
Interaction Challenges for the Dynamic
Construction of Partially-Ordered Sets

Tim Pattison and Aaron Ceglar

{tim.pattison,aaron.ceglar}@defence.gov.au
Defence Science & Technology Organisation

West Ave, Edinburgh
South Australia 5111

Abstract. We describe a technique for user interaction with the in-
terim results of Formal Concept Analysis which we hypothesise will ex-
pedite user comprehension of the resultant concept lattice. Given any
algorithm which enumerates the concepts of a formal context, this tech-
nique incrementally updates the set of formal concepts generated so far,
the transitive reduction of the ordering relation between them, and the
corresponding labelled Hasse diagram. User interaction with this Hasse
diagram should prioritise the generation of missing concepts relevant to
the user’s selection. We briefly describe a prototype implementation of
this technique, including the modification of a concept enumeration al-
gorithm to respond to such prioritisation, and the incremental updating
of both the transitive reduction and labelled Hasse diagram.

1 Introduction

Formal Concept Analysis (FCA) takes as input a formal context consisting of a
set of attributes, a set of objects, and a binary relation indicating which objects
have which attributes. It produces a partially-ordered set, or poset, of formal
concepts, the size of which is, in the worst case, exponential in the number of
objects and attributes in the formal context [1]. The computational tasks of enu-
merating the set of formal concepts, and of calculating the transitive reduction
of the ordering relation amongst them, therefore scale poorly with the size of the
formal context. These steps are required to determine the vertices and arcs of
the directed acyclic graph whose drawing is known as the Hasse diagram of the
partial order. The layout of this layered graph prior to its presentation to the
user is also computationally intensive [2]. For contexts of even moderate size,
there is therefore considerable delay between user initiation of the process of
FCA and presentation of its results to the user.

A number of algorithms exist which efficiently enumerate the formal concepts
of a formal context [3–6]. In this paper, we describe an approach which incre-
mentally updates and presents the partial order amongst the formal concepts
generated so far. In particular, it: incrementally updates the transitive reduc-
tion of the interim partial order as each new concept is generated; incrementally
updates the layout of the Hasse diagram; and animates the resultant changes to

the Hasse diagram to assist the user in maintaining their mental model. This
approach enables user exploration and interrogation of the interim partial order
in order to expedite their comprehension of the resultant complete lattice of
concepts. It applies equally to any other partial order, the enumeration of whose
elements is computationally intensive.

We also describe how this interaction can prioritise the generation and dis-
play of those missing concepts which are most relevant to the user’s current
exploratory focus. By addressing the scalability challenge of visual analytics [7],
this user guidance of computationally intensive FCA algorithms [8] facilitates
the required “human-information discourse”.

1.1 Previous work

Incremental algorithms exist for updating the set of formal concepts and the
transitive reduction of the ordering relation following the addition of a new object
to the formal context [9–11]. A new object can give rise to multiple additional
concepts which must be inserted in the existing complete lattice to produce an
updated lattice which is also complete. In contrast, the technique described in
this paper involves the addition of a single element at a time to a partially
ordered set which is not in general a complete lattice.

Ceglar and Pattison [8] have argued that user guidance of the FCA process
could allow the satisfaction of the user’s requirements with a smaller lattice,
and consequently in less time, than standard FCA algorithms. They described
a prototype tool which facilitates interactive user guidance and implements an
efficient FCA algorithm which they have modified to respond to that user guid-
ance. The user interaction challenges identified by that work are described and
addressed in this paper.

2 Interacting with a Hasse diagram

2.1 The Hasse diagram

A finite poset 〈P ;<〉 consists of a finite set P and an irreflexive, antisymmetric,
transitive binary relation < between its elements. Two elements a, b ∈ P are
said to be comparable if a < b or b < a, and incomparable otherwise. 〈P ;<〉 can
be represented as an acyclic directed graph, or digraph, in which each element
of the set P is a vertex and an arc connects each pair of comparable elements.
The direction of each arc is “upward” in the sense of the relation <, from the
lesser to the greater element.

