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Abstract. The Multi-Relational Boolean factor analysis is a method
from the family of matrix decomposition methods which enables us an-
alyze binary multi-relational data, i.e. binary data which are composed
from many binary data tables interconnected via relation. In this paper
we present a new Boolean matrix factorization algorithm for this kind of
data, which use the new knowledge from the theory of the Boolean factor
analysis, so-called essential elements. We show on real dataset that uti-
lizing essential elements in the algorithm leads to better results in terms
of quality and the number of obtained multi-relational factors.

1 Introduction

The Boolean matrix factorization (or decomposition), also known as the Boolean
factor analysis, has gained interest in the data mining community. Methods for
decomposition of multi-relational data, i.e. complex data composed from many
data tables interconnected via relations between objects or attributes of this data
tables, were intensively studied, especially in the past few years. Multi-relational
data is a more truthful and therefore often also more powerful representation of
reality. An example of this kind of data can be an arbitrary relational database.
In this paper we are focused on the subset of multi-relational data, more pre-
cisely on the multi-relational Boolean data. In this case data tables and relations
between them contain only Os and 1s.

It is important to say that many real-word data sets are more complex than
one simple data table. Relations between this tables are crucial, because they
carry additional information about the relationship between data and this infor-
mation is important for understanding data as a whole. For this reason methods
which can analyze multi-relational data usually takes into account relations be-
tween data tables unlike classical Boolean matrix factorization methods which
can handle only one data table.

The Multi-Relational Boolean matrix factorization (MBMF) is used for many
data mining purposes. The basic task is to find new variables hidden in data,
called multi-relational factors, which explain or describe the original input data.
There exist several ways how to represent multi-relational factors. In this work



we adopt settings from [7], where is the multi-relational factor represented as an
ordered set of classic factors from data tables, always one factor from each data
table. The fact, that classic factors are connected into multi-relational factor is
matter of semantic of relation between data tables.

The main problem is how to connect classic factors into one multi-relational.
The main aim of this work is to propose a new algorithm which utilize so-called
essential elements from the theory of Boolean matrices. The essential elements
provide information about factors which cover a particular part of data tables.
This information can be used for a better connection of classic factors into one
multi-relational factor.

Another thing is the number of obtained factors. In classical settings we want
the number of obtained factors as small as a possible. In the literature can be
found two main views on this requirement. In the first case we want to obtain
the particular number of factors. In the second case we want to obtain factors
that explain prescribed portion of data. In both cases we want to obtain the
most important factors. For more details see [1]. We emphasize this fact and we
reflect it in designing of our algorithm. Both views can be transferred to multi-
relational case. The first one is straightforward, the second one is a little bit
problematic because multi-relational factors may not be able explain the whole
data. This is correct, because multi-relational factors carry different information
than classical factors. We discuss this issue later in the paper.

2 Preliminaries and basic notions

We assume familiarity with the basic notions of the Formal concept analysis [4],
which provides a basic framework for dealing with factors and the Boolean matrix
factorization (BMF) [2]. The main goal of classical BMF is to find a decompo-
sition C' = A o B, where C is input data table, A represent object-factor data
table (or matrix) and B represent factor-attribute data table (or matrix). The
product o is the Boolean matrix product, defined by

(Ao B)ij =\, Au - Byj, (1)

where \/ denotes maximum (truth function of logical disjunction) and - is the
usual product (truth function of logical conjunction). Decomposition C' into Ao B
corresponds to discovery factors which explain the data. Factors in classical BMF
can be seen as formal concepts [2], i.e. entity with the extent part and the intent
part. This leads to clear interpretation of factors. Another benefit of using FCA
as a basic framework is that matrices A and B can be constructed from the
subset of all formal concepts. Let

F= {<A17B1>a"'7<Ak7Bk>} c B(X7Y70)7

where B(X,Y, C) represents a set of all formal concepts of data table, which can
be seen as a formal context (X,Y,C), where X is a set of objects, Y is a set of
attributes and C' is a binary relation between X and Y. Matrices A and B are
constructed in the following way:
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for I = 1,...,k. In other words, A is composed from characteristic vectors A;.
Similarly for B.

In a multi-relation environment we have a set of input data tables Cj,
Cy,...C, and a set of relations R;j;, where i,j € {1,...,n}, between C; and
C;. The multi-relation factor on data tables C, Cs,...C, is an ordered n-tuple
<Ff1,F§2,...F£n>, where F;j € Fj, j € {1,...,n} (F; denotes a set of clas-
sic factors of data table C}) and satisfying relations R¢,c,,, or Rey,, ¢, for
le{l,...,n—1}

Ezample 1. Let us have two data tables Cy (Table 1) and Co (Table 2). Moreover,
we consider relation R, ¢, (Table 3) between objects of the first data table and
attributes of the second one.

