., Rahmani, K., Thomson, V.: A conflict ddten approach for collaborative

management of product interfaces, ProceedingseoABME Design Engineering Techni-
cal Conference, 555-563 (2010)

. Rahmani, K., Thomson, V.: Ontology based interfaegigh and control1 methodology for

collaborative product development, CAD Computer Aidekign, vol. 44, pp. 432-444
(2012)

. Stahl, T., Volter, M.: Model Driven Software Devplaent Technology, Engineering,

Management (2006)

. Specht, M.: Creating, maintaining, and publishingirerface control document (ICD),

AHS Technical Specialists Meeting on Systems Ereging 2009, vol.2, pp. 910-935
(2009)

Pajares, M., ngel, M., Daz, C.M., Pastor, I.L., HGZ-.: ICD Management (ICDM) tool
for embedded systems on aircrafts, ER(Z910)

Tapp, M.: Automating system-level data-interchasgéware through a system interface
description language, Ecole polytechnique de Mahtré (2013).
http://publications.polymtl.ca/1256/1/2013_Martimppapdf, last accessed (September
2014).

de-Alfaro, L., Henzinger, T.A.: Interface-based Iges Springer-Verlag, (2005)

L.Sergent, T., L.Guennec, A.: Data-Based System riggging: ICDs management with
SysML, ERTSz, (2014)

Fosse, E., Delp, C.: Systems engineering interfakesodel based approach, |IEEE Aero-
space Conference Proceedings (2013)

Sabetzadeh, M., Nejati, S., Briand, L., EvensendVAllH.: Using SysML for Modeling of
Safety-Critical Software-Hardware Interfaces: Guited and Industry Experience, |IEEE
HASE, (2011)

SC-205: DO-331: Model-based development and vatifio supplement to DO-178C and
DO-278A, Radio Technical Commission for Aeronaut{§11)

Feiler, P., Gluch, D., Hudak, J.: The Architectémalysis & Design Language (AADL):
An Introduction (CMU/SEI-2006-TN-011). Software Engering Institute, Carnegie
Mellon University, (2006)

OMG: Systems Modeling Language, version 1.3, (2012
http://www.omg.org/spec/SysML/1.3/PDF, last accdg8eptember 2014).

19.

20.

21.

EAST-ADL Association: EAST-ADL domain model specificatioversion v2.1.12,
(2013). http://www.east-adl.info/Specification/V2L2/EAST-ADL-
Specification_V2.1.12.pdf, last accessed (Septeradi4).

SPEEDS Consortium: Speeds -1 meta-model, (2009).
http://speeds.eu.com/downloads/SPEEDS_Meta-Model.pdst accessed (September
2014).

AUTOSAR: Specification of the Virtual Functional 8u version 1.3.0, (2012).
https://www.autosar.org/fileadmin/files/releases/3-
2/main/auxiliaryAUTOSAR_SWS_VFB.pdf, last accesqd&bptember 2014).