The greater the number of comparable pairs, the greater the number of arcs,
and hence the harder it is for a user to interpret a drawing of this digraph.
The transitive reduction ≺ [12] of the ordering relation < results from removing
each arc whose source and destination vertices are connected by one or more
other directed paths through the digraph. The transitive reduction therefore has
fewer arcs than there are pairs of comparable elements in P . In the resultant

(a) Hasse diagram (b) Comparability (c) Upset, downset (d) Bounds

Fig. 1: Determining comparability, upset and downset, and bounds from the
Hasse diagram

digraph, a, b ∈ P are comparable iff there exists a directed path between the
corresponding vertices, and b is said to be an upper neighbour of a, and a a
lower neighbour of b, iff there is an arc from a to b.

A layered drawing of the resultant digraph, in which the vertical component
of each arc is upwards on the page, is known as a Hasse diagram of the partial
order. This direction convention reduces clutter by avoiding the need to explicitly
represent the direction of the arcs. An example Hasse diagram is shown in Fig. 1a.
The black vertices in Fig. 1b are comparable because a monotonically upward
path, via the light-grey vertices, exists between them. The more elements there
are in P , and the more arcs there are in the transitive reduction of <, the harder
the visual task of tracing paths in the Hasse diagram to determine comparability.

2.2 Analytical objectives

An upper [respectively lower]1 bound on a given set S ⊆ P is an element u ∈ P
[l ∈ P] satisfying ∀s ∈ S, s < u [l < s]. If S consists of a single element a ∈ P ,
the set of upper [lower] bounds on S is called an upset [downset], and can be
identified by tracing all upward [downward] paths from a in the Hasse diagram.
In Fig. 1c, the vertices in the upset [downset] of the black vertex are light [dark]
grey. The union of a with its upset and downset gives the set of elements of
P which are comparable with a. If S consists of two or more elements of P ,
then the set US ⊂ P [DS ⊂ P] of its upper [lower] bounds is the intersection
of the upsets [downsets] of its elements. In Fig. 1d, the sets of upper and lower
bounds on the pair of black vertices are encompassed by the shaded areas. The
visual task of identifying and intersecting these upsets [downsets] is demanding
for small partial orders, and rapidly becomes intractable as the size |P | of P
increases.

If there exists an a∗ ∈ US such that a∗ 6 a for all upper bounds a ∈ US

on S, then a∗ is called the least upper bound (LUB); if there exists a b∗ ∈ DS

1 Square brackets are used throughout this paper to indicate that a sentence is true
both when read without the bracketed terms and when read with each bracketed
term substituted for the term which precedes it.

such that b 6 b∗ for all lower bounds b ∈ DS on S, then b∗ is called the greatest
lower bound (GLB). In Fig. 1d, the least upper and greatest lower bounds on
the pair of black vertices are the upper and lower shaded vertices respectively.
By definition, the LUB and GLB are unique whenever they exist, since equality
corresponds to identity. In addition to the challenge of identifying the set of
upper [lower] bounds on S, the visual task of establishing the existence and
identity of the LUB [GLB] from this set also becomes intractable for large |P |.

If the LUB and GLB exist for all pairs of elements in P , then 〈P ;<〉 is called
a lattice. If the LUB and GLB exist for all S ⊆ P , then 〈P ;<〉 is called a complete
lattice, and the LUB [GLB] on P is known as the supremum [infimum].

2.3 Computer-assisted interaction

In the previous section, we identified a number of operations on posets which
a user can perform visually by tracing paths in the Hasse diagram, but which
become intractable as |P | increases. To support the user in these tasks, the
computer should calculate the results of these operations and display them by
highlighting elements of the Hasse diagram. In particular:

1. Comparability between selected elements of P can be determined compu-
tationally and all identified paths between them highlighted in the Hasse
diagram.

2. The set of elements comparable with a selected element can be determined
by calculating and highlighting the members of its upset and downset.

3. The set of upper [lower] bounds on a set S of elements can be determined
by calculating the upsets [downsets] of each, and highlighting the members
of their intersection.

4. The existence and identity of the LUB [GLB] on a selected subset S can be
determined computationally from the result of 3. The identified element of
P , if any, should be highlighted.