Table 1: C; Table 2: Cy Table 3: Re, o,
abcd e fgh e fgh
1 X X X 5| x X 1 X X
2| x X 6] X x 2| % X
3 x X TIx X X 3[x X X
4ix X X X 8 X X 4[x X X X

Classic factors of data table C) are for example: FC' = ({1, 4}, {b,c,d}),
F& = ({2, 4}, {a,c}), F$* = ({1, 3, 4},{b,d}) and factors of the second ta-
ble Cy are: Flc2 = <{6’7}7 {fvg}>a F2C2 = <{5}’ {6,h}>, F302 = <{577}7 {e}>7
F&2 = ({8},{g, h}). These factors can be connected with using a relation R¢, ¢,
into multi-relational factors in several ways. In [7] were introduced three ap-
proaches how to manage this connections. We use the narrow approach from [7],
which seems to be the most natural, and we obtain two multi-relational factors
(FC* FP?) and (FS', FE2). The idea of the narrow approach is very simple.
We connect two factors FC' and chz if the non-empty set of attributes (if such
exist), which are common (in the relation R¢,¢,) to all objects from the first
factor Ficl, is the subset of attributes of the second factor ch2.

The previous example also demonstrate the most problematic part of MBMF.
Usually is problematic to connect all factors from each data table. The result of
this is a small number of connections between them. This leads to problematic
selection of quality multi-relational factors. The reason for a small number of
connections between factors is that classic factors are selected without taking
relation into account.

Another very important notion for our work are so-called essential elements
presented in [1]. Essential elements in the Boolean data table are entries in
this data table which are sufficient for covering the whole data table by factors



(concepts), i.e. if we take factors which cover all these entries, we automatically
cover all entries of the input data table. Formally, essential elements in the data
table (X, Y, C) are defined via minimal intervals in the concept lattice. The entry
C;; is essential iff interval bounded by formal concepts (i™+,i1) and (j+, j+1) is
non-empty and minimal w.r.t. C (if it is not contained in any other interval). We
denote this interval by Z;;. If the table entry Cj; is essential, then interval Z;;
represents the set of all formal concepts (factors) which cover this entry. Very
interesting property of essential elements, which is used in our algorithm, is that
is sufficient take only one arbitrary concept from each interval to create exact
Boolean decomposition of (X,Y,C). For more details about essential elements
we refer to [1].

3 Related work

There are several papers about classical BMF [1,2, 5,8, 10, 12], but this methods
can handle only one data table. In the literature, we can found a wide range
of theoretical and application papers about the multi-relation data analysis (see
overview [3]), but many times were shown that these approaches are suitable only
for ordinal data. The multi-relational Boolean factor analysis is more specific.
The most relevant paper for our work is [7], where was introduced the basic
idea that multi-relational factors are composed from classical factors which are
interconnected via relation between data tables. There were also introduced three
approaches how to create multi-relational factors, but an effective algorithm is
missing.

The Boolean multi-relational patterns and its extraction are subject of a
paper [11]. Differently from our approach data are represented via k-partite
graphs. There are considered only relations between attributes and data tables
contain only one single attribute. Patterns in [11] are different from our multi-
relational factors (are represented as k-clique in data) and also carry different
information. In [11] there is also considered other kind of measure of quality of
obtained patterns which is based on entropy.

Another relevant work is [6] where were introduced the Relational Formal
Concept Analysis as a tool for analyzing multi-relational data. Unlike from [6]
our approach extracts a different kind of patterns. For more details see [7].
MBMF is mentioned indirectly in a very specific and limited form in [9] as the
Joint Subspace Matrix Factorization.

Generally the idea of connection patterns from various data tables is not new.
It can be found in the social network analysis or in the field of recommendation
systems. The main advantage of our approach is that patterns are Boolean fac-
tors that carry significant information and the second important advantage is
that we deliver the most important factors (factors which describe the biggest
portion of input data) before others, i.e. the first obtained factor is the most
important.



4 Algorithm for MBMF

Before we present the algorithm for the MBMF we show on a simple example
basic ideas that are behind the algorithm. For this purpose we take the example
from the previous part. As we mentioned above if we take tables C1,Cs and
relation Rc,c,, we obtain with the narrow approach two connections between
factors, i.e. two multi-relational factors. These factors explain only 60 percent of
data. There usually exist more factorizations of Boolean data table. Factors in
our example were obtained with using GRECOND algorithm from [2]. GRECOND
algorithm select in each iteration a factor which covers the biggest part of still
uncovered data. Now we are in the situation, where we want to obtain a different
set of factors, with more connections between them. For this purpose we can use
essential elements. Firstly we compute essential parts of C; (denoted Ess(C1))
and C5 (denoted Ess(C1)). With the essential part of data table we mean all
essential elements (tables 1 and 2).

