Preface

The design of embedded systems with real-time and critical constraints raises distinctive problems throughout the development process, from high-level system engineering to low-level system designs. On the high-level engineering side, the complexity of critical systems has greatly increased during the past few years, while they are becoming regularly exploited in industrial practice as parts of large systems-of-systems. Then the architecting of an embedded system has to take into account complex collaboration patterns and integration constraints of computational elements and physical parts.

From the system engineering perspective, many actors in the industry working on complex distributed embedded systems identified the software crisis to be often rooted in a system crisis. In consequence, model-based system engineering has been adopted as the norm to use in industry. The formalization of system engineering models and approaches is considered to be the one of the major factors for further gains in productivity, quality and time-to-market such complex systems. Although a mature discipline, system engineering is currently renewing at high speed, driven forward by the progress of model-driven approaches and by standards such as SysML or MODELICA.

On the low-level design side, there are specific architectural choices that have to be made as early as possible in the process to streamline production. Key non-functional constraints related to, for instance, real-time deadlines and platforming parameters like energy consumption or memory footprint, have to be handled. The last few years have seen an increased usage of model-based engineering techniques also in low-level designs, mainly due to the following reasons: (1) they provide means to capture architectural and non-functional information using precise (and often formal) domain-specific models and (2) they separate functional aspects (platform independent) from architectural and nonfunctional aspects (platform specific). These aspects are combined later (more or less automatically) via model transformation to obtain the final system.

The workshop series on *Model-based Architecting and Construction of Embedded Systems (ACES-MB)* are a key meeting point between researchers and practitioners interested in model-based engineering in order to explore innovative ideas and experiences that contribute to better architecting and construction of embedded and cyber-physical systems for several years now. The intent is to bridge the gap between the embedded/cyber-physical system engineering and software engineering community by proposing a rich discussion forum. This year's edition, co-located with ACM/IEEE 17th International Conference on Model Driven Engineering Languages and Systems (MoDELS), has received 11 contributions from which 4 regular papers and 1 short paper were selected, focusing on: (1) the unified and formal construction of embedded systems and (2) the model-based verification and validation of such critical systems with respect to their non-functional requirements. The invited talk aims to enhance the discussions by highlighting the current and oncoming problems the two mature, yet complex, identified topics face.

The ACES-MB workshop has now reached its seventh edition. We would like to thank the program committee for their hard work and the workshop's authors and participants for making it successful.

September 2014

Florian Noyrit, Susanne Graf and Iulia Dragomir

Organizing committee

Florian Noyrit	CEA-LIST/LISE, France
Susanne Graf	VERIMAG, France
Iulia Dragomir	IRIT-University of Toulouse, France

Steering committee

Huascar Espinoza	Tecnalia, Spain
Mamoun Filali	IRIT-CNRS, France
Sébastien Gérard	CEA-LIST, France
Susanne Graf	VERIMAG, France
Gabor Karsai	Vanderbilt University, TN, USA
Ileana Ober	IRIT-University of Toulouse, France
Iulian Ober	IRIT-University of Toulouse, France
Stefan Van Baelen	iMinds vzw, Belgium
Thomas Weigert	Missouri S&T, USA

Program committee

De-Jiu Chen	KTH Royal Institute of Technology, Sweden
Arnaud Cuccuru	CEA LIST, France
Iulia Dragomir	IRIT-University of Toulouse, France
Mamoun Filali	IRIT-CNRS, France
Sébastien Gérard	CEA LIST, France
Susanne Graf	VERIMAG, France
Alexander Knapp	University of Augsburg, Germany
Florian Noyrit	CEA LIST/LISE, France
Ileana Ober	IRIT-University of Toulouse, France
Iulian Ober	IRIT-University of Toulouse, France
Andreas Prinz	University of Agder, Norway
Bernhard Rumpe	RWTH Aachen, Germany
Bran Selic	Malina Software, Canada
Tullio Vardanega	University of Padua, Italy
Eugenio Villar	University of Cantabria, Spain
Thomas Weigert	Missouri S&T, USA
Tim Weilkiens	OOSE Innovative Informatik GmbH, Germany
Virginie Wiels	ONERA Toulouse, France

Additional reviewers

Christoph Schulze	RWTH Aachen University, Germany
Fadwa Tmar	CEA LIST, France
Andreas Wortmann	RWTH Aachen University, Germany