3 Dynamic presentation of the partial order

So far we have assumed that the elements of 〈P ;<〉 are known a priori, so that
the transitive reduction can be computed and the Hasse diagram laid out before
being presented to the user. Consider now the case where the user’s request
for the Hasse diagram triggers the on-demand enumeration of the elements of
P . If this enumeration is computationally intensive, the user may experience
excessive delay before the results are presented. Rather than waiting for the
generation of all elements, the user may wish to commence interaction with
the Hasse diagram for the elements generated so far, and have this diagram
evolve to incorporate each new element as it is added. We hypothesise that user
exploration of, and familiarisation with, the evolving 〈Q ⊆ P ;<〉 will facilitate
and expedite comprehension of 〈P ;<〉.

In order to examine the feasibility of user interaction with the Hasse diagram
of 〈Q;<〉 as a proxy for that of 〈P ;<〉, the subsequent sections address the
following four key questions:

1. What information about 〈P ;<〉 can and cannot be ascertained through in-
spection of 〈Q;<〉?

2. Should the response to user interrogation of 〈Q;<〉 be expressed in terms of
〈P ;<〉 ?

3. Can 〈Q;<〉 be incrementally updated to incorporate each new element of P
as it is generated?

4. How should these updates be presented so as to minimise disruption to the
user’s mental model of 〈Q;<〉?

3.1 Comparing the interim and final partial orders

Two elements which are comparable in 〈P ;<〉 are comparable in any 〈Q ⊂ P ;<〉
in which they both exist. The upset [downset] of an element in 〈P ;<〉 is a
(possibly improper) superset of its counterpart in 〈Q;<〉. Accordingly, the set
of upper [lower] bounds on S ⊆ Q in 〈P ;<〉 is also a superset of its counterpart
in 〈Q;<〉. Importantly, the LUB [GLB] on S ⊆ Q may not be present in 〈Q;<〉,
even if it is in 〈P ;<〉.

3.2 Interacting with the interim partial order

User interaction could be defined to implement the same computer-assisted op-
erations on 〈Q;<〉 as were defined above on 〈P ;<〉. However, since the user’s
objective is to find out about 〈P ;<〉, interaction with 〈Q;<〉 should also priori-
tise the generation of the requisite elements of P .

The selection of two elements a and b in order to determine their compara-
bility might confirm comparability by not only highlighting the elements x ∈ Q
which lie between a and b, but also prioritise the generation of all such x ∈ P .
Selection of an element might not only display its upset and downset in 〈Q;<〉,
but also prioritise the completion of these sets by the process which generates
the elements of P . Similarly, the selection of a set S ⊂ Q of elements in the
interim partial order may not only result in the display of the corresponding up-
per and lower bound sets, but also prioritise the completion of these sets. And
finally, if the user requests the LUB [GLB] on a set S ⊂ Q of elements, then the
computer could prioritise the generation of the corresponding result in 〈P ;<〉.
If the requested bound exists, the corresponding element of P could be added,
if not already present, and highlighted in the Hasse diagram; otherwise a null
result should be signalled to the user.

3.3 Updating the interim partial order

As each new element e of P is generated and added to 〈Q;<〉 to form 〈Q ∪ {e};<〉,
both the element set and the transitive reduction ≺ of < must be updated. Up-
dating the transitive reduction involves identifying the upper and lower neigh-
bours of e, adding the requisite arcs, and deleting any arcs from the lower to the
upper neighbours.

The set N u := min{u ∈ Q : e < u}
[
N l := max{l ∈ Q : l < e}

]
of upper

[lower] neighbours can be identified through a top-down [bottom-up] search of
〈Q;<〉 starting from each of the maximal [minimal] elements of Q. Each down-
ward [upward] path from each maximal [minimal] element can be pruned from
the point at which an element is encountered which is not greater [less] than e.
An element in {u ∈ Q : e < u} [{l ∈ Q : l < e}] is also in N u [N l] iff it has no
lower [upper] neighbour greater [less] than e.

Once the sets N u and N l have been identified, the neighbour relation ≺
should be updated as follows. In 〈Q ∪ {e};<〉, e ≺ α for each α ∈ N u and ζ ≺ e
for each ζ ∈ N l. To maintain ≺ as the transitive reduction of <, any arcs in
N l×N u must also be removed. Note that either or both of the sets N u and N l

can be empty; the element e is maximal in 〈Q ∪ {e};<〉 iff N u = ∅, and minimal
iff N l = ∅.