Table 4: Ess(Cy) Table 5: Ess(Cs)
abcd e fgh
1 X 5| X X
2|x 6] X
3] x X 7%
4 8 X X

Each essential element in E'ss(C1) is defined via interval in concept lattice of
C; (Fig. 1a) and similarly for essential elements in Ess(Cs) (Fig 1b). In Fig. 1a
is highlighted interval Z; . corresponding to essential element (C})1.. In Fig. 1b is
highlighted interval corresponding to essential element (C3)sy. Let us note that
concept lattices here are only for illustration purpose. For computing Fss(Ct)
and Ess(Cs) is not necessary to construct concept lattices at all. Now, if we
use the fact that we can take an arbitrary concept (factor) from each interval
to obtain a complete factorization of data table, we have several options which
concepts can be connect into one. More precisely we can take two intervals
and try to connect each concept from the first interval with concepts from the
second one. Again, we obtain full factorization of input data tables, but now we
can select factors with regard to a relation between them.

For example, if we take highlighted intervals, we obtain possibly four con-
nections. First highlighted interval contains two concepts ¢; = ({1,2,4},{c})
and ¢ = ({1,4},{b,¢,d}). Second consist of concepts di = ({6,7,8},{g}) and
dy = ({8},{g,h}). Only two connections (¢; with d; and ¢; with dy) satisfy
relation R¢, ¢,, i.e. can be connected.

For two intervals it is not necessary to try all combination of factors. If
we are not able to connect concept (A, B) from the first interval with concept
(C, D) from the second interval, we are not able connect (A, B) with any concept
(E, F) from the second interval, where (C,D) C (E,F). Also if we are not



Fig. 1: Concept lattices of C; (a) and Cy (b)

able to connect concept (A, B) from the first interval with concept (E, F') from
the second interval, we are not able connect any concept (C, D) from the first
interval, where (C, D) C (A, B), with concept (E, F). Let us note that C is
classical subconcept-superconcept ordering.

Even if we take this search space reduction into account, search in this in-
tervals is still time consuming. We propose an heuristic approach which takes
attribute concepts in intervals of the second data table, i.e. the bottom elements
in each interval. In intervals of the first data table we take greatest concepts
which can be connected via relation, i.e. set of common attributes in relation
is non-empty. The idea behind this heuristic is that a bigger set of objects pos-
sibly have a smaller set of common attributes in a relation and this leads to
bigger probability to connect this factor with some factor from the second data
table, moreover, if we take factor which contains the biggest set of attributes in
intervals of the second data table.

Because we do not want to construct the whole concept lattice and search in
it, we compute candidates for greatest element directly from relation R¢, ¢,. We
take all objects belonging to the top element of interval Z;; from the first data
table and compute how many of them belong to each attribute in the relation. We
take into account only attributes belonging to object . We take as candidate the
greatest set of objects belonging to some attribute in a relation, which satisfies
that if we compute a closure of this set in the first data table, resulting set of
objects do not have empty set of common attributes in a relation.

Applying this heuristic on data from the example, we obtain three factors
in the first data table, F{'' = ({2,4},{a,c}), Fs' = ({1,3,4},{c,d}), F{* =
({1,2,4}, {c}) and four factors Flc2 = ({5}, {e, h}), F202 = {67}, {f.9}): F302 =
{7y, {e, f,9}), 2 = ({8},{g,h}) from the second one. Between this factors,
there are six connections satisfying the relation. These connections are shown in
table 6.

We form multi-relational factors in a greedy manner. In each step we connect
factors, which cover the biggest part of still uncovered part of data tables C; and



Table 6: Connections between factors

Co nCo 0y nCh
- Fy2 Fy? F32 Fy
Ft X
1
F& X X
FSt X X X

Cs. Firstly, we obtain multi-relational factor (F<*, FS2) which covers 50 percent
of the data. Then we obtain factor (F5", F?) which covers together with first
factor 75 percent of the data and last we obtain factor (F', F<2). All these
factors cover 90 percent of the data. By adding other factors we do not obtain
better coverage of input data. These three factors cover the same part of input
data as six connections from table 6.

Remark 1. As we mentioned above and what we can see in the example, multi-
relational factors are not always able to explain the whole data. This is due
to nature of data. Simply there is no information how to connect some classic
factors, e.g. in the example no set of objects from C; has in R¢ ¢, a set of
common attributes equal to {e, h} (or only {e} or only {h}). From this reason
we are not able to connect any factor from C) with factor F{.