3.4 Presenting Hasse diagram updates

The layout of the Hasse diagram for 〈Q ∪ {e};<〉 will necessarily differ from that
of 〈Q;<〉. The addition of the new vertex e will require either its accommodation
within an existing layer or the creation of a new layer. The deletion of some
existing arcs and the creation of new ones may also worsen the aesthetic criteria,
such as number of edge crossings, which the chosen layout algorithm seeks to
optimise [2].

The addition of the new vertex and its incident arcs, the deletion of super-
seded arcs, and any changes in layout, must be presented to the user in a way
which minimises disruption of the user’s mental model of 〈Q;<〉. The sequen-
tial animation of each step in this process is a logical solution to this problem.
By also minimising and localising any changes to the layout necessitated by the
addition of a new vertex, the number of vertices and edges whose movement the
user must visually track can be minimised.

Figure 2 illustrates the process of adding a new element to 〈Q;<〉 in Fig. 2a.
The upper (light grey) and lower (dark grey) neighbours of the new element are
identified, and the edges between them (bold) slated for deletion. The vertical
separation between the top and bottom layers is increased to make room for a
new layer, which is required to accommodate the new vertex. Finally, the new
vertex is inserted and attached to its upper and lower neighbours. Placement of
the new vertex near its upper and lower neighbours helps localise the resultant
changes to the Hasse diagram.

4 Application to Formal Concept Analysis

4.1 Introduction to FCA

FCA takes as input a bigraph consisting of a set G of objects, a set M of
attributes, and a binary relation R ⊆ G ×M between them. FCA produces a
complete lattice of formal concepts. Each formal concept consists of a set E ⊆ G,

(a) Identify neighbours and
superceded edges

(b) Make room for, insert and
connect new vertex

Fig. 2: Inserting a new element into the poset 〈Q;<〉.

known as the extent, and a set I ⊆M , known as the intent, such that E×I ⊆ R.
Each object in E has all attributes in I and each attribute in I is possessed by
all objects in E. The extent and intent are maximal in the sense that adding
elements to either set necessarily entails removing elements from the other. The
relation < between concepts is the subset relation ⊂ between their extents. The
upset [downset] of a concept consists of concepts whose intents [extents] are
subsets of those of the nominated concept.

4.2 Labelling

The concept whose extent is the set of objects possessing attribute i is referred
to as the attribute concept for i; the concept whose intent is the set of attributes
possessed by object j is known as the object concept for j. In the Hasse diagram
for the complete lattice of formal concepts, an attribute [object] concept is la-
belled with the corresponding attribute [object]. The intent of a concept can be
inferred from the set of attribute labels on vertices in its upset, while its extent
can be inferred from the set of object labels on vertices in its downset.

This reduced labelling scheme works for the interim partial order 〈Q;<〉 pro-
vided that all object and attribute concepts are present ab initio. The algorithm
which generates the formal concepts should be chosen or modified so as to pro-
duce these first, and rendering of the Hasse diagram deferred until they are
included in Q. It will be seen in Sect. 4.6 that this deferral also has benefits for
the layout of the Hasse diagram.

4.3 Least upper and greatest lower bounds

In FCA, the intent of the LUB on a set of concepts is the intersection of their
intents, while the extent of the GLB is the intersection of their extents. Thus, the
LUB [GLB] indicates the set of attributes [objects] which they have in common.
Since the partial order amongst the full set of formal concepts for a formal
context is a complete lattice, the LUB and GLB are guaranteed to exist; they
may however be absent from 〈Q;<〉, and will in general require computation on
demand.

Notably, the LUB and GLB on the full set P of formal concepts may not be
present in 〈Q;<〉. A concept enumeration algorithm should be chosen or modified
to produce these first. In addition to improving the resemblance between 〈Q;<〉
and the resultant complete lattice 〈P ;<〉, the existence of the LUB [GLB] ab
initio provides a single, consistent starting point for the top-down [bottom-up]
search of the transitive reduction of 〈Q;<〉 for the upper [lower] neighbours of
each new concept. This process is described in Sect. 4.4.