Remark 2. In previous part we explain the idea of the algorithm on a object-
attribute relation between data tables. It is also possible consider different kind
of relation, e.g. object-object, attribute-object or attribute-attribute relation.
Without loss of generality we present the algorithm only for the object-attribute
relation. Modification to a different kind of relation is very simple.

Now we are going to describe the pseudo-code (Algorithm 1) of our algorithm
for MBMF. Input to this algorithm are two Boolean data tables C7 and Cs,
binary relation R¢, ¢, between them and a number p € [0,1] which represent
how large part of C; and C; we want to cover by multi-relational factors, e.g.
value 0.9 mean that we want to cover 90 percent of entries in input data tables.
Output of this algorithm is a set M of multi-relational factors that covers the
prescribed portion of input data (if it is possible to obtain prescribed coverage).
The first computed factor covers the biggest part of data.

First, in lines 1-2 we compute essential part of C; and Cs. In lines 2-4 we
initialize variables U¢, and Uc,. These variables are used for storing information
about still uncovered part of input data. We repeat the main loop (lines 5-18)
until we obtain a required coverage or until it is possible to add new multi-
relational factors which cover still uncovered part (lines 12-14).

In the main loop for each essential element we select the best candidate from
interval Z;; from the first data table in the greedy manner described in the
algorithm idea, i.e. we take the greatest concept which can be connected via
relation. Than we try to connect this candidate with factors from the second
data table. We compute cover function and we add to M the multi-relational
factor maximizing this coverage.



In lines 16-17 we remove from Ug, and Uc, entries which are covered by
actually added multi-relational factor.

Algorithm 1: Algorithm for the multi-relational Boolean factors analysis

Input: Boolean matrices Cy,C5> and relation Rc, ¢, between them and p € [0, 1]
Output: set M of multi-relational factors

Ec, < Ess(Ch)
E02 — ESS(CQ)
Uc1 +— Cy
Uc, < Cy

while (|Uc, |+ |[Uc, |)/(IC1] +1C2]) = p do
foreach essential element (Ec,):; do
‘ compute the best candidate (a,b) from interval Z;;
end
(A, B) <+ select one from set of candidates which maximize cover of C

ey and which

Q-

© 0N kW N

select non-empty row ¢ in FE¢, for which is ATreie, C (Cy)
maximize cover of C; and Cs

11 (C, D) + <(C'2)ch ,(C2)19%)

Q-

[y
o

12 if value of cover function for Ci1 and C2 is equal to zero then
13 ‘ break
14 end

15 add ({4, B), (C, D)) to M

16 set (Uc,)ij =0 where i € A and j € B
17 set (Uc, )ij =0 where i € C and j € D
18 end

19 return F

Our implementation of the algorithm follows the pseudo-code conceptually,
but not in details. For example we speed up the algorithm by precomputing can-
didates or instead computing candidates for each essential elements, we compute
candidates for essential areas, i.e. essential elements which are covered by one
formal concept.

Remark 3. The input of our algorithm are two Boolean data tables and one
relation between them. In general we can have more data tables and rela-
tions. Generalization of our algorithm for such input is possible. Due to lack
of space we mentioned only an idea of this generalization. For the input data
tables C1,Cy, ..., C, and relations Re,c,,,,1 € {1,2,...,n — 1} we firstly com-
pute multi-relational factors for C;,_; and C,,. Then iteratively compute multi-
relational factors for C,,_o and C,,_1. From this pairs we construct n-tuple multi-
relational factor.



We do not make a detail analysis of the time complexity of the algorithm.
Even our slow implementation in MATLARB is fast enough for factorization usu-
ally large datasets in a few minutes.

5 Experimental evaluation

For experimental evaluation of our algorithm we use in a data minig community
well known real dataset MovieLens'. This dataset is composed of two data tables
that represent a set of users and their attributes, e.g. gender, age, sex, occupation
and a set of movies again with their attributes, e.g. the year of production or
genre. Last part of this dataset is a relation between this data sets. This relation
contains 1000209 anonymous ratings of approximately 3900 movies (3952) made
by 6040 MovieLens users who joined to MovieLens in 2000. Each user has at
least 20 ratings. Ratings are made on a 5-star scale (values 1-5, 1 means, that
user does not like a movie and 5 means that he likes a movie).