Selection of a set A of concepts could trigger the generation, display and
highlighting of all concepts x ∈ P satisfying A∗ < x < A∗. Here A∗ and A∗

denote the GLB and LUB on the set A in the complete lattice 〈P ;<〉 of formal
concepts. A∗ and A∗ constitute the GLB and LUB on the complete lattice of
elements whose generation is to be prioritised. Their generation is given the
highest priority in order to bound this poset. The elements of A are all mutually
comparable iff at least one directed path from A∗ to A∗ passes through all of
these elements. In this case, A∗ ∈ A and A∗ ∈ A; in the special case of |A| = 2,
this is a necessary and sufficient condition for comparability.

4.4 Insertion point

As described in Sect. 3.3, the upper [lower] neighbours of the new concept can
be identified in 〈Q;<〉 using a top-down [bottom-up] directed search. The search
commences from the LUB [GLB] on P , which by design is present in Q ab initio.
The current vertex is marked as having been visited, and any lower [upper]
neighbour whose intent [extent] is a subset of that of the new concept is queued
for subsequent traversal. If the current concept has no such neighbours, then it
is an upper [lower] neighbour of the new concept.

4.5 Layer assignment

The poset 〈Q;<〉 is presented to the user as a layered drawing of the corre-
sponding directed acyclic graph. In order to maintain the direction convention
of upward arcs in this Hasse diagram, each new concept must be assigned to a
layer which is separated from the infimum [supremum] by at least the maximum
length of all directed paths between them in the transitive reduction of 〈Q;<〉. If
no existing layer satisfies both constraints, one must be added. If only one such
layer exists, the new concept is assigned to that layer. If more than one existing
layer satisfies both constraints, the choice amongst them is arbitrary.

Even if at least one layer satisfies both constraints on path length, it is still
possible for the new concept to have upper and lower neighbours in adjacent
layers. Adding an intervening layer in this case would create room for the new
concept, and would not require the revision of any previous layer assignments.
However, given that there are already sufficient layers to accommodate the new
concept, a more space-efficient strategy would be to instead promote the lowest
upper neighbours to the next highest layer or demote the highest lower neigh-
bours to the next lowest layer. To make room for either change, it may also

be necessary to promote additional members of the upset or demote additional
members of the downset of the new concept.

In our preliminary implementation of layer assignment, we: assign a vertex to
the uppermost layer, if any, satisfying the dual path length constraints; attempt
to demote elements of the downset in order to make room to insert a new concept
between upper and lower neighbours which are in adjacent layers; and insert
a new layer, if required, which has path length two from the infimum to make
room for this demotion. The reason for the choice of path length two will become
apparent in Sect. 4.6. This layering strategy is illustrated later in Sect. 4.8.

The chosen strategy requires that concepts be allowed to migrate between
layers following initial presentation to the user, which has the potential to dis-
rupt the user’s mental model. On the other hand, creating more layers than are
required results in inefficient use of the vertical space available for drawing the
Hasse diagram, making it harder for the user to maintain simultaneous focus
and context as |Q| increases.

4.6 Layout

For the reason given in Sect. 4.3, the concept enumeration algorithm should
first generate the LUB and GLB of the poset 〈P ;<〉 of concepts. These should
be placed at the centre top and centre bottom of the canvas. For the reason
given in Sect. 4.2, all (remaining) attribute and object concepts should be gen-
erated next. In this section, we prioritise from amongst these the generation of
the lower neighbours of the supremum, which are called atoms, and the upper
neighbours of the infimum, which are called co-atoms. We describe a scheme
whereby their relative ordering within their respective layers is chosen so as to
improve the aesthetics of the resultant Hasse diagram. The horizontal place-
ment of all subsequent concepts, including the remaining attribute and object
concepts, is dependent on this ordering.

The supremum and infimum, along with all atoms and co-atoms, are gener-
ated and laid out before the Hasse diagram is first presented to the user. The
atoms and co-atoms are ordered within their respective layers so as to min-
imise edge crossings in the relation R. As subsequent concepts are discovered
and added, each edge morphs into one or more directed paths in the transitive
reduction of 〈Q;<〉. Provided care is taken in the placement of the remaining
concepts on these paths, the effort invested in minimising edge crossings in R
might therefore be repaid with fewer arc crossings, and potentially also shorter
paths, in the Hasse diagram.

For each newly-discovered concept, the horizontal barycentre [13] of the
atoms and co-atoms with which it is comparable is calculated, and a total order
on these barycentres is used to order the concepts within a layer. The barycentre
calculation assumes that the co-atom and atom layers are assigned equal width
and that atoms and co-atoms are equally spaced within their respective layers.
The assigned order, which is designed to place each concept in reasonable hori-
zontal proximity to the corresponding atoms and co-atoms, is only dependent on
the fixed horizontal placement of the atoms and co-atoms, rather than the entire

upset and downset. This choice also preserves the order amongst the concepts
already placed within the layer, since each new concept is simply inserted into
that existing order.

The creation of a new layer may be required to separate vertically, by at least
one layer, the upper and lower neighbours of a new concept. That new layer is
created immediately above the layer of co-atoms, and elements of the downset
of the new concept are demoted as required. Note that demotion beyond this
layer would violate the constraint on path length from the infimum. Since each
new concept is placed in the uppermost layer satisfying the constraint on path
length to the supremum, and new layers are only ever added with path length
two from the infimum, concepts will either remain in the layer to which they are
originally assigned, or migrate downward.

4.7 Guided concept enumeration

We have so far assumed that algorithms for the enumeration of formal concepts
could be modified to prioritise the generation of concepts relevant to the user’s
current selection. To demonstrate that this is possible, we briefly describe a
modification of the algorithm of Choi and Huang [14] to prioritise the generation
of the downset of a selected concept.

Choi and Huang enumerate the concepts of a formal context in top-down,
breadth-first order, extending the intent of each concept generated so far using
attributes not currently in its intent. Ceglar and Pattison [8] have modified this
algorithm to: hand over each novel concept, as it is generated, for subsequent
processing; respond to user input, if any, after the generation of each novel
concept; and switch to depth-first processing at the user’s request to enumerate
the downset of a nominated concept, resuming breadth-first processing upon
completion. The upset of a nominated concept could be generated similarly by
switching to bottom-up, depth-first processing, adding objects not in the extent
of the nominated concept.

Efficient FCA algorithms employ various strategies for preventing the re-
peated generation of the same concept, typically by traversing a trie structure
[15] superimposed on the concept lattice. Since user guidance of the FCA al-
gorithm can interfere with this strategy, an efficient test for concept novelty,
based for example on hash tables [15], is essential. In the proposed interactive
approach, the overall efficiency of concept enumeration is less important than
responsiveness to user interrogation of the interim partial order.

4.8 Prototype implementation

Figure 3 shows mockups of a prototype interface for the incremental construction
of a poset of formal concepts. The example formal context consists of people and
their physical attributes. Figure 3a depicts the state of the Hasse diagram first
presented to the user. By this stage, all of the attribute and object concepts have
been generated by the concept enumeration algorithm, labelled, and laid out to
establish the framework for insertion of subsequent concepts.

Male Yellow Hair Brown Eyes Female

White Hair Beard Moustache Brown Hair Black Hair Brown Skin Red Hair

Kyle

Andy Justin Jon Jake Joshua Megan Sarah William Tyler Daniel

(a) Initial diagram (b) Multiple selection (c) Insertion

Fig. 3: The result of multiple selection in the initial Hasse diagram, and of the
subsequent insertion of multiple concepts.

Figure 3b shows the result of the user selecting in this diagram the attribute
concepts for “Beard” and “Moustache”, which are highlighted in response with
light green halos. This multiple selection triggers the calculation of the extent
and intent intersections for the selected concepts. The former corresponds to the
infimum, which is accordingly highlighted with a bright green halo; the latter
corresponds to a new concept, which is consequently inserted into the Hasse
diagram and highlighted with a purple halo. Since this least upper bound has
path length 2 from the supremum, a new row has been inserted to accommodate
concepts with path length 3, and the selected concepts demoted to it. The least
upper bound is inserted into row 2 at ordinal position 2 of 5; this position is
based on the horizontal barycentre of its associated atoms and co-atoms, which
are predominantly to the left of the centreline. Figure 3c shows the state of the
Hasse diagram following the subsequent addition of a number of concepts; the
most recently added concept is highlighted and its adjacent arcs shown green.