Originally data tables Users and Movies are categorical. Age is grouped into
7 categories such as “Under 18”7, “18-24”, “25-34”, “35-44”, “45-49”  “50-55”
and “56+”. Sex is from set {Male, Female}. Occupation is chosen from the
following choices: “other” or not specified, “academic/educator”, “artist”, “cler-
ical/admin”, “college/grad student”, “customer service”, “doctor/health care”,
“executive/managerial”, “farmer”, “homemaker”, “K-12 student”, “lawyer”, “pro-
grammer”, “retired”, “sales/marketing”, “scientist”, “self-employed”, “techni-
cian/engineer”, “tradesman/craftsman”, “unemployed” and “writer”. Film gen-
res are following: “Action”, “Adventure”, “Animation”, “Children’s”, “Com-
edy”, “Crime”, “Documentary”, “Drama’”, “Fantasy”, “Film-Noir”, “Horror”,
“Musical”, “Mystery”, “Romance”, “Sci-Fi”, “Thriller”, “War” and “Western”.
Year of production is from 1919 to 2000. We grouped years into 8 categories
“1919-19307, “1931-1940”, “1941-1950”, “1951-1960”, “1961-1970”, “1971-1980”,
“1981-1990” and “1991-2000”.

We convert the ordinal relation in to binary one. We use three different
scaling. The first is that user rates a movie. The second is that a user does not
like a movie (he rates movie with 1-2 stars). The last one is that user likes a
movie (rates 4-5). This does not mean, that users do like (respective do not like)
some genre, it means, that movies from this genre are or are not worth to see. We
took the middle size version of the MovieLens dataset and we made a restriction
to 3000 users and movies that were rated by that users. We take users, who
rate movies the most, and we obtain dimension of the first data table 3000x30
and dimension of the second data table is 3671x26. Let us just note that for
obtaining object-attribute relation we need to transpose Movies data table.

Relation “user rates a movie” make sense, because user rates a movie if he
has seen it. We can understand this relation as user has seen movie. We get
29 multi-relational factors, that cover almost 100% of data (99.97%). Values of
coverage, i.e. how large part of input data is covered can be seen in figure 2.

! http://grouplens.org/datasets/movielens,/



Graphs in figure 3 show coverage of Users data table and Movies data table
separately.

We can also see that for explaining more than 90 percent of data are sufficient
17 factors. This is significant reduction of input data.

coverage
o
2
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number of factors

Fig. 2: Cumulative coverage of input data
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Fig. 3: Coverage of input data tables

The most important factors are:

— Males rate new movies (movies from 1991 to 2000).
— Young adult users (ages 25-34) rate drama movies.



— Females rate comedy movies.
— Youth users (18-24) rate action movies.

Another interesting factors are:

— Old users (from category 56+) rate movies from their childhood (movies
from 1941 to 1950).

— Users in age range 50-55 rate children’s movies. Users in this age usually
have grand children.

— K-12 students rate animation movies.

Due to lack of space, we skip details about factors in relation “user does not
like a movie” and relation “user does like a movie”. In the first relation we get
30 factors, that covers 99.99% of data. In the second one, we get 29 factors,
covering 99.96% of data. Compute all multi-relational factors on this datasets
take approximately 5 minutes.

Remark 4. In case of MovieLens we are able to reconstruct input data tables
almost wholly for each three relations. Interesting question is what about rela-
tion, i.e. can we reconstruct relation between data tables? Answer is yes, we can.
Multi-relational factor carry also information about the relation between data
tables. So we can reconstruct it, but with some error. This error is a result of
choosing the narrow approach.

Reconstruction error of relation is interesting information and can be mini-
mize if we take this error into account in phase of computing coverage. In other
words we want maximal coverage with minimal relation reconstruction error.
This leads to more complicated algorithm because we need weights to compute
a value of utility function. We implement also this variant of algorithm. Re-
quirement of minimal reconstruction error and maximal coverage seems to be
contradictory, but this claim need more detailed study. Also it is necessary to
determine correct weight settings. We left this issue for the extended version of
this paper.

6 Conclusion and Future Research

In this paper, we present new algorithm for multi-relational Boolean matrix fac-
torization, that uses essential elements from binary matrices for constructing
better multi-relational factors, with regard to relations between each data ta-
ble. We test the algorithm on, in data mining well known, dataset MovieLens.
We obtain from these experiments interesting and easy interpretable results,
moreover, the number of obtained multi-relational factors needed for explaining
almost whole data is reasonable small.

A future research shall include the following topics: generalization of the al-
gorithm for MBMF for ordinal data, especially data over residuated lattices.
Construction of algorithm which takes into account reconstruction error of the



relation between data tables. Test the potential of this method in recommen-
dation systems. And last but not least create not crisp operator for connecting
classic factors into multi-relational factors.
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