The prototype interface does not yet implement all of the recommendations
in this paper. For example, while multiple selection triggers the calculation and
display of the LUB and GLB, it does not prioritise the highlighting and com-
pletion of the set of concepts between them. Change animation is also currently
lacking. If the context bigraph consists of more than one connected component,
these should be dealt with separately (albeit connected to the same supremum
and infimum) and the results horizontally juxtaposed. This reduces the compu-
tational complexity, and ensures a better result, of the layout of the atoms and
co-atoms. It also allows correct handling of the exceptional case where the same
concept is both an atom and co-atom.

5 Summary and Future Work

This paper has described a technique for the incremental construction of the
Hasse diagram of a poset. We hypothesise that user interaction with this evolv-
ing diagram will expedite user comprehension of the partial order. When applied
to FCA, this technique incrementally updates the transitive reduction, and the

labelled Hasse diagram, of the partial order amongst the set of concepts gener-
ated so far. User interaction with the Hasse diagram prioritises the generation of
missing concepts relevant to the user’s selection. A prototype implementation,
including the modification of a concept enumeration algorithm to respond to
downset prioritisation, has also been described through which the hypothesis
will be tested in future work. Scalable mechanisms for interactive concept dele-
tion should also be explored to allow the exclusion from the interim partial order
of concepts which are no longer of interest to the user.

References

1. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag New York, Inc. (1997)

2. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.: Graph Drawing. Prentice Hall,
Upper Saddle River, NJ (1999)

3. Kuznetsov, S.O., Obiedkov, S.A.: Algorithms for the construction of concept lat-
tices and their diagram graphs. In: PKDD ’01: Proceedings of the 5th European
Conference on Principles of Data Mining and Knowledge Discovery, Springer (2001)
289–300

4. Kuznetsov, S., Obiedkov, S.: Comparing performance of algorithms for generating
concept lattices. Journal of Experimental and Theoretical Artificial Intelligence
14(2-3) (2002) 189–216

5. Priss, U.: Formal Concept Analysis in Information Science. Annual Review of
Information Science and Technology 40 (2006) 521–543

6. Strok, F., Neznanov, A.: Comparing and analyzing the computational complexity
of FCA algorithms. In: Proceedings of the 2010 Annual Research Conference of
the South African Institute of Computer Scientists and Information Technologists.
SAICSIT ’10, New York, NY, USA, ACM (2010) 417–420

7. Thomas, J.J., Cook, K.A., eds.: Illuminating the Path: The Research and Devel-
opment Agenda for Visual Analytics. IEEE Press (2005)

8. Ceglar, A., Pattison, T.: Guided Formal Concept Analysis. Technical report,
Defence Science and Technology Organisation (2014) To appear.

9. Norris, E.: An algorithm for computing the maximal rectangles in a binary relation.
Revue Roumaine de Mathématiques Pures et Appliquées 23(2) (1978) 243–250

10. Missikoff, M., Scholl, M.: An algorithm for insertion into a lattice: Application to
type classification. In Litwin, W., Schek, H.J., eds.: Foundations of Data Organiza-
tion and Algorithms. Volume 367 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg (1989) 64–82

11. Godin, R., Missaoui, R., Alaoui, H.: Incremental concept formation algorithms
based on Galois (concept) lattices. Computational Intelligence 11(2) (1995) 246–
267

12. Aho, A., Garey, M., Ullman, J.: The transitive reduction of a directed graph. SIAM
Journal on Computing 1(2) (1972) 131–137

13. Mäkinen, E., Siirtola, H.: The barycenter heuristic and the reorderable matrix.
Informatica 29 (2005) 357–363

14. Choi, V., Huang, Y.: Faster algorithms for constructing a Galois lattice, enumer-
ating all maximal bipartite cliques and closed frequent sets. In: SIAM Conference
on Discrete Mathematics, University of Victoria, Canada. (2006)

15. Sedgewick, R.: Algorithms. second edn. Computer Science. Addison-Wesley (1988